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Figure	7-2	KiBAM	constant	k	as	a	function	of	battery	temperature.	

 
The above model simulates the performance of the battery bank on the level of an individual 

battery. STEMM users can also specify the number of batteries in a string and the number of 

strings in the battery bank. The nominal battery bank voltage is the product of the nominal 

battery voltage and the number of batteries in a string. The total current from the battery bank is 

then the current into or out of an individual battery multiplied by the number of strings. The total 

battery DC power flow is therefore 

𝑃m&" = 𝐼m ∙ 𝑉m,A ∙ 𝑁3+'	g"'A,( ∙ 𝑁g"'A,(g 

where 𝐼m is the current from a single battery, 𝑉m,A is the battery voltage, 𝑁3+'	g"'A,( is the number 

of strings per battery, and 𝑁g"'A,(g is the number of strings in the battery bank. The battery 

voltage, 𝑉m,A, depends on whether or not the battery is charging or discharging 

𝑉m,A =

𝑉m
𝐴 ∙ ln	(−𝐼m/𝐼'&"+) + 𝐵

, 𝑖 = 𝑐ℎ𝑎𝑟𝑔𝑒

𝑉m 𝐴 ∙ ln	(𝐼m/𝐼'&"+) + 𝐵, 𝑖 = 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
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where 𝑉m is the nominal battery voltage, 𝐼'&"+ is the nominal 20h battery capacity in Ah, and 𝐴 

and 𝐵 are empirical constants that relate battery efficiency to discharge rate. When dispatched to 

power loads, the DC power is multiplied by the inverter efficiency. The constants for the battery 

efficiency model were derived from data used by Hittinger et al. [90] as seen in Figure 7-3. 

 

Figure	7-3	Battery	efficiency	curve	as	a	function	of	discharge/charge	rate.	

 
7.2.5.2 Lifetime	

Users have the option to choose between a simple Ah throughput model or a capacity fade model 

to estimate battery lifetime. 

 

7.2.5.2.1 Ah	throughput	model	

In the throughput model, lifetime Ah throughput is specified by the user. The battery reached its 

end of life when the total number of Ah charging and discharging the battery reaches the lifetime 

throughput. Lifetime throughput can be estimated from manufacturer data by 

𝐴ℎ.AB+"A%+ = 𝐶m&" ∙ 𝐷𝑂𝐷 ∙ 𝐶𝑦𝑐𝑙𝑒𝑠¦:¦ 
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where 𝐶m&" is the nominal battery capacity, 𝐷𝑂𝐷 is the average depth of discharge, and 

𝐶𝑦𝑐𝑙𝑒𝑠¦:¦ is the number of cycles to failure with a depth of discharge 𝐷𝑂𝐷. This method is 

particularly appropriate for a cycle charging battery dispatch scenario. In a load following 

scenario where the depth of discharge is not consistent, it may be more appropriate to average 

the lifetime throughput for a range of depths of discharge between the 0% and the specified 

maximum depth of discharge [130]. 

 

7.2.5.2.2 Capacity	fade	model	

The capacity fade model estimates the loss of battery capacity over time as a function of battery 

throughput and temperature with batteries being replaced after reaching a specified cumulative 

level of capacity fade, usually when the battery reaches 80% of original capacity [90]. The 

capacity fade rate is specified as a percentage of capacity losses relative to original capacity her 

full cycle equivalent. At each one-hour time step, the capacity fade is therefore 

𝐶B&x+ =
|𝐼g"'A,(|
2 ∙ 𝐶m&"

∙ 𝑅B&x+ 

where 𝑅B&x+ is the capacity fade rate. The capacity fade is cumulated over time to adjust the 

battery capacity and resets when it reaches 80% of original capacity. 

 

The capacity fade rate varies as a function of temperature. For every 10˚C above 25˚C the battery 

operates, the capacity fade rate doubles and for every 10˚C below 25˚C, the rate halves. This is 

implemented as 

𝑅B&x+ = 𝑅<¡ ∙ 2
9�E�I<¡

76  

where 𝑅<¡ is the nominal capacity fade rate at 25˚C. 
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7.2.6 Demand	Model	

Demand on the microgrid can be modeled as a single load or as multiple loads that can be 

controlled independently. This allows the STEMM user to prioritize certain loads over others in 

the case of a shortfall in supply, and/or to implement different tariff structures for each load. It is 

further possible to specify penalties for failing to meet demand for all or specific loads. 

Currently, the model allows only AC loads. Expected load profiles are user-defined on an hourly 

basis for each month of the year. Because electricity demand is usually a key uncertainty for 

microgrids, STEMM accounts for uncertainty in the load profiles. 

 

When tariffs are modeled as changing in real terms over time (for example, if tariffs move with 

the price of diesel), a price elasticity can be defined to adjust demand based on a constant price 

elasticity of demand model. The user inputs demand growth over time as an annual growth rate. 

Users input load profiles as hourly, expected mean demand. This can be entered on a monthly 

basis to account for seasonal changes in demand. 

 

STEMM models mean hourly load profiles with two separate uncertain parameters. The first 

uncertainty relates to the relative demand between hourly time steps. This is modeled as 

independent normal distributions, truncated at zero, at each time step with the user input values 

as means and a user defined relative standard deviation. Truncated distributions assign 

probability density for negative demand as probability mass at zero, which leads to a finite, 

though usually very small, probability that there is no load at all during that time step. To 

account for correlation between demand at each time step, the mean total daily demand is also 
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modeled with a truncated normal distribution. The mean demand at each time step in the load 

profile is then scaled up or down so that the sum over time steps is equal to this total demand. 

Mathematical, the mean demand at time step 𝑖 can be expressed as 

𝐿A,%+&, = 𝑁"'s,~(𝐿A,A,3s", 𝑐�,�' ∙ 𝐿A,A,3s") ∙
𝐿x&d,%+&,
𝐿A,A,3s"

 

where 𝐿x&d,%+&, = 𝑁"'s~ 𝐿A,A,3s" , 𝑐�,x&d , 𝐿A,A,3s" is the user input expected demand at time 

step 𝑖, 𝑐�,�' is the relative standard deviation from the user input expected demand at each time 

step, 𝑐�,x&d is the relative standard deviation from the expected total daily demand, and 𝑁"'s~ is 

defined as 

𝑁"'s,~(𝜇, 𝜎) =
0 𝑖𝑓	𝑁 𝜇, 𝜎 < 0

𝑁(𝜇, 𝜎) 𝑖𝑓	𝑁 𝜇, 𝜎 ≥ 0 

with 𝑁 𝜇, 𝜎  being a normal distribution with mean 𝜇 and standard deviation 𝜎. 

 

To account for variation around this mean, demand at each hour of operation is modeled as 

𝐿« = 𝑁"'s,~ 𝐿%#x «,<¬ ,%+&,, 𝑐�,�&' ∙ 𝐿%#x «,<¬ ,%+&,  

where 𝑐�,�&' is the variation of demand at each time step about the mean. 

 

When tariffs are modeled as changing in real terms over time (for example, if tariffs move with 

the price of diesel), a price elasticity can be defined to adjust demand based on a constant price 

elasticity of demand model. Demand growth over time is input by the user as an annual growth 

rate. 
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7.2.7 Distribution	Model	

STEMM models the distribution system as having losses equal to a user-specified percentage of 

the total energy delivered on the system. The user can specify these losses by individual load and 

input them separately as technical and non-technical losses. Non-technical losses are not strictly 

speaking losses due to the distribution system, as they represent electricity theft and customer 

non-payment; however, both losses represent load that does not generate revenue.  

 

7.2.8 Dispatch	Model	

The dispatch model determines how dispatchable generation resources operate to meet demand 

and charge the battery bank. In the case of a shortfall in generation capacity, it also determines 

which loads to serve and which loads to shed. Figure 7-4 provides an overview of the data flows 

between other technical modules and the dispatch module. 

 

Figure	7-4	Technical	model	influence	diagram.	

 
In a system using PV and diesel generators, STEMM first assigns load to the PV generator and 

then to the diesel generators. The diesel generator dispatch algorithm seeks to dispatch 

generators so that they operate efficiently at high load factors. Dispatch is subject to constraints 

on minimum diesel generator load factor. 
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In a PV/battery configuration (without diesel generators), loads are supplied directly by the PV 

array when possible. Any excess PV generation is used to charge the battery bank. When the PV 

array cannot satisfy demand, the battery bank supplies the balance of power so long as the 

battery bank is maintained above the minimum specified state of charge.  

 

The dispatch algorithm is more complicated when a battery bank enables energy storage and 

generation includes diesel generators. Different algorithms are possible to determine when the 

battery bank should be charged or discharged in this configuration. STEMM adopts two simple 

algorithms, similar to those found in HOMER [130], called load following and cycle charging. 

The load following algorithm uses only excess PV generation to charge the battery bank, 

whereas the cycle charging algorithm uses excess diesel generator capacity to charge batteries. 

 

In a system using PV and diesel generators, STEMM first assigns load to the PV generator and 

then to the diesel generators. The diesel generator dispatch algorithm first searches for the 

generator that meets or exceeds the remaining demand by the smallest margin. If no single 

generator can supply the demand, the largest generator is dispatched and the algorithm starts 

again with the remaining generators. This continues until all demand is satisfied or all generators 

are dispatched. While not an optimization, this algorithm attempts to operate generators 

efficiently at high load factor. Dispatch is subject to constraints on minimum diesel generator 

load factor. For example, if the total demand is 10kW and available generating capacity includes 

a 10kW generator with a minimum load factor of 30% and a PV array generating 9kW, 2kW of 
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PV generation would be curtailed in order to operate the diesel generator at the minimum 3kW 

output. This curtailed solar power would be used to charge batteries if they are not full. 

 

In a PV/battery configuration (without diesel), the PV array directly supplies loads when 

possible. Any excess PV generation is used to charge the battery bank. When the PV array 

cannot satisfy demand, the battery bank supplies the balance of power, so long as the battery 

bank is maintained above the minimum specified state of charge.  

 

The dispatch algorithm is more complicated when a battery bank enables energy storage and 

generation includes solar and diesel sources. Different algorithms are possible to determine when 

the battery bank should be charged or discharged in this configuration. STEMM adopts two 

simple algorithms, similar to those found in HOMER [130], called load following and cycle 

charging. Figure 7-5 illustrates these cases. The load following algorithm uses only excess PV 

generation to charge the battery bank. The battery dispatch priority in this case falls after the 

diesel generators and therefore is used to meet peak demand, subject to the minimum state of 

charge constraint. In this algorithm, diesel fuel never charges the battery bank. 

 

In addition to using excess PV to charge the batteries when available, the cycle charging 

algorithm uses the excess capacity from the diesel generators to charge batteries. This ensures 

that diesel generators operate more efficiently at high load factor (but it also consumes extra 

diesel fuel). To ensure that batteries are not maintained in a low state of charge, once the battery 

bank reaches a certain minimum state of charge, they cannot be discharged again until they reach 

an upper set point state of charge. Such battery cycling batteries improves battery life, whereas 
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maintaining batteries in a low state of charge can result in permanent capacity loss. During cycle 

charging, the battery bank is prioritized after the PV generator and before the diesel generators. 

Therefore, whenever the battery bank is available for dispatch, the batteries supply the loads 

while the diesel generators remain idle. 

 

The algorithm that performs the best economically will depend on the technical design of the 

microgrid and the loads on the system. Load following may result in less load shedding as 

batteries are dispatched last and are therefore kept in a higher state of charge to serve peaks. On 

the other hand, the battery bank may then be underused. STEMM can simultaneously run load 

following and cycle charging scenarios to determine which strategy performs best in a particular 

case.  

 

STEMM currently provides two load-shedding algorithm options for cases when supply is not 

sufficient to satisfy demand. The algorithms depend on the level of control the grid operator can 

exert on demand. In the simplest case, the operator is only able to shed entire circuits on the grid, 

represented in the model as loads. If generation is not sufficient to meet the entire demand on the 

system, load shedding occurs based on user specified priority order until generation is sufficient 

to supply the remaining loads. Deployment of smart meters can enable microgrid operators to 

control demand on a finer scale. In the case where operators are able to disconnect individual 

customers, STEMM assumes that the demand of all customers in the load is equal. Loads are 

shed until there is sufficient generation capacity to partially meet the demand of the lowest 

priority load. Higher priority loads are met in full. Generation capacity is assigned to the partially 

fulfilled load in increments equal to the total demand from that load divided by the number of 



	

	 138	

customers in the load. Unmet demand is calculated and, if specified by the user, a financial 

penalty is assigned per kWh shortfall in the financial model. Figure 7-6 illustrates the load shed 

algorithms available in STEMM. 

 

Figure	7-5	Examples	of	battery	dispatch	and	load	shedding	strategies:	Load	Following	(top),	Charge	Cycling	with	
load	shedding	by	load	(center),	and	Charge	Cycling	with	load	shedding	by	customer	(bottom).	 	
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Figure	7-6	Comparison	of	load	shedding	algorithms.	In	the	shed	by	load	scenario,	any	load	that	cannot	be	met	
completely	is	shed;	while	in	the	shed	by	customer	scenario,	partially	loads	can	be	supplied.	The	lighter	colors	in	

the	figure	represent	loads	shed.	

 
7.3 Financial	Model	

The STEMM financial model simulates cash flows over the model horizon, on a monthly 

resolution, using technical model outputs and user inputs. These cash flows are then used to 

generate the financial indicators, equity NPV, DSCR, and LCOE. Cash flows in STEMM include 

capital costs, operating costs, revenues, corporate income tax, and debt payments. The model 

supports two currencies, typical one hard currency and one local currency, and uses the Wilkie 

Investment model to stochastically simulate consumer price indices in both currencies and the 

exchange rate [131]. With the exception of fuel costs, the current assumption is that costs are 

constant in real terms. Similarly, because most of the financial parameters are decision variables, 

STEMM currently treats these input parameters (with the exception of fuel costs) as 

deterministic values. It is however possible to model these probabilistically if desired. 
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7.3.1 Capital	Expenditure	

STEMM models not only initial capital costs but also calculates timings for replacement of 

capital assets at end of life. Diesel generator lifetimes are calculated in hours of runtime and 

battery lifetimes are determined by total Ah throughput or capacity fade as described in 7.2.5.2. 

Other capital assets like the PV array, inverters, distribution equipment, and meters are assumed 

to have fixed lifetimes specified in years. These inputs are subject to uncertainty and can be 

entered either as point values or distributions. Initial capital costs are assumed to occur 

December 31st of the year prior to the model start year. Replacement costs are incurred on the 

last day of the month in which the asset life is exhausted. Replacement costs for capital assets are 

fixed in real terms. Technology costs for equipment like solar panels are fall rapidly however the 

lifetimes of these assets are often longer than the model horizon. Future versions of STEMM 

may incorporate learning curves to account for technology price evolution over time. 

 

7.3.2 Operating	Expenditure	

Operating costs can be broken down in many ways. STEMM splits operating costs into the 

following categories: fixed operating costs, fuel costs, PV operation and maintenance (O&M), 

battery O&M, diesel generator O&M, and unmet demand penalties. Fixed operating costs are 

general overhead and maintenance costs that are roughly constant on a monthly basis. This could 

include costs like operator salaries and general distribution system maintenance. Fuel costs, 

unlike other costs, are modeled as changing in real terms. Fuel price uncertainty is a key driver 

of risk in microgrids with significant amounts of fossil fuel-based generation. This uncertainty is 

modeled using a geometric Brownian motion (GBM) model. 
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7.3.2.1 Fuel	Price	

The GBM model requires an initial fuel price, annual volatility, and an annual price drift in order 

to project future diesel prices: 

𝑃Bs+.,A = 𝑃Bs+.,AI7 ∙ 1 +
𝐷Bs+.
12 + 𝑃Bs+.,AI7 ∙ 𝑉Bs+. ∙

1
12	 ∙ 𝑁 0,1  

where fuel price, 𝑃Bs+.,A, is indexed by month, 𝐷Bs+. is the annual percent fuel price drift 

representing the mean long term real price progression, and 𝑉Bs+. is the annual fuel price 

volatility [132]. Figure 7-7 shows ten samples of simulated fuel prices using the GBM model. 

 

Figure	7-7	Samples	of	simulated	real	fuel	price	time	series	using	Geometric	Brownian	Motion	model.	

 
7.3.2.2 Fuel	Transport	Cost	

Most microgrid sites are located in remote areas. The cost of transporting fuel to these sites can 

therefore be significant. STEMM uses the transport cost model found in Szabó et al. [26]. The 

transport cost per liter is calculated as 
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𝑃"'&,g =
2 ∙ 𝑃Bs+. ∙ 𝑐Bs+. ∙ 𝑡Bs+.

𝑉Bs+.
 

where 𝑐Bs+. is the diesel fuel consumption per hour in transit, 𝑡Bs+. is the transit time, and 𝑉Bs+. is 

the volume of fuel transported in one delivery. 

 

7.3.3 Revenue	

STEMM accounts for three different types of revenue: energy consumption-based tariffs, fixed 

monthly service charges, and connection fees. Consumption-based tariffs are specified in local 

currency units per kWh of billable demand. Different tariff levels can be set for different loads. 

Fixed monthly service charges are specified in local currency units per customer. Connection 

charges are charged on a per customer basis for the period immediately preceding connection. In 

its current form, STEMM does not model the addition of new customers so in practice, all 

collection charges are received during the first model time step. 

 

7.3.4 Foreign	Exchange	Model	

Foreign exchange rates and consumer price indices are modeled using the Wilkie Investment 

Model. This model assumes exchange rates vary as a function of the ratio of price indices for 

each currency and a scale factor that varies around a static mean value over time. Inflation rates 

are modeled as a first order autoregressive time series denoted AR(1) from which consumer price 

indices are derived. Inflation in period 𝑖 is computed as 

𝐼A = 𝐼 + 𝑄𝐴 ∙ 𝐼AI7 + 𝑄𝑆𝐷 ∙ 𝑁 0,1  

where 𝐼A is the inflation rate in period 𝑖, 𝑄𝐴 is an autoregressive constant, 𝑄𝑆𝐷 is a constant and 

𝑁 0,1  is a normal distribution with mean zero and standard deviation one. 
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Exchange rates are modeled using a purchase parity model of form 

𝑋𝑅«4 = 𝑋𝐾 ∙
𝐶𝑃𝐼4
𝐶𝑃𝐼«

 

where 𝑋𝑅«4 is the units of currency 𝑖 exchanged for one unit of currency 𝑗, 𝐶𝑃𝐼4 is the consumer 

price index for currency 𝑘, and 𝑋𝐾 is a scale factor. 𝑋𝐾 is modeled as 

ln 𝑋𝐾 = 𝑋 + 𝑋𝑁 

where 𝑋 is a constant and 𝑋𝑁 is an AR(1) variable calculated as 

𝑋𝑁A = 𝑋𝐴 ∙ 𝑋𝑁AI7 + 𝑋𝑆𝐷 ∙ 𝑁(0,1) 

where 𝑋𝑁A is the value of 𝑋𝑁 at time step 𝑖, 𝑋𝐴 is an autoregressive constant and 𝑋𝑆𝐷 is a 

constant. 

 

7.3.5 Finance	Model	

STEMM assumes that microgrid capital costs are financed with a combination of debt and 

equity. Key inputs include the percentage of capital financed by debt, the interest rate, and the 

debt tenor. These parameters are fixed for all capital expenses. Loan repayments are calculated 

based on a constant monthly payment method. Interest rates can be specified in real or nominal 

terms. If interest rates are specified in real terms, the current inflation rate, calculated from the 

simulated consumer price index, is added to the interest rate to obtain a nominal value in each 

period. 
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7.3.6 Tax	and	Depreciation	Model	

STEMM accounts for corporate income taxes payable on microgrid profits. The tax model 

assumes straight-line depreciation of capital assets relying on user-defined depreciation periods. 

Users can specify in which currency assets are depreciated. The model also assumes that 

financial losses can be carried over indefinitely. The tax payments are calculated on a monthly 

basis. Taxable income per period is calculated as 

𝑇𝑎𝑥𝑎𝑏𝑙𝑒	𝐼𝑛𝑐𝑜𝑚𝑒 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑂𝑝𝑒𝑥 − 𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 − 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 − 𝐶𝑎𝑟𝑟𝑖𝑒𝑑	𝐿𝑜𝑠𝑠. 

The tax paid is equal to 

𝑇𝑎𝑥 = 𝑇𝑎𝑥𝑎𝑏𝑙𝑒	𝐼𝑛𝑐𝑜𝑚𝑒	×	𝑇𝑎𝑥	𝑅𝑎𝑡𝑒, 𝑇𝑎𝑥𝑎𝑏𝑙𝑒	𝐼𝑛𝑐𝑜𝑚𝑒 > 0
0, 𝑇𝑎𝑥𝑎𝑏𝑙𝑒	𝐼𝑛𝑐𝑜𝑚𝑒 ≤ 0. 

When taxable income is less than zero, this loss is carried over to the following year. 

 

7.3.7 Subsidy	Model	

Various forms of subsidy can be modeled using STEMM, including both capital and operating 

subsidies. Capital subsidies can be specified as a percentage of capital cost and can be applied 

for only initial capital expenses or for ongoing capital costs. The tax model treats this subsidy as 

reduction of the book value of the asset, thereby reducing the depreciation value of the asset 

[133]. Other subsidies are treated as standard revenues. These include initial cash grants, tariff 

subsidies, fuel subsidies, and operating subsidies based on the number of customers served. 

Tariff subsidies are specified on a kWh basis and are provided directly to the microgrid operator. 

Fuel subsidies are input as a percentage of the unsubsidized price. 
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7.4 Model	Outputs	

The primary model outputs are financial indicators meant to shed light on the attractiveness of 

the microgrid as an investment opportunity to equity and lenders. The core strength of STEMM 

is its ability to compute these metrics probabilistically so as to account for risk and uncertainty. 

Debt Service Coverage Ratio (DSCR) measures the “bankability” of the project, while the net 

present value (NPV) of projected equity cash flows measures the attractiveness of the project to 

equity investors. In addition to equity NPV and DSCR, STEMM also computes a levelized cost 

of energy (LCOE). 

 

7.4.1 Equity	Net	Present	Value	

The equity NPV is the net present value of equity cash flows discounted by a user-defined target 

return on equity. This cost of equity can be defined in nominal or real terms. If defined in real 

terms, the nominal rate is calculated each period by adding the real cost of equity to the annual 

inflation rate in that period. Equity cash flows are calculated as 

𝐸𝑞𝑢𝑖𝑡𝑦	𝐶𝑎𝑠ℎ	𝐹𝑙𝑜𝑤

= 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑂𝑃𝐸𝑋 − 𝐶𝐴𝑃𝐸𝑋 ∙ 1 − 𝑅¦ º − 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 − 𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 − 𝑇𝑎𝑥 

where 𝑅¦ º is the percent of capital funded by debt. The CDF of the equity NPV gives an 

indication of the probability that the project will meet or exceed the benchmark return.  

 

7.4.2 Debt	Service	Coverage	Ratio	

Lenders use the DSCR to determine whether or not the cash flows generated by a project will be 

sufficient to make loan payments. DSCR is the ratio of cash available to repay debt to the debt 

payment owed in a period. STEMM computes this indicator on a monthly basis as 
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𝐷𝑆𝐶𝑅 =
𝑅𝑒𝑣𝑒𝑛𝑢𝑒—𝑂𝑃𝐸𝑋 − 𝑇𝑎𝑥
𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 + 𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 . 

A DSCR less than one indicates that the project cannot pay its debt from project revenues. 

Lenders typically want to have DSCRs in excess of at least 1.2 [134]. Examining the cumulative 

distribution function (CDF) of the minimum DSCR provides an estimation of the probability a 

project will miss payments or default on loans. 

 

7.4.3 Levelized	Cost	of	Energy	

LCOE provides a measure of the “per unit cost” of generating and delivering electricity on the 

microgrid. It is defined as the sum of operating costs and annualized capital costs, divided by the 

number of kWh consumed. The capital recovery factor used to annualize capital costs uses a 

user-specified discount rate. 

 

STEMM calculates the levelized cost of energy for electricity generated and delivered on the 

microgrid for each model year. This is because factors like demand, load factor and fuel cost are 

modeled as changing over time. The average LCOE is calculated as the average LCOE over 

model years weighted by kWh consumption. The general formulation is 

𝐿𝐶𝑂𝐸 =
𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑	𝐶𝑎𝑝𝑒𝑥 + 𝐴𝑛𝑛𝑢𝑎𝑙	𝑂𝑝𝑒𝑥

𝑇𝑜𝑡𝑎𝑙	𝑘𝑊ℎ	𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑  

where ‘opex’ includes all operating expenses but not tax and financing costs. An annualized 

capital cost is computed for each capital asset by applying a capital recovery factor 

𝐶𝑅𝐹 =
𝑖 1 + 𝑖 ,

1 + 𝑖 , − 1 

where 𝑖 is the discount rate and 𝑛 is the lifetime of the asset. For capital assets with lifetimes 

defined as a number of years of useful life, 𝑛 is equal to this lifetime. For generators and 
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batteries, whose lives are defined in terms of hours of runtime and Ah throughput, respectively, 

𝑛 is calculated by taking the total lifetime runtime/throughput divided by the total 

runtime/throughput during the year for which the LCOE is being calculated. The total annualized 

capital cost is then obtained by computing the sum of annualized capital costs for all capital 

assets, 𝐶𝑅𝐹	×	𝐶𝑎𝑝𝑒𝑥&gg+"g . 
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8 Appendix	B:	STEMM	Sensitivity	Analysis	model	inputs	
 
STEMM requires a large number of inputs. This section of the supplemental information 

documents the inputs and assumptions used in the case studies presented in this paper. 

8.1 Financial	Inputs	

8.1.1 Cost	Inputs	

Costs are divided into capital costs and operating costs which are treated differently in the tax 

model. Capital costs are capitalized and depreciated while operating costs directly offset taxable 

income. 

8.1.1.1 Capital	Costs	

The	capital	costs	used	are	deterministic	and	presented	in	Table	8-1.	

Table	8-1	Summary	of	capital	cost	assumptions.	

Input Value Units Description Source 
PV Array 2700 USD/kWp Capital cost of PV array inclusive of 

mounting and cabling 
[135] 

Inverters 500 USD/kW Capital cost of AC/DC power inverters [136] 
Meters 40 USD/unit Capital cost of customer electricity meters [75] 
LV Distribution 26.4 USD/m Capital cost of low voltage distribution 

network 
[98] 

LV network per 
Customer 

22 m Average low voltage network length per 
customer 

[98] 

Connection Cost 92 USD/unit Capital cost to connect a customer to the 
low voltage network 

[98] 

Number of 
Customers 

521 Unit Total number of customers on grid [98] 

Battery Cost 1320 USD/unit Capital cost per battery in battery bank [136] 
 

8.1.1.2 Asset	Lifetimes	

Asset lifetimes are used to determine when capital assets must be replaced. The assets in Table 

8-2 are set in years and, in these case studies, modeled deterministically. Batteries and diesel 
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generator lifetimes are calculated as a function of cumulative capacity fade and runtime, 

respectively, using the parameters in Table 8-3. 

	

Table	8-2	Summary	of	asset	lifetimes	for	asset	lives	set	in	year.	

Asset Value Units Source 
Distribution Network 30 yr [137] 
Meters 10 yr [138] 
Solar Array 25 yr [139] 
Inverters 15 yr [140] 

 

Table	8-3	Summary	of	probabilistic	asset	lifetimes.	

Asset Distribution Parameters Units Source 
Diesel Generators Triangular Min: 20,000 

Mode: 25,000 
Max: 30,000 

hours runtime  

Batteries Triangular Min: 0.0119 
Mode: 0.0121 
Max: 0.0196 

%/full cycle equivalent [99] 

 

8.1.1.3 Operating	Costs	

Except for fuel price, operating costs are modeled deterministically. Table 8-4 summarizes the 

inputs used in the cases. 

Table	8-4	Operating	cost	inputs.	

Input Value Units Description Source 
Initial Fuel Price 1.07 USD/L Retail price per liter of diesel fuel [141] 
Fuel Price Drift 0 %/yr Annual fuel price drift parameter in 

Geometric Brownian Motion model 
[92] 

Fuel Price 
Volatility 

20 %/yr Annual fuel price volatility parameter in 
Geometric Brownian Motion model 

[92] 

Fuel Transport 
Burn Rate 

12 L/h Fuel burn of fuel delivery vehicle [26] 

Fuel Delivery 
Transit Time 

1 h One way transit time for fuel delivery 
from retail source 

[26] 

Fuel Delivery 
Volume 

300 L Liters of fuel in one delivery [26] 

Generator O&M 120 RWF/h Diesel generator O&M cost per hour of [142] 
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generator runtime 
PV O&M 6500 RWF/kWp/yr PV array and battery bank maintenance 

cost 
[136] 

 

8.1.2 Financing	Inputs	

The financing structure assumes a 50:50 debt equity ratio with a ten-year debt tenor. Other 

assumptions are summarized in Table 8-5. 

Table	8-5	Summary	of	financing	inputs.	

Input Value Units Description 
Cost of Debt 10 %/yr Real cost of debt 
Leverage 50 % Percent of capital cost financed by debt 
Loan Currency USD  Currency in which debt finance is acquired 
Debt Tenor 10 yr Debt repayment period 
Accounting Currency RWF  Currency in which assets are depreciated 
Cost of Equity 15 %/yr Real cost of equity 
 

8.1.3 Tax/Depreciation	Inputs	

The tax rate used is the Rwandan corporate tax rate of 30% [143]. Assets are depreciated in local 

currency, converted from the currency it was acquired in on the acquisition date, over the period 

in Table 8-6. 

Table	8-6	Depreciation	periods	of	capital	assets.	

Asset Value Units 
Distribution Network 30 yr 
Meters 10 yr 
Solar Array 25 yr 
Inverters 15 yr 
Batteries 5 yr 
Diesel Generators 5 yr 
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8.1.4 CPI	and	Foreign	Exchange	Inputs	

The parameters of the consumer price index (CPI) and foreign exchange models described in 

section 7.3.4 where estimated using monthly time series data of Rwanda and US CPI data and 

Rwandan Franc (RWF) and US Dollar (USD) exchange rate data from February 2009 to July 

2016. These time series are plotted in Figure 8-1 and Figure 8-2. The parameters of the AR(1) 

series described in section 7.3.4 obtained by fitting the Wilkie Investment model to these data are 

summarized in Table 8-7. 

Table	8-7	AR(1)	parameters	for	CPI	and	foreign	exchange	models.	

Series Initial Value Constant Autoregressive 
Coefficient 

Variance 

Rwanda CPI 7.5% 2,430´10-6 0.350 195´10-6 
US CPI 1.0% 755´10-6 0.466 7.68´10-6 
XN (RWF/USD) 806.4 0 0.8913 375´10-6 
 

 

Figure	8-1	Time	series	plot	of	consumer	price	index	data	used	to	fit	inflation	model	parameters.		
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Figure	8-2	Time	series	plot	of	monthly	exchange	rate	data	used	to	fit	foreign	exchange	model	parameters.	

8.2 Technical	Inputs	

8.2.1 Scenario	Generator	Sizing	Method	

The generator sizings for the technology scenarios used in this paper are presented in Table 8-8. 

The scenarios were constructed using an iterative approach with HOMER [99] and STEMM. 

Initial sizing was fixed using HOMER and the load profile provided by REG found in Figure 8-3 

[98]. Tariffs where then set by finding the value in STEMM (in deterministic mode using median 

values of uncertain inputs) that provides an equity NPV approximately equal to zero to the 

nearest Rwandan franc. Because I rely on the load profile from the grid electricity supplier, I 

assume that such demand is representative of demand at the grid tariffs. STEMM adjusts the 

demand on the microgrid as a function of the energy tariff using a constant price elasticity of 

demand model. The level of demand at the tariff level determined in STEMM is then adjusted in 

HOMER and the optimization is re-run. The new configuration is then entered into STEMM and 
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a new tariff is determined. This process was repeated until the optimal generator sizing 

converged. Table 8-8 includes information about the tariffs used. 

Table	8-8	Summary	of	generation	technology	scenarios.	

Scenario Diesel Hybrid 
(small PV) 

Hybrid 
(large PV) Solar/Battery 

Diesel Gen 1 (kW) 50 50 50  
Diesel Gen 2 (kW) 25 25 25  
Diesel Gen 3 (kW) 25 25 25  
PV Array (kWp)  50 100 200 
Inverter (kW)  50 50 75 
Battery Strings  1 4 22 
Tariff (RWF/kWh) 1,137 1,137 1,219 1,665 
Diesel Weight 1 0.69 0.46 0 
Initial Capex (k$) 432.1 607.9 790.4 1,297 
1 USD is approx. 800 RWF 

 

Figure	8-3	Average	load	profile	for	a	typical	load	center	from	REG	electricity	master	plan.	

 
8.2.2 Meteorological	Inputs	

Solar Resource Data 

Solar resource data is drawn from the HelioClim-3 v5 database for the period from February 1, 

2004 to January 31, 2005 for the coordinates 2˚ S, 30˚ E located in central Rwanda [100]. I 

assumed a north-facing array with latitude tilt. Ideally, a longer time series would be available to 

account for inter-annual variability. Lacking this, a typical meteorological year would be 

appropriate to ensure the use of data that represents the long-term average solar resource. 

However, because the only available hourly time series for the location was a single year of 

measured data, I relied on such data for the case studies. 
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Solar Resource Uncertainty 

The uncertainty model for solar resource relies on validation studies of the HelioClim-3 database 

that compare the satellite derived data with ground based measurements from 65 sites around 

Europe, Africa, and South America [102]-[105]. The relative bias values from these sites fit a 

normal distribution as in Figure 8-4 and the relative standard deviation values fit to a lognormal 

distribution as in Figure 8-5. Distribution parameters are found in Table 8-9. 

	

Table	8-9	Solar	resource	uncertainty	parameters.	

Input Distribution Parameters Units Description Source 
Hourly Solar 
Resource 
Measurement 
Error 

LogNormal µ: 20.1 
s: 5.04 

% Measurement 
uncertainty of 
hourly solar 
resource 

[102]-[105] 

Solar Resource 
Bias 

Normal µ: 0.592 
s: 2.63 

% Bias of annual 
solar resource 
measurement 

[102]-[105] 

 

 

Figure	8-4	Distribution	of	relative	bias	of	HelioClim-3	v5	data	from	65	ground	measurement	sites.	
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Figure	8-5	Distribution	of	relative	standard	deviation	of	HelioClim-3	v5	data	from	65	ground	measurement	sites.	

 
 
 
Temperature Data 

Daily maximum and minimum temperatures used in the model are from the NASA SSE database 

[101]. This time series is from the same coordinates and time period as the solar irradiation data. 

Figure 8-6 shows the profiles of total daily solar insolation, and daily maximum and minimum 

ambient temperatures used in the case studies. Uncertainty parameters are in Table 8-10. 

Table	8-10	Temperature	uncertainty	parameters.	

Input Value Units Description Source 
Tamax 
Uncertainty 

3.1 ˚C Standard deviation of distribution of daily 
maximum ambient temperature 

[122] 

Tamin 
Uncertainty 

2.5 ˚C Standard deviation of distribution of daily 
minimum ambient temperature 

[122] 
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Figure	8-6	Daily	solar	and	temperature	profiles	used	in	case	studies.	



	

	 157	

8.2.3 Solar	Inputs	

Solar array and inverter inputs were taken primarily from data sheets for Trina solar modules and 

Fronius inverters, respectively. These inputs are found in Table 8-11. PV array output 

degradation and system losses are modeled probabilistically using the inputs in Table 8-12. 

Table	8-11	Deterministic	solar	array	inputs.	

Input Value Units Description Source 
Vmpp 30.3 V Maximum power point voltage of PV 

modules at STC 
[139] 

Impp 8.27 A Maximum power point current of PV 
modules at STC 

[139] 

Voc0 38 V Open circuit voltage of PV modules at 
STC 

[139] 

Isc0 8.79 A Closed circuit current of PV modules at 
STC 

[139] 

NOCT 44 ˚C Normal operating cell temperture [139] 
Power Temperature 
Coefficient 

0.41 %/˚C/yr Temperature dependence coefficient of 
PV model power output 

[139] 

Inverter Efficiency 96.5 % DC to AC conversion efficiency of 
inverters 

[144] 

 

Table	8-12	Probabilistic	solar	array	inputs.	

Input Distribution Parameters Units Description Source 
Annual PV 
Degradation 

Triangular Min: 0.2 
Mode: 0.5 
Max: 0.8 

%/yr Annual power output 
degradation of PV modules 

[111] 

DC PV Losses Beta a: 12.8 
b: 96.7 

% Energy losses in PV system 
from array to inverters 

[110] 
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8.2.4 Diesel	inputs	table	

Diesel generator inputs are summarized in Table 8-13. 

Table	8-13	Diesel	generator	inputs.	

Input Value Units Description Source 
No Load Fuel 
Consumption 

0.0911 ´ Gen. 
Capacity 

L/h Generator fuel consumption per hour 
regardless of electric output 

[142] 

Marginal Fuel 
Consumption 

0.264 L/kWh Generator fuel consumption in addition 
to no load fuel consumption per kWh 
generated 

[142] 

Minimum Load 
Factor 

30 % Minimum generator output while 
operating as percent of rated capacity 

[145] 

 

8.2.5 Load/distribution	inputs	table	

Load profile and distribution loss model inputs are found in Table 8-14 and Table 8-15. 

Table	8-14	Load	and	distribution	inputs	

Input Value Units Description Source 
Expected Load 
Tariff 

182 RWF/kWh Tariff assumption in constructing 
load profile 

[146] 

Demand 
Uncertainty 

20 % Relative standard deviation of mean 
daily electricity consumption 

Based on author 
experience 

Load Profile 
Uncertainty 

10 % Relative standard deviation of mean 
hourly electricity demand 

 

Timestep 
Variability 

8 % Relative standard deviation of hourly 
demand distributed around mean 
profile 

[147] 

Technical 
Losses 

5 % Technical losses incurred in 
distribution of electricity 

[148] 

 

Table	8-15	Load	and	distribution	input	distributions.	

Input Distribution Parameters Units Description Source 
Price Elasticity of 
Demand 

Triangular Min: -0.82 
Mode: -0.5 
Max: -0.17 

 Price elasticity of 
demand for electricity 

[149], [150] 

Non-Technical 
Losses 

Triangular Min: 0 
Mode: 2 
Max: 4 

% Non-technical losses 
due to non-payment 
and theft 

[109] 
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8.2.6 Battery	Inputs	

Battery model inputs are summarized in Table 8-16. 

Table	8-16	Battery	inputs.	

Input Value Units Description Source 
c (KiBaM) 0.254  Constant in KiBam model described in 

section 7.2.5.1 
[99] 

Ak 1.058  Constant in model for KiBaM reaction rate 
described in section 7.2.5.1 

 

Bk 44.16  Constant in model for KiBaM reaction rate 
described in section 7.2.5.1 

 

Ck 236.3  Constant in model for KiBaM reaction rate 
described in section 7.2.5.1 

 

20hr 
Capacity 

1350 Ah Capacity of battery at standard conditions 
at 20-hour discharge rate 

[99] 

Nominal 
Voltage 

4 V Nominal voltage of each battery [99] 

Batteries per 
String 

12  Number of batteries connected (in series) in 
a string 

 

Ah -0.0278  Constant in model of battery efficiency 
described in section 7.2.5.1 

 

Bh 0.822  Constant in model of battery efficiency 
described in section 7.2.5.1 

 

Min. SOC 40 % Minimum battery state of charge  
Battery 
Setpoint 
SOC 

90 % Battery state of charge when battery bank 
becomes available for discharge after 
reaching minimum SOC 

Typical 
value 

Rectifier 
Efficiency 

90 % AC to DC conversion rate of rectifier for 
battery charging 

[151] 

 

8.2.6.1 Capacity	fade	distribution	

The distribution for the battery capacity fade constant is derived from cycle life data in the 

HOMER database [99]. Table 8-17 shows the cycle life of the battery modeled at different 

depths of discharge. These cycles are then converted to full cycle equivalents and the capacity 

fade rate is calculated assuming the batteries reach end of life at the conventional 80% of original 

capacity. A triangular distribution is constructed using the maximum and minimum values with 

the distribution mode equal to the fade rate at the minimum depth of discharge being modeled. 
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There are limitations to this approach. For example, this does not account for variation in quality 

of manufacturing. However, due to a lack of data, this method has been used to approximate the 

uncertainty associated with battery capacity fade. 

Table	8-17		Implied	capacity	fade	rate	of	Surrette	4kS25P	battery	from	HOMER	database	[99].	

Surrette 4KS25P Cycle Life Data 
DOD Cycles Full Cycles Fade Fade Rate 

20 5,100 1,020 20% 0.0196% 
30 4,220 1,266 20% 0.0158% 
40 3,580 1,432 20% 0.0140% 
50 3,170 1,585 20% 0.0126% 
60 2,750 1,650 20% 0.0121% 
70 2,400 1,680 20% 0.0119% 
80 2,000 1,600 20% 0.0125% 
90 1,750 1,575 20% 0.0127% 

100 1,500 1,500 20% 0.0133% 
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9 Appendix	C:	Demand	model	supplemental	information	
 

Table	9-1	Summary	of	train	and	test	MSEs	on	1,000	train/test	data	splits	

  Combined Peak Off-peak 

  
Train 
MSE 

Test 
MSE 

Train 
MSE 

Test 
MSE 

Train 
MSE 

Test 
MSE 

OLS 
Mean 1.45 2.17 1.45 2.19 5.51 8.13 
Std 
Err. 0.16 0.43 0.19 0.52 0.39 1.19 

Ridge 
Mean 1.68 2.05 1.70 2.11 6.31 7.50 
Std 
Err. 0.17 0.43 0.20 0.55 0.42 1.14 

LASSO 
Mean 1.73 2.01 1.76 2.06 6.53 7.39 
Std 
Err. 0.21 0.43 0.25 0.54 0.50 1.15 

PCR 
Mean 1.72 2.11 1.75 2.19 6.68 7.65 
Std 
Err. 0.22 0.45 0.27 0.56 0.59 1.16 

Mean 
Mean 2.91 2.93 2.82 2.85 9.98 10.09 
Std 
Err. 0.22 0.51 0.24 0.57 0.60 1.41 

Rand. 
Forest 

Mean 0.31 2.14     
Std 
Err. 0.04 0.45     
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Table	9-2	Summary	of	model	MSEs,	tuning	parameters,	and	coefficients	for	1,000	train/test	splits	

 OLS Ridge 
 Peak Off-peak Peak Off-peak 

Tuning parameter     alpha alpha 
    0.575 0.000 0.874 0.000 

Intercept -3.419 0.796 -9.303 1.559 -3.686 0.432 -7.498 0.654 
Own Building -0.050 0.179 0.008 0.427 -0.025 0.093 -0.015 0.179 
Building Type         
Well Built Concrete -0.459 0.220 0.062 0.504 -0.065 0.050 0.128 0.090 
Brick/Mud Brick/Sticks & Mud/Wood -0.425 0.223 0.104 0.627 -0.114 0.045 -0.181 0.102 
Current Light/Electricity Source         
None/Kerosene Lamp -0.733 0.249 -0.266 0.510 -0.397 0.088 -0.525 0.166 
Solar Lantern -0.187 0.186 0.617 0.369 -0.136 0.065 -0.070 0.118 
Solar < 50W -0.220 0.240 0.320 0.375 -0.213 0.076 -0.214 0.118 
Solar > 50W 0.115 0.284 1.261 0.473 -0.113 0.085 0.188 0.107 
Generator/Mini-Grid 1.007 0.309 1.782 0.436 0.868 0.095 1.082 0.100 
Other 0.210 0.197 0.208 0.385 0.104 0.077 0.126 0.135 
Existing Appliances         
None -0.305 0.246 0.494 0.527 -0.150 0.083 0.094 0.143 
Computer/Refrigerator/Printer/Copier 0.333 0.372 0.621 0.557 0.237 0.229 0.445 0.261 
Television 0.576 0.202 0.792 0.377 0.377 0.067 0.436 0.096 
Radio -0.184 0.182 -0.250 0.338 0.047 0.071 0.067 0.111 
Phone Charger 0.014 0.183 -0.044 0.299 0.000 0.072 -0.018 0.107 
CD-DVD Player/Sound System -0.401 0.304 -0.198 0.445 0.100 0.127 0.369 0.135 
Other -0.387 0.199 -0.691 0.433 -0.167 0.101 -0.339 0.188 
Planned Appliance         
None -0.356 0.396 0.072 0.565 0.050 0.187 0.127 0.336 
Computer/Refrigerator/Printer/Copier 0.092 0.147 0.379 0.278 -0.023 0.071 0.070 0.109 
Television 0.301 0.157 0.942 0.382 0.010 0.067 0.112 0.119 
Radio 0.336 0.164 0.008 0.311 0.189 0.070 -0.007 0.112 
Phone Charger 0.271 0.163 0.228 0.302 0.173 0.072 0.048 0.114 
CD-DVD Player/Sound System -0.003 0.131 0.006 0.275 -0.013 0.067 -0.031 0.121 
Lights 0.039 0.153 0.293 0.299 -0.074 0.073 -0.063 0.116 
Other 0.156 0.169 0.228 0.295 0.059 0.083 0.137 0.121 
Customer Type         
Home 0.342 0.206 -0.486 0.354 -0.006 0.093 -0.419 0.106 
Restaurant/Bar 0.624 0.183 0.189 0.401 0.410 0.096 0.253 0.173 
Shop/Hair Salon/Guest House 0.179 0.168 0.431 0.304 0.102 0.092 0.349 0.121 
Other -0.298 0.308 -0.571 0.538 -0.463 0.157 -0.456 0.205 
Time of Use 10.998 2.061 16.297 3.101 0.286 0.057 0.606 0.081 
Numerical Variables         
Log Peak Tariff (TSH/kWh) -1.292 0.253   0.023 0.007   
Log Off-peak Tariff (TSH/kWh)   -1.974 0.421   0.067 0.012 
Log Airtime Spend (TSH) -0.083 0.087 0.010 0.161 -0.022 0.050 0.067 0.077 
Log Electricity Spend (TSH) 0.033 0.025 0.067 0.044 0.029 0.009 0.052 0.013 
Log Number of Existing Lights -0.203 0.132 0.190 0.274 0.037 0.042 0.238 0.072 
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	Table	9-2	Summary	of	model	MSEs,	tuning	parameters,	and	coefficients	for	1,000	train/test	splits	cont’d	

 LASSO PCR 
 Peak Off-peak Peak Off-peak 

Tuning parameter alpha alpha Num. Comp. Num. Comp. 
0.008 0.008 0.003 0.019 0.019 0.005 15.20 7.01 8.34 4.59 

Intercept -3.997 -4.007 0.249 -7.274 -7.294 0.374 -4.314 0.781 -8.032 0.959 
Own Building   0.000 0.032   -0.002 0.041 0.095 0.200 0.052 0.233 
Building Type                   
Well Built Concrete   -0.013 0.073   0.006 0.037 -0.050 0.169 0.273 0.117 
Brick/Mud Brick/Sticks & Mud/Wood   -0.023 0.087   -0.017 0.076 -0.110 0.146 -0.344 0.101 
Current Light/Electricity Source                   
None/Kerosene Lamp -0.151 -0.202 0.217 -0.103 -0.232 0.280 -0.354 0.229 -0.559 0.274 
Solar Lantern   -0.013 0.063   0.002 0.028 -0.137 0.099 -0.158 0.146 
Solar < 50W   -0.045 0.111   -0.019 0.069 -0.223 0.170 -0.324 0.232 
Solar > 50W   0.002 0.069   0.148 0.228 -0.148 0.169 0.068 0.183 
Generator/Mini-Grid 1.387 1.375 0.231 1.820 1.820 0.273 0.876 0.250 0.940 0.350 
Other   0.009 0.048   0.005 0.043 0.094 0.179 0.211 0.189 
Existing Appliances                   
None   -0.026 0.086   0.024 0.117 -0.076 0.141 -0.006 0.282 
Computer/Refrigerator/Printer/Copier   0.122 0.229   0.157 0.298 0.304 0.332 0.550 0.330 
Television 0.414 0.414 0.155 0.392 0.402 0.252 0.287 0.155 0.307 0.108 
Radio   0.005 0.052   -0.001 0.056 0.046 0.142 0.063 0.175 
Phone Charger   0.006 0.048   -0.005 0.042 0.001 0.106 0.003 0.133 
CD-DVD Player/Sound System   0.006 0.090   0.092 0.178 0.097 0.258 0.404 0.150 
Other   -0.045 0.115   -0.099 0.210 0.094 0.179 -0.245 0.317 
Planned Appliance                   
None   -0.006 0.069   -0.001 0.046 0.276 0.453 -0.089 0.569 
Computer/Refrigerator/Printer/Copier   0.006 0.044   0.011 0.059 -0.093 0.152 -0.074 0.152 
Television   0.017 0.070   0.028 0.129 -0.012 0.154 -0.069 0.183 
Radio   0.096 0.130   0.003 0.042 0.248 0.144 0.043 0.272 
Phone Charger 0.037 0.089 0.110   0.010 0.056 0.125 0.178 -0.195 0.156 
CD-DVD Player/Sound System   -0.001 0.032   -0.002 0.030 -0.019 0.124 -0.033 0.158 
Lights   0.002 0.046   0.004 0.048 -0.049 0.115 -0.170 0.143 
Other   0.006 0.041   0.021 0.080 0.011 0.139 0.092 0.178 
Customer Type                   
Home   0.017 0.093 -0.034 -0.146 0.204 0.020 0.181 -0.333 0.167 
Restaurant/Bar 0.231 0.236 0.186   0.039 0.116 0.664 0.210 0.567 0.395 
Shop/Hair Salon/Guest House   0.043 0.090 0.229 0.257 0.221 0.245 0.176 0.639 0.316 
Other -0.378 -0.364 0.250   -0.145 0.297 -0.698 0.292 -0.496 0.433 
Time of Use 0.462 0.869 2.052 1.413 1.450 0.877 1.513 3.785 0.564 0.703 
Numerical Variables                     
Log Peak Tariff (TSH/kWh)   -0.052 0.254      -0.124 0.466     
Log Off-peak Tariff (TSH/kWh)        -0.005 0.115     0.068 0.089 
Log Airtime Spend (TSH)   -0.004 0.026   0.004 0.028 0.022 0.097 0.161 0.095 
Log Electricity Spend (TSH)   0.010 0.017 0.001 0.018 0.026 0.040 0.012 0.057 0.017 
Log Number of Existing Lights   -0.001 0.038 0.208 0.216 0.165 0.114 0.121 0.286 0.103 
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Figure	9-1	Model	estimates	of	log	consumption	plotted	against	observed	values	in	the	test	data.	

 
Figure	9-2	Model	estimates	of	median	consumption	plotted	against	observed	values	in	the	test	data.	
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