9-2009

Why Segregating Short Jobs from Long Jobs under High Variability is Not Always a Win

Mor Harchol-Balter
Carnegie Mellon University

Alan Scheller-Wolf
Carnegie Mellon University

Andrew Young
Morgan Stanley

Follow this and additional works at: http://repository.cmu.edu/compsci
Why Segregating Short Jobs from Long Jobs under High Variability is Not Always a Win

Mor Harchol-Balter and Alan Scheller-Wolf and Andrew Young

Abstract—This paper investigates the performance of task assignment policies for server farms as the variability of job sizes (service demands) approaches infinity. The Size-Interval-Task-Assignment policy (SITA), which separates short jobs from long jobs, has long been viewed as the panacea for dealing with high-variability job-size distributions. A very recent paper [16] showed that this common wisdom is flawed: SITA can actually be inferior to the much simpler greedy policy, Least-Work-Left (LWL), for certain common job-size distributions, including many modal, hyperexponential, and Pareto distributions.

The above finding leads one to question whether providing isolation for short jobs from long ones is inherently bad, or whether it is just SITA’s strict isolation of short jobs that sometimes leads to poor performance. To answer this question, we consider a much more flexible policy, which we call “Cycle-Stealing” (CS). The CS policy is very similar to LWL, in that short jobs can go to any queue, but it still provides short jobs isolation from longs (one server is reserved for short jobs). While CS has many of the same properties as LWL, including high utilization of both servers, we prove, surprisingly, that, for high variability job sizes, CS performs poorly whenever SITA performs poorly. This result suggests that the notion of isolating short jobs from long jobs, under high variability workloads, is sometimes simply not the right thing to do.

I. INTRODUCTION

A. Task assignment policies

One of the oldest and most fundamental questions arising in server farms is the question of which dispatching policy should be used for routing jobs to servers. This policy is known as the task assignment policy. A common goal of the task assignment policy is to minimize mean response time, where response time is measured from when a job arrives until it completes.

We are particularly interested in situations with high job size variability. It is well-known that empirical computer workloads such as Web file sizes, CPU process lifetimes, IP flow durations, and wireless call times have very high job size variability, with job sizes fitting Pareto or other high-variance distributions [2], [7], [13], [20], [21]. This paper studies the mean response time of task assignment policies in the limit as job size variability goes to infinity, while the mean job size stays fixed. To denote job-size variability, we use the squared coefficient of variation, $C^2 = \text{var}[X]/\mathbb{E}[X]^2$, where X is a random variable representing the job size (service requirement). Job sizes are assumed to be i.i.d. from some general distribution. We assume that jobs arrive to the server farm according to a Poisson process with rate λ. For a server farm with n servers, system load ρ is defined as: $\rho = \lambda \mathbb{E}[X]$. Note that $\rho = n$ corresponds to a fully loaded system. In our analysis, we will generally assume $n = 2$ because that suffices to make our points. Importantly, we will assume that jobs are not preemptible. That is, a long job cannot be preempted when a short job arrives, and then resumed later. This model is common for supercomputing farms [11], [20], manufacturing systems [17], [4], data centers, IO systems, etc., where it is expensive to preempt jobs and thus even long jobs are typically run to completion.

For our server farm model, there are many common choices of task assignment policies. The Round-Robin policy assigns the first job to host 1, the second to host 2, the third to host 3, the ith to host $i \mod n + 1$, and so forth. The Join-the-Shortest-Queue (JSQ) policy assigns each incoming job to the host with the fewest number of jobs queued there. The Least-Work-Left (LWL) policy assigns each incoming job to the host with the least total work remaining. Here “work” is the sum of the remaining size of the job in service plus the sizes of all the jobs in the queue at the host. The SITA (Size-Interval Task Assignment) assigns a size-interval to each host, so that “short” jobs are sent to the first host, “medium-length” jobs are sent to the second host, and “long” jobs to the third, etc., where the cutoffs for differentiating size classes are chosen optimally, so as to minimize mean response time. SITA with $n = 2$ is illustrated in Figure 1. The above task assignment policies are all dispatching policies, whereby each incoming job is immediately dispatched to a host.

![Illustration of SITA task assignment with 2 server hosts.](image)

Importantly, the LWL policy is equivalent to the classical central FIFO queue, (denoted by M/GI/n for the case of...
Poisson arrivals and n servers), where there are no queues at the hosts; instead jobs queue up in a central queue. A free host simply takes the next job from the central queue. The LWL and M/GI/2 policies are illustrated in Figure 2. Specifically, under M/GI/n, jobs go to the same host as they would have under LWL and are served there at the same time as under LWL (see [11] for an inductive proof). The response times under M/GI/n and LWL are thus identical. What’s nice about this equivalence is that, while the LWL policy requires knowing the sizes of jobs, the M/GI/n policy does not.

The LWL and M/GI/2 policies are illustrated in Figure 2. Specifically, under M/GI/n, jobs go to the same host as they would have under LWL and are served there at the same time as under LWL (see [11] for an inductive proof). The response times under M/GI/n and LWL are thus identical. What’s nice about this equivalence is that, while the LWL policy requires knowing the sizes of jobs, the M/GI/n policy does not.

![LWL Diagram](image1)

(a) LWL

![M/GI/2 Diagram](image2)

(b) M/GI/2

Fig. 2. LWL task assignment is equivalent to M/GI/2.

B. The advantages of SITA for high variability

While a great many papers have been written comparing the response time of different task assignment policies, e.g., [5], [6], [9], [11], [12], [19], [22], [23], all of these papers conclude (via numerical analysis, simulation, or approximation) that, for high job-size variability, the SITA policy is superior to all the other common policies mentioned above. The reason for the superiority of SITA task assignment lies in the fact that SITA allows short jobs their own “express-line,” thereby giving them isolation from long jobs. Since most jobs are short jobs, the resulting mean response time is lowered. By contrast, all other policies described above mix short and long jobs, allowing short jobs to get “stuck” behind long jobs, greatly increasing mean response time. The SITA policy (and its variants) has been part of the common wisdom about task assignment for high C^2 is wrong: We prove that SITA is not always superior to LWL as $C^2 \to \infty$; in fact SITA can be unboundedly worse than LWL. We show that both SITA and LWL can exhibit both convergent and divergent asymptotic behavior, depending on the load and job-size distribution. By convergent behavior, we mean that the mean response time approaches a constant as $C^2 \to \infty$ (while holding $E[X]$ fixed) and by divergent behavior, we mean that the mean response time approaches infinity as $C^2 \to \infty$ (while holding $E[X]$ fixed).

Specifically, for each box in Table I, [16] produces several examples of classes of distributions that fall within that box. This includes Box 3, which are distributions where SITA diverges and LWL converges. The examples used to illustrate these boxes are not esoteric in nature. They do not presume arcane distributions or assume very light or heavy load or a very high number of servers. Job size distributions considered include the Bimodal and Trimodal distributions, the hyperexponential (H_2) and three-phase hyperexponential (H_3), and the Bounded Pareto and Pareto job size distributions.

<table>
<thead>
<tr>
<th>Box</th>
<th>Convergent LWL</th>
<th>Divergent LWL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Convergent SITA</td>
<td>BOX 1</td>
</tr>
<tr>
<td>2</td>
<td>Convergent SITA</td>
<td>BOX 2</td>
</tr>
<tr>
<td>3</td>
<td>Divergent SITA</td>
<td>BOX 3</td>
</tr>
<tr>
<td>4</td>
<td>Divergent SITA</td>
<td>BOX 4</td>
</tr>
</tbody>
</table>

TABLE I

ALL FOUR BEHAVIORS ARE COMMON.

But how can SITA be bad for high variability workloads, when it is specifically designed for those workloads? There are two things that can go wrong under SITA (for simplicity we assume just 2 servers and one cutoff differentiating short and long jobs):

- **Observation 1**: The stringent segregation of shorts and longs mandated by SITA can lead to underutilization of the servers under any job size distribution. Specifically,
there are times when the short job queue has multiple jobs and the long job server is idle. The reverse situation also occurs, although less frequently since short jobs arrive with higher frequency. By contrast LWL (or equivalently the M/GI/n queue) does not suffer from underutilized servers.

- **Observation 2**: Some job size distributions may inherently prevent the creation of two sub-distributions both with finite variance, meaning that one of the two SITA queues has infinite variance.

To see an illustration of how SITA fails, we consider an example from Box 3 in Table I, which is shown in Figure 3. Here the job size distribution is the Bounded Pareto distribution with parameter of $\alpha = 1.6$ and $\rho = 0.95$. More information about the Bounded Pareto and how we make $C^2 \to \infty$ while holding $E[X]$ fixed is provided in Section IV-B. The important point to note is that as $C^2 \to \infty$, the upper limit on the Bounded Pareto also increases to infinity, meaning that the Bounded Pareto becomes a Pareto distribution. The Pareto and Bounded Pareto distributions are known to well-model empirical job size distributions for a wide variety of computing applications [2], [7], [21], [13], [20].

Figure 3 compares the mean response time under SITA to an upper bound on LWL as $C^2 \to \infty$ while holding $E[X]$ fixed. For lower C^2 SITA improves upon LWL, however, there is a cross-over point, at sufficiently high C^2, after which SITA diverges, while LWL converges.\footnote{This cross-over point is actually lower than it appears, because the LWL curve is an upper bound. Also, in [16], examples are given with much lower cross-over points.} This cross-over point was not observed in prior work (which mostly relies on simulation, numerical methods, heavy-traffic approximations or M/GI/2 approximations). This is possibly because the prior literature didn’t consider the very high C^2 regions, thus (incorrectly) concluding that SITA is always superior to LWL.

The results shown in Figure 3 are understandable in light of the above two observations. Firstly, no matter where the cutoff is placed in SITA, the long job server sees a Bounded Pareto distribution with C^2 approaching infinity (Observation 2 above). Hence the mean delay at the second server goes to infinity, even when multiplied by the fraction of long jobs. It may seem that LWL should diverge as well, since it too should suffer from the infinite C^2. However by Observation 1 above, we see that LWL has a second server to help alleviate the situation where one job gets stuck behind another, while SITA does not always have this flexibility, if the two jobs are on the same side of the cutoff. Thus LWL’s delay can be finite (if $\rho < 1$) even if $C^2 \to \infty$. See [16] for a formalization of the above argument.

D. Best of both worlds? The CS policy

While Figure 3 shows that SITA can sometimes perform poorly, one may wonder whether the issue is the particular definition of SITA, rather than the general heuristic of providing isolation for short jobs from long ones. Ideally, one would like to still provide isolation for short jobs, but do it in a way that achieves the good utilization of LWL.

Towards this end, we introduce the Cycle-Stealing (CS) policy, depicted in Figure 4. To keep things simple, we assume that there are only two servers. We define a size cutoff ψ. Jobs of size $< \psi$ are referred to as “short” jobs, with subscript S, and jobs of size $> \psi$ are referred to as “long” jobs, with subscript L.

Under CS, there is one central queue only. When server 1 becomes free, it takes the short job closest to the head of the central queue; if there is no short job, it stays idle. When server 2 becomes free, it takes the job at the head of the central queue, regardless of whether that is a short or long job. This is in contrast to SITA where jobs are immediately dispatched upon arrival.

Importantly, for CS (and for SITA), the ψ cutoff is assumed to be chosen optimally, so as to minimize mean response time. The optimal ψ for CS is not typically the same as that for SITA. Also, for both policies, jobs of size exactly ψ are categorized probabilistically into short versus long.

Observe that the CS policy is designed to have (almost) all the flexibility of LWL while still providing isolation for shorts. The CS policy is discussed in more detail in [14], [15].

![Fig. 3. Mean response time under SITA vs. LWL for Bounded Pareto($\alpha = 1.6$) job size distribution [16]. SITA’s mean response time diverges while that of LWL converges.](image)

![Fig. 4. Cycle stealing task assignment.](image)

E. Results and Impact

Definition 1: A policy, P, above is said to diverge if, for all ψ, the mean delay under $P(\psi)$ goes to infinity as $C^2 \to \infty$ while $E[X]$ is held fixed.
This paper proves that, surprisingly, the CS policy diverges whenever the SITA policy diverges. Thus, for any box in Table I where SITA diverges, CS does too, meaning that LWL can outperform CS under high variability.

This reaffirms the message that providing isolation for short jobs under high job-size variability may not always be the best strategy.

II. HIGH-LEVEL PLAN

Our overall goal is to prove that:

“Whenever SITA diverges, CS also diverges”

We introduce a bit of notation: For any policy, \(P \), let \(D^P \) denote the delay under policy \(P \). The delay of a job is its response time minus its service requirement. We will sometimes write \(P(\psi) \) to denote policy \(P \) with cutoff \(\psi \).

We use \(p_S \) to denote the fraction of short jobs, relative to \(\psi \), and \(p_L \) to denote the fraction of long jobs. We use \(X_S \) (respectively, \(X_L \)) to denote job size of short jobs (respectively long ones). Likewise, we use \(p_S \) to denote the load made up of short jobs, where \(\rho_S = \lambda p_S E[X_S] \), and likewise for long jobs.

The remainder of the paper is devoted to the proof of the following theorem, where \(D \) denotes delay:

Theorem 1: If \(E[D]^{SITA(\psi)} \to \infty \) for all \(\psi \), as \(C^2 \to \infty \), then \(E[D]^{CS(\psi)} \to \infty \) for all \(\psi \), as \(C^2 \to \infty \).

Proof:

We will use the fact that

\[
E[D]^{SITA(\psi)} = p_S(\psi)E[D_S]^{SITA(\psi)} + p_L(\psi)E[D_L]^{SITA(\psi)} \tag{1}
\]

Observe that whenever \(C^2 \to \infty \), it must be the case that \(E[X_S^2] \to \infty \) (assuming that \(\psi \) is finite), which implies that \(E[D_L]^{SITA(\psi)} \to \infty \). But that by itself does not imply \(E[D]^{SITA(\psi)} \to \infty \) because there’s still the \(p_L(\psi) \) term in (1).

The entire first term in (1) is bounded for every finite \(\psi \), \(\forall C^2 \), provided that \(\rho_S(\psi) < 1 \). Thus \(E[D]^{SITA(\psi)} \) is finite if and only if \(p_L(\psi)E[D_L]^{SITA(\psi)} \) is finite and \(\rho_S(\psi) < 1 \). Thus, for any given \(\psi \), there are two possible reasons why \(E[D]^{SITA(\psi)} \to \infty \):

1. \(p_LE[D_L]^{SITA(\psi)} \to \infty \)
2. \(\rho_S(\psi) > 1^2 \)

For a given \(\psi \), if either of the above properties holds, then SITA’s delay will be infinite for that cutoff \(\psi \). If neither of these is true, then SITA is convergent (since it converges on at least that \(\psi \) and maybe others).

We are given that \(E[D]^{SITA(\psi)} \) goes to infinity for all \(\psi \). We now consider a given \(\psi \). By definition, our given \(\psi \) either satisfies property 1 above or property 2 above (or both). Lemma 1 shows that if our given \(\psi \) satisfies property 1 above, then \(E[D]^{CS(\psi)} \) goes to infinity. Likewise, Lemma 2 shows that if our given \(\psi \) satisfies property 2 above and \(E[D]^{SITA(\psi)} \to \infty \forall \psi \), then \(E[D]^{CS(\psi)} \) goes to infinity. Since SITA diverges, every \(\psi \) must satisfy either property 1 or property 2, and thus, \(E[D]^{CS(\psi)} \) goes to infinity for all \(\psi \).

III. ANALYSIS OF CS

A. Case 1

Lemma 1: For any given \(\psi \), if \(p_LE[D_L]^{SITA(\psi)} \to \infty \), then \(E[D]^{CS(\psi)} \to \infty \).

Proof:

Since \(p_LE[D_L]^{SITA(\psi)} \to \infty \), it follows that \(p_LE[D_L]^{CS(\psi)} \to \infty \), since server 2 under CS sees the same long jobs as SITA, plus it additionally sees some short jobs.

Hence \(E[D]^{CS(\psi)} \to \infty \).

B. Case 2

Lemma 2: For any given \(\psi \), if \(\rho_S(\psi) > 1 \) and \(E[D]^{SITA(\psi)} \to \infty \) for all \(\psi \), then \(E[D]^{CS(\psi)} \to \infty \).

Proof:

Consider a tagged short arrival. Under CS, the tagged arrival looks at server 2 and, by PASTA, with probability \(\rho_L \), it sees a long job there. Suppose the age of that job is \(x \). This means that, looking backwards in time, server 2 has been busy for at least \(x \) units of time. This implies that server 2 has not completed a small job for the past \(\geq x \) time units.

Since server 2 has been busy for the past \(x \) time units, we can argue that, with \(1 - \delta \) probability, where \(0 < \delta < 1 \), a certain (large) amount of work has built up in the (central) queue, and correspondingly, that this translates to at least a certain (large) expected delay, \(D \), for the short tagged arrival.

To make this formal, we will need to make use of a few lemmas, provided at the end of this section. Firstly, Lemma 3 deals with the average rate that work accumulates during the time that server 2 is blocked. We expect this rate of accumulation to be \(\rho_S - 1 \). Lemma 3 says that, for any \(\epsilon > 0 \) and \(\delta > 0 \), we can prove that the average work accumulation rate is at least \(\rho_S - 1 - \epsilon \), with probability at least \(1 - \delta \), provided that server 2 is blocked for a long enough time, \(x_0 \), where \(x_0 \) is some function of \(\delta \) and \(\epsilon \).

Lemma 4 below relates the work buildup seen by a tagged job to its expected delay.

We are now ready to consider the probability that the delay of a short job exceeds \(u \), given that a long job is in residence at server 2. We will derive this assuming \(u > u_0 \), where \(u_0 \) will be specified later.

\[P \{ \text{delay of short} > u \mid \text{arrival sees long at server 2} \} \]
\[\geq P \left\{ \text{accum. short work} > 2u + \psi \mid \text{arriv. sees long job at serv. 2} \right\} \] by Lemma 4

Let \(f(u) = \frac{2u + \psi}{\rho_S - 1 - \epsilon} \)

\[\geq P \{ \text{age of long} \geq f(u) \} \]

\[P \{ \text{work accum. at rate} > \rho_S - 1 - \epsilon \text{ during } f(u) \} \]

Now, in order to make this second term exceed \(1 - \delta \), we need \(f(u) > x_0(\delta, \epsilon) \) from Lemma 3.
We define \(u \) where we define \(u = x_0 (\rho_S - 1 - \epsilon) - \psi \equiv u_0 \)

\[
\frac{2u + \psi}{\rho_S - 1 - \epsilon} > x_0 \iff u > \frac{x_0 (\rho_S - 1 - \epsilon) - \psi}{2} \equiv u_0
\]

\[
\geq P \{ X_{Le} \geq f(u) \} \cdot (1 - \delta), \quad u > u_0 \text{ by Lemma 3}
\]

\[
= P \{ X_{Le} \geq \frac{(2u + \psi)/(\rho_S - 1 - \epsilon)} \cdot (1 - \delta)
\]

\[
= P \left\{ \frac{\rho_S - 1 - \epsilon}{2} X_{Le} - \psi > u \right\} \cdot (1 - \delta)
\]

\[
= P \left\{ e X_{Le} - \frac{\psi}{2} > u \right\} \cdot (1 - \delta) \text{ where } c = \frac{\rho_S - 1 - \epsilon}{2}
\]

\[
= P \{ Y > u \} \cdot (1 - \delta) \quad \text{(assuming } u > u_0 \text{)}
\]

where we define \(Y = c X_{Le} - \frac{\psi}{2} \).

At this point, we have seen that:

\[
P \{ \text{delay of short} > u \mid \text{arrival sees long at server 2} \} \geq \begin{cases} \quad P \{ Y > u \} (1 - \delta) & \text{if } u > u_0 \\ 0 & \text{if } u \leq u_0 \end{cases}
\]

Then, integrating both sides of the above with respect to \(u \), we have that:

\[
E [\text{Delay of short} \mid \text{long in service}] \geq \int_0^{u_0} 0 du + \int_{u_0}^{\infty} P \{ Y > u \} (1 - \delta) du
\]

\[
= (1 - \delta) E [Y] - (1 - \delta) \int_0^{u_0} P \{ Y > u \} du
\]

\[
\geq (1 - \delta) (E [Y] - u_0)
\]

\[
= (1 - \delta) \left(c E [X_{Le}] - \frac{\psi}{2} - u_0 \right)
\]

Thus,

\[
E [\text{Delay of short}] \geq \rho_L (1 - \delta) \left(c E [X_{Le}] - \frac{\psi}{2} - u_0 \right) = \text{linear in } \rho_L E [X_{Le}]
\]

All that’s left is to show that

\[
\rho_L E [X_{Le}] \to \infty \text{ as } C^2 \to \infty
\]

This will imply that the expected delay of the short job arrival is infinite under CS, and we are done.

The fact that

\[
\rho_L E [X_{Le}] \to \infty \text{ as } C^2 \to \infty
\]

is proven formally in Lemma 5 at the end of the section, which states that the above equation must be true, otherwise there would be a cutoff under which SITA converges.

Lemma 3: Given short jobs with mean size \(E [X_S] \) contributing load \(\rho_S > 1 \) and \(0 < \delta, \epsilon < 1 \), there exists a finite \(x_0 (\delta, \epsilon) \), given by (4) such that the probability that work accumulates at an average rate exceeding \(\rho_S - 1 - \epsilon \) during the time \(x \) server 2 is blocked exceeds \(1 - \delta \), \(\forall x > x_0 \).

Proof: Clearly, the amount of work completing during time \(x \) is no more than \(x \). It thus suffices to prove that the work arriving during time \(x \) is at least \((\rho_S - \epsilon)x\).

Let \(N (x) \) be a random variable for the number of Poisson arrivals during \(x \), and let \(X_S (i) \) be a random variable for the size of the \(i \)th short job, \(1 \leq i \leq N (x) \).

\[
P \{ \text{Work arriving during } x \geq (\rho_S - \epsilon) x \}
\]

\[
\geq P \left\{ \sum_{i=1}^{N (x)} X_S (i) \geq (\rho_S - \epsilon) x \right\}
\]

\[
= P \left\{ \frac{1}{x} \sum_{i=1}^{N (x)} X_S (i) \geq \rho_S - \epsilon \right\}
\]

\[
= P \left\{ \frac{N (x)}{x} \cdot \frac{1}{N (x)} \sum_{i=1}^{N (x)} X_S (i) \geq \rho_S - \epsilon \right\}
\]

We now condition on \(\frac{N (x)}{x} \), which is the average arrival rate during time \(x \). We define

\[
\lambda^- = \frac{\rho_S - \epsilon}{E [X_S] - \frac{\psi}{2} x}
\]

Observe that \(\lambda^- < \lambda \), but that \(\lambda^- \to \lambda \) as \(\epsilon \to 0 \). We will condition on \(E_{\lambda^-} \), defined as the event that \(\frac{N (x)}{x} > \lambda^- \). Define \(P_{\lambda^-} = P \{ E_{\lambda^-} \} \).

\[
P \{ \text{Work arriving during } x \geq (\rho_S - \epsilon) x \}
\]

\[
\geq P \left\{ \frac{N (x)}{x} \cdot \frac{1}{N (x)} \sum_{i=1}^{N (x)} X_S (i) \geq \rho_S - \epsilon \mid E_{\lambda^-} \right\} \cdot P_{\lambda^-}
\]

\[
P \{ \text{Work arriving during } x \geq (\rho_S - \epsilon) x \}
\]

\[
\geq P \left\{ \lambda^- \cdot \frac{1}{N (x)} \sum_{i=1}^{N (x)} X_S (i) \geq \rho_S - \epsilon \right\} \cdot P_{\lambda^-}
\]

\[
= P \left\{ \frac{1}{N (x)} \sum_{i=1}^{N (x)} X_S (i) \geq E [X_S] - \frac{\epsilon}{2 \lambda} \right\} \cdot P_{\lambda^-}
\]

\[
\geq \left(1 - \frac{(2 \lambda)^2}{\epsilon^2} \cdot \frac{1}{N (x)} \cdot \sigma_{X_S}^2 \right) \cdot P_{\lambda^-} \quad \text{by Eqn (7)}
\]

But we earlier conditioned on \(N (x) > x \lambda^- \), and hence \(\frac{1}{N (x)} < \frac{1}{x \lambda^-} \). Thus,

\[
P \{ \text{Work arriving during } x \geq (\rho_S - \epsilon) x \}
\]

\[
\geq \left(1 - \frac{(2 \lambda)^2}{\epsilon^2} \cdot \frac{1}{x \lambda^-} \cdot \sigma_{X_S}^2 \right) \cdot P_{\lambda^-}
\]

The goal will be to provide an \(x_0 \) such that for all \(x > x_0 \), the above probability exceeds the given \(1 - \delta \). Before we can do this, it is useful to bound \(P_{\lambda^-} \), so that we can quantify its dependence on \(x \).
\[P_{\lambda^{-}} = P \left\{ \frac{N(x)}{x} > \lambda^{-} \right\} \]
\[= P \left\{ \frac{N(x)}{x} > \frac{\rho_s - \epsilon}{E[X_S] - 2\lambda^{-}} \right\} \]
\[= P \left\{ \frac{N(x)}{x} > \lambda - \left(\frac{\epsilon \lambda}{2\rho_s - \epsilon} \right) \right\} \]

Now observe that \(N(x) \sim \text{Poisson} \) with mean \(\lambda x \).
Assuming that \(x \) is an integer, we can view \(N(x) \) as a sum
of \(x \) Poisson random variables \((N_1 + N_2 + \cdots + N_x)\) each
with mean \(\lambda \) and variance \(\lambda \).
Then
\[P_{\lambda^{-}} \geq P \left\{ \frac{1}{x} \sum_{i=1}^{x} N_i > \lambda - \left(\frac{\epsilon \lambda}{2\rho_s - \epsilon} \right) \right\} \]
\[\geq P \left\{ \frac{1}{x} \sum_{i=1}^{x} N_i - \lambda > - \left(\frac{\epsilon \lambda}{2\rho_s - \epsilon} \right) \right\} \]
\[\geq 1 - \left(\frac{2\rho_s - \epsilon}{\epsilon \lambda} \right)^2 \cdot \frac{\lambda}{x} \quad \text{by Eqn (7)} \]

Substituting in the above value of \(P_{\lambda^{-}} \), we have that:
\[
P \{ \text{Work arriving during } x \geq (\rho_s - \epsilon) x \} \geq \left(1 - \frac{(2\lambda)^2 \cdot \sigma_X^2}{e^2 \cdot x \lambda} \right) \left(1 - \frac{2\rho_s - \epsilon}{\epsilon \lambda} \cdot \frac{\lambda}{x} \right) \quad (3)\]

We now want to determine \(x_0 \) such that for all \(x > x_0 \), the
above probability in (3) exceeds \(1 - \delta \). Setting (3) \(\geq 1 - \delta \)
and simplifying gives:
\[
0 \leq e^2 \delta x^2 - \left[2\lambda \cdot \frac{2\rho_s - \epsilon}{\rho_s - \epsilon} \cdot \sigma_X^2 + \frac{(2\rho_s - \epsilon)^2}{\lambda} \right] x \\
+ \left[\frac{2}{e^2} \cdot \frac{(2\rho_s - \epsilon)^3}{\rho_s - \epsilon} \cdot \sigma_X^2 \right] \]

Since the rightmost term is strictly positive, we can ignore it. This yields:
\[x_0 = \left[2\lambda \cdot \frac{2\rho_s - \epsilon}{\rho_s - \epsilon} \cdot \sigma_X^2 + \frac{(2\rho_s - \epsilon)^2}{\lambda} \right] \]
\[\cdot \frac{1}{e^2 \delta} \quad (4)\]

Lemma 4: For a tagged short job, with probability 1, delay
\(> u \), in a 2-server CS system with cutoff \(\psi \), if the short job
sees at least \(2u + \psi \) buildup of accumulated short work.

Proof: We assume that the accumulated work \(W \) can go to
either server. The maximum amount of work that could be
present when a server frees is \(\psi \). Thus both servers would be
busy for at least \(\frac{W - \psi}{2} \) time. So the delay of a short job which
sees \(W \) work is at least \(\frac{W - \psi}{2} \). Now substitute in \(W = 2u + \psi \)
and we’re done.

Lemma 5: If \(E[D]^{\text{SITA}}(\psi') = \infty, \forall \psi' \), then, for any \(\psi \),
\(\rho_L(\psi) E[X_{Lc}(\psi)] \rightarrow \infty \) as \(C^2 \rightarrow \infty \)

Proof: Suppose, by contradiction, that \(\rho_L E[X_{Lc}] \rightarrow \alpha < \infty \) under our cutoff \(\psi \). That implies that \(p_L E[X_{L}^2] \)
is also finite for cutoff \(\psi \). If \(\rho_S(\psi) < 1 \), then \(\text{SITA}(\psi) \)
will converge because both the short and long components of
SITA’s delay converge. Therefore we assume that \(\rho_S(\psi) \geq 1 \).
Now let’s say that CS(\(\psi \)) sends \(\rho_L(\psi) \) fraction of jobs (the
long ones) to server 2, as well as \(r_S > 0 \) load of small jobs
to server 2 to relieve the overload at server 1.

Consider now a “new” cutoff for SITA, called \(\psi' < \psi \),
which also sends \(r_S \) load of short jobs (the longest short
jobs) to the long server (randomizing if necessary).

Assume that this \(r_S \) load of small jobs corresponds to \(f_S \)
fraction of small jobs. Let \(X_f \) be a random variable drawn from
the job size distribution of those short jobs (those of
size between \(\psi' \) and \(\psi \)) that end up serving at server 2 under
cutoff \(\psi \).

Then, the second moment of the job sizes at server 2 under
\(\text{SITA}(\psi') \) is computed as follows:
\[
E[X_{L}^2] = \frac{f_S}{f_S + p_L} E[X_f^2] + \frac{p_L}{f_S + p_L} E[X_{Lc}^2] \\
\leq 1 \cdot \psi'^2 + \frac{p_L}{f_S + p_L} E[X_{Lc}^2] \\
= \psi'^2 + \frac{1}{\lambda} \rho_L E[X_{Lc}] \cdot \lambda \cdot E[X_L] \cdot \frac{p_L}{f_S + p_L} E[X_{Lc}^2] \\
\leq 1 \cdot \psi'^2 + \frac{1}{\lambda} E[X_L] \cdot \rho_L E[X_{Lc}] \cdot \frac{p_L}{f_S + p_L} E[X_{Lc}^2] \\
= \psi'^2 + \frac{1}{\lambda} \rho_L E[X_{Lc}] \cdot \frac{2}{f_S + p_L} E[X_{Lc}^2] \\
\leq \psi'^2 + \frac{2 \alpha}{\lambda (f_S + p_L)} \text{ by assumption (5)} \\
< \infty \]

Under \(\psi' \) both servers would have load \(< 1 \) and the second
server would have finite mean delay, as the second moment
at server 2 is bounded by Eqn (5), and the mean delay at the
first server is obviously finite. But this is in contradiction
to the assumption that mean delay under SITA is infinite for all
cutoffs.

IV. AUXILIARY LEMMAS AND BACKGROUND

A. WLLN

This section recalls the proof of the Weak Law of Large
Numbers (WLLN) because we’ll need an equation from here:

Theorem 2 (WLLN): Let \(X_1, X_2, X_3, \ldots \) be i.i.d. with
finite mean \(E[X] \) and finite variance \(\sigma^2 \). Then
\[
\lim_{n \to \infty} P \left\{ \frac{S_n - n E[X]}{\sqrt{n}} \geq \epsilon \right\} = 0 \]

Proof:

Markov’s Inequality tells us that, if \(X \) is non-negative then:
\[\text{If conceivably } \rho_S(\psi) \rho_L(\psi)' \text{ is 1, then we would choose } \psi' \text{ to send } f_S + \epsilon \text{ short jobs to the long queue, ensuring } \rho_S(\psi') \rho_L(\psi)' \text{ SITA} < 1 \text{ and } \rho_L(\psi)' \text{ SITA} < 1. \]
and finite variance σ^2. Then,
\[
P \{ Y - E[Y] \geq t \} \leq \frac{\sigma_Y^2}{t^2},
\]

Using the above, let
\[
Y_n = \frac{1}{n} \sum_{i=1}^{n} X_i,
\]
\[
\sigma^2_{Y_n} = \frac{1}{n} \sigma^2_X.
\]

Thus
\[
P \{| Y_n - E[Y] | \geq t \} \leq \frac{1}{n} \frac{1}{t^2} \sigma^2_X
\]

Letting $n \to \infty$ we obtain the Weak Law of Large Numbers.

Note: (6) also implies the following useful fact:
\[
P \{ Y_n - E[Y] \geq -t \} \geq 1 - \frac{1}{n} \frac{1}{t^2} \sigma^2_X, \quad \forall t > 0
\]

B. Background on Pareto and Bounded Pareto

The Bounded Pareto (k, p, α) distribution, where $0 < \alpha < 2$ and $0 < k < p$, has the following density function:
\[
f(x) = \begin{cases}
\frac{ak^\alpha}{1-(\frac{x}{p})^\alpha} x^{-1-\alpha} & k \leq x \leq p \\
0 & \text{otherwise}
\end{cases}
\]

As $p \to \infty$, the Bounded Pareto distribution converges to the Pareto with density function:
\[
f(x) = ak^\alpha x^{-1-\alpha} \quad x \geq k > 0
\]

For $1 < \alpha < 2$, the Pareto distribution has finite mean, but infinite variance.

The following two Lemmas from [16] describe what happens to the Bounded Pareto when we increase C^2 while holding $E[X]$ fixed:

Lemma 6: For any $E[X]$, C^2, and $\alpha > 1$, we can specify a Bounded Pareto (k, p, α).

Lemma 7: Keeping $E[X]$ constant, as $C^2 \to \infty$, for the Bounded Pareto distribution, $p \to \infty$ and $k \to \frac{p}{\alpha} E[X]$ (from above for $\alpha > 1$).