Improved Results for Directed Multicut

Anupam Gupta

Bell Labs

Follow this and additional works at: http://repository.cmu.edu/compsci

Published In
Abstract
We give a simple algorithm for the minimum directed multicut problem, and show that it gives an $O(\sqrt{n})$-approximation. This improves on the previous approximation guarantee of $O(\sqrt{n \log k})$ of Cheriyan, Karloff and Rabani [1], which was obtained by a more sophisticated algorithm.

1 Introduction
Assume we are given a directed network $G = (V, A)$ with positive edge capacities $u_e : A \to \mathbb{Z}_{\geq 0}$, and with k source-sink pairs $\{(s_i, t_i)\}_{i=1}^k$, with $s_i, t_i \in V$ for all i. A directed multicut is a set of arcs $M \subseteq A$ such that for any (directed) path P from some s_i to its corresponding t_i, $P \cap M \neq \emptyset$. The minimum directed multicut problem is to find the multicut $M \subseteq A$ with the least total capacity $u(M)$, where $u(M) = \sum_{e \in M} u_e$.

This problem, being an important tool for designing divide-and-conquer algorithms for NP-hard problems, has a long and illustrious history. The undirected case is better understood: we point the interested reader to the survey by Shmoys [4] for many details and references. However, the directed variant of the problem appears to be much harder, and is NP-hard even for $k = 2$ [2], a case that can be solved efficiently for the undirected variant [3].

The first non-trivial approximation algorithm for directed multicut, an $O(\sqrt{n \log n})$ approximation algorithm, was given by Cheriyan et al. [1]. Central to their result is an algorithm which, given a network with $u_e \geq 1$ for all $e \in A$, outputs a multicut M with capacity $O(F^2 \log n)$, where F is the minimum multiflow in G with terminals $\{(s_i, t_i)\}$ (defined in the next section).

They also gave a much simpler algorithm which outputs a cut of capacity at most $O(F^3)$. In this note, we show that a variant of this latter algorithm gives us the following results.

Theorem 1.1. Given a directed multicommodity flow network G_0 with $u_e \geq 1$ for all $e \in A$, we can efficiently find a multicut M with $c(M) = O(F^2)$, where F is the maximum multiflow in G with terminals $\{(s_i, t_i)\}$.

Theorem 1.2. We can efficiently find a directed multicut with cost within $O(\sqrt{n})$ of optimal.

The proofs of these theorems, along with the algorithms to effectively find these cuts, are given in the following two sections.

2 Relating Cuts and Flows
Note that the following integer linear program is a reformulation of the minimum multicut problem.

(LP1) \[
\begin{align*}
\min \sum_e u_e x_e \\
\text{s.t.} \quad x(P) \geq 1 & \quad \forall s_i, t_i \text{ paths } P, \forall i \\
x_e \in \{0, 1\}
\end{align*}
\]

Relaxing the integrality constraints to $x_e \geq 0$ gives us a linear program (LP1) that can be solved in polynomial time. We interpret the variable x_e as the “length” of an arc e, and $\sum_{e \in S} u_e x_e$ to be the “volume” of a set of arcs S.

It is easily seen that the linear programming dual of (LP1) is the following, which is a formulation of the so-called maximum multiflow problem on G with terminals $\{(s_i, t_i)\}$.

(LP2) \[
\begin{align*}
\max \sum_{P \ni e} f(P) \\
\text{s.t.} \quad \sum_{P \ni e} f(P) \leq u_e & \quad \forall e \in A \\
f(P) \geq 0
\end{align*}
\]

Let F be the optimal value of (LP2), and hence value of the maximum multiflow in G with terminals $\{(s_i, t_i)\}$. By linear programming duality, the minimum multicut has value at least F; we now proceed to find a cut of value $O(F^2)$.

Algorithm 1: The algorithm maintains a current graph G, initially the input graph G_0. As long as there is a source-sink pair such that G has a directed path from s_i to t_i, we find a good cut separating s_i from t_i as described below, remove these edges to get the new G, and continue.

To find the cut, we look at the subnetwork $H_i = G[s_i, t_i]$, where $G[x, y]$ denotes the subgraph of G induced by edges e which lie on some directed path from x to y. Improved Results for Directed Multicut
Anupam Gupta
Lucent Bell Labs
600 Mountain Avenue
Murray Hill NJ 07974
anupamg@research.bell-labs.com
Since \(x \) is a solution to (LP1) and \(H_i \) is a subnetwork of \(G_0 \), the distance from \(s_i \) to \(t_i \) in \(H_i \) is at least 1. Let \(F_i = \sum_{e \in H_i} u_e x_e \). Let us look at level-cuts in \(H_i \), i.e., cuts that are obtained by deleting all points (i.e., all edges that these points lie on) in \(H_i \) at some distance \(r \) from \(s_i \). Furthermore, we restrict our attention to those cuts with \(r \in \left[\frac{1}{2}, \frac{3}{2} \right] \), i.e., those “far” from both \(s_i \) and \(t_i \), and find the smallest such cut \(C_i \). A simple averaging argument shows that this cut in \(H_i \) has capacity at most \(F_i / \left(\frac{3}{2} - \frac{1}{2} \right) = 3F_i \).

To finish, we must show that the sum of the cuts in the various stages does not exceed \(O(F^2) \). For the rest of the discussion, we assume that all edges have capacity \(u_e = 1 \). This assumption can be discharged by replacing every edge \(e \) with \(\lceil u_e \rceil \) parallel edges, which changes \(F \) by at most a factor of 2; furthermore, this assumption is only for simplicity – the proof can be done without this assumption.

Proof of Theorem 1.1: Let us associate two counters, the left counter \(A_l(e) \), and the right counter \(A_r(e) \), with each edge \(e \) in the graph, both initially set to 0. We also define a potential function \(\Phi = \sum_{e \in E} x(e)(A_l(e) + A_r(e)) \). When making a cut in some \(H_i \), we increment counters for all the edges in \(H_i \) (and no other edges) thus: If an edge \(e \in H_i \) lies on the left of the cut, we increment \(A_l(e) \); if it lies to the right, we increment \(A_r(e) \). (In the event that the edge itself is cut, we can increment either of the counters.) Since the cut value is \(O(F_i) \), and \(\sum_{e \in H_i} x(e) = F_i \), the value of \(\Phi \) goes up by exactly \(F_i \). Hence it suffices to show that the final value of \(\Phi \) is \(O(F^2) \).

For this, we show that both \(A_l(e), A_r(e) \leq O(F) \), i.e., an edge can lie in some \(H_i \) only \(O(F) \) times. We will show this for \(A_l \); the proof for \(A_r \) is identical. Consider an iteration when \(e \) lies in \(H_i \) and \(A_l(e) \) is incremented. The definition of \(H_i \) ensures that \(e \) lies on some \(s_i \)-\(t_i \) path. Let this path \(P_i(e) \) be called the witness for \(e \) in \(C_i \), and let \(Q_i(e) \) be those edges in \(P_i(e) \) that lie in or to the right of the cut \(C_i \). Note that the fact that the cut \(C_i \) is at distance at most \(\frac{2}{3} \) from \(s_i \) implies that the edges on \(Q_i(e) \) have \(\sum_{e' \in Q_i(e)} x(e') \geq \frac{1}{3} \).

Let us consider a subsequent cut \(C_j \) where \(A_l(e) \) is incremented, and look at the corresponding \(Q_i(e) \), the portion of the witness path \(P_j(e) \) for \(e \) in \(C_j \) lying in or to the right of \(C_j \). We claim that \(Q_i(e) \cap Q_j(e) \) cannot share any edges. Indeed, if \(e' \) is an edge in \(Q_i(e) \cup Q_j(e) \), then there exists a path from \(e \) to \(e' \) after \(C_i \) has been deleted, and hence a path between \(s_i \) and \(t_i \). But this contradicts the fact that \(C_i \) is an \(s_i \)-\(t_i \) cut, and proves our claim. Hence, for every cut \(C_i \), the edges in \(Q_i(e) \) are disjoint. Furthermore, \(x(Q_i(e)) \geq \frac{1}{3} \) for all \(i \), and \(\sum x(Q_i(e)) \leq F \). Thus \(A_l(e) \leq F/\frac{1}{3} = 3F \). A similar argument shows \(A_r(e) \leq 3F \), and hence \(\Phi \leq 6F^2 \), proving the theorem.

3 An approximation algorithm

Since we do not have any restrictions on the capacities of edges in Theorem 1.2, the algorithm is slightly different:

Algorithm II: Consider all edges with \(x_e \geq 1/\sqrt{n} \), and cut them (which corresponds to raising \(x_e \) to \(1 \)). Now run the previous algorithm on the remaining graph to detach the remaining terminal pairs.

Theorem 3.1. The cut found by the above algorithm is within \(O(\sqrt{n}) \) of optimum.

Proof. The cost of the edges cut in the first step is at most \(F/\sqrt{n} \), since each cut edge has \(x_e \) raised from \(\geq 1/\sqrt{n} \) to 1. Let us now bound the capacity of the edges cut in the second step. We use three simple facts. The first fact extends one used before: for each iteration \(i \) where \(A_i(e) \) is incremented, the length of \(Q_i(e) \) in length at least \(\frac{1}{2} \). Since all edges surviving the first step have length less than \(1/\sqrt{n} \), there must be at least \(\frac{1}{4} \sqrt{n} \) edges on \(Q_i(e) \).

Secondly, let \(h(P) \) be the set of vertices at the heads of edges in a directed path \(P \). Hence there are at least \(\frac{1}{4} \sqrt{n} \) vertices in each \(h(Q_i(e)) \).

Finally, for any subsequent cut \(C_j \) where \(A_l(e) \) is raised, \(h(Q_j(e)) \cap h(Q_i(e)) = \emptyset \). Indeed, if there is a vertex \(v \) in the intersection, then there would be a path from \(e \) to \(v \) that survived the deletion of \(C_i \), giving a contradiction. Hence the sets \(h(Q_i(e)) \) are disjoint for all iterations \(i \) where \(A_l(e) \) is incremented, and since each such set has at least \(\frac{1}{4} \sqrt{n} \) vertices, \(A_r(e) \leq 3\sqrt{n} \). Similarly, \(A_r(e) \leq 3\sqrt{n} \), and thus \(\Phi \) and the total cut capacity by \(O(F\sqrt{n}) \).

References

