Dynamics for Systems of Screw Dislocations

Timothy Blass
University of California - Riverside

Irene Fonseca
Carnegie Mellon University, fonseca@andrew.cmu.edu

Giovanni Leoni
Carnegie Mellon University, giovanni@andrew.cmu.edu

Marco Morandotti
SISSA – Scuola Internazionale Superiore di Studi Avanzati

Follow this and additional works at: http://repository.cmu.edu/math
Part of the [Mathematics Commons](http://repository.cmu.edu/math)

Published In
SIAM Journal on Applied Mathematics, 75, 2, 393-419.
DYNAMICS FOR SYSTEMS OF SCREW DISLOCATIONS

TIMOTHY BLASS, IRENE FONSECA, GIOVANNI LEONI, MARCO MORANDOTTI

Abstract. The goal of this paper is the analytical validation of a model of Cermelli and Gurtin [12] for an evolution law for systems of screw dislocations under the assumption of antiplane shear. The motion of the dislocations is restricted to a discrete set of glide directions, which are properties of the material. The evolution law is given by a “maximal dissipation criterion”, leading to a system of differential inclusions. Short time existence, uniqueness, cross-slip, and fine cross-slip of solutions are proved.

1. Introduction

Dislocations are one-dimensional defects in crystalline materials [27]. Their modeling is of great interest in materials science since important material properties, such as rigidity and conductivity, can be strongly affected by the presence of dislocations. For example, large collections of dislocations can result in plastic deformations in solids under applied loads.

In this paper we study the motion of screw dislocations in cylindrical crystalline materials using a continuum model introduced by Cermelli and Gurtin [12]. One of our main contributions is the analytical validation to this model by proving local existence and uniqueness of solutions to the equations of motions for a system of dislocations. In particular, we prove rigorously the phenomena of cross-slip and fine cross-slip. We refer to the work of Armano and Cermelli [4, 11] for the case of a single dislocation.

Following the work of Cermelli and Gurtin [12], we consider an elastic body \(B := \Omega \times \mathbb{R} \), where \(\Omega \subset \mathbb{R}^2 \) is a bounded simply connected open set with \(C^{2,\alpha} \) boundary. The body \(B \) undergoes antiplane shear deformations \(\Phi : B \to B \) of the form

\[
\Phi(x_1, x_2, x_3) := (x_1, x_2, x_3 + u(x_1, x_2)),
\]

with \(u : \Omega \to \mathbb{R} \). The deformation gradient \(F \) is given by

\[
F := \nabla \Phi = \begin{pmatrix}
1 & 0 & 0 \\
\frac{\partial u}{\partial x_1} & 1 & 0 \\
\frac{\partial u}{\partial x_2} & 0 & 1
\end{pmatrix} = I + e_3 \otimes \left(\nabla u \right).
\]

The assumption of antiplane shear allows us to reduce the three-dimensional problem to a two-dimensional problem. We will consider strain fields \(h \) that are defined on the cross-section \(\Omega \), taking values in \(\mathbb{R}^2 \). In the absence of dislocations, the strain \(h \) is the gradient of a function, \(h = \nabla u \). If dislocations are present, then the strain field is singular at the sites of the dislocations, and in the case of screw dislocations this will be a line singularity. In the antiplane shear setting, this line is parallel to the \(x_3 \) axis and the screw dislocation is represented as a point singularity on the cross-section \(\Omega \).
A screw dislocation is characterized by a position $z \in \Omega$ and a vector $b \in \mathbb{R}^3$, called the Burgers vector. The position $z \in \Omega$ is a point where the strain field fails to be the gradient of a smooth function and the Burgers vector measures the severity of this failure. To be precise, a strain field associated with a system of N screw dislocations at positions

$$Z := \{z_1, \ldots, z_N\} \subset \Omega$$

with corresponding Burgers vectors

$$B := \{b_1 e_3, \ldots, b_N e_3\}$$

satisfies the relation

$$\text{curl } h = \sum_{i=1}^N b_i \delta_{z_i} \quad \text{in } \Omega \quad (1.2)$$

in the sense of distributions. Here $\text{curl } h$ is the scalar $\frac{\partial h_2}{\partial x_1} - \frac{\partial h_1}{\partial x_2}$, δ_x is the Dirac mass at the point x, and the scalar b_i is called the Burgers modulus for the dislocation at z_i, and in view of (1.2) it is given by

$$b_i = \int_{\ell_i} h \cdot t \, ds,$$

where ℓ_i is any counterclockwise loop surrounding the dislocation point z_i and no other dislocation points, t is the tangent to ℓ_i, and ds is the line element.

When dislocations are present, (1.1) is replaced with

$$F = I + e_3 \otimes \begin{pmatrix} h \\ 0 \end{pmatrix}.$$

To derive a motion law for the system of dislocations we need to introduce the free energy associated to the system. We work in the context of linear elasticity. The energy density W is given by

$$W(h) := \frac{1}{2} h \cdot L h$$

where the elasticity tensor L is a symmetric, positive-definite matrix, which, in suitable coordinates, can be written in terms of the Lamé moduli λ, μ of the material as

$$L := \begin{pmatrix} \mu & 0 \\ 0 & \mu \lambda^2 \end{pmatrix}.$$

We require $\mu > 0$, and the energy is isotropic if and only if $\lambda^2 = 1$. The energy of a strain field h is given by

$$J(h) := \int_{\Omega} W(h(x)) \, dx,$$

and the equilibrium equation is

$$\text{div } L h = 0 \quad \text{in } \Omega \quad (1.4)$$

Equations (1.2) and (1.4) provide a characterization of strain fields describing screw dislocation systems in linearly elastic materials. To be precise, we say that a strain field $h \in L^2(\Omega; \mathbb{R}^2)$ corresponds to a system of dislocations at the positions Z with Burgers vectors B if h satisfies

$$\begin{cases}
\text{curl } h = \sum_{i=1}^N b_i \delta_{z_i} & \text{in } \Omega, \\
\text{div } L h = 0 & \text{in } \Omega,
\end{cases} \quad (1.5)$$
in the sense of distributions.

In analogy to the theory of Ginzburg-Landau vortices \([6]\), no variational principle can be associated with (1.5) because the elastic energy of a system of screw dislocations is not finite (see, e.g., \([13, 12, 27]\)), therefore the study of (1.5) cannot be undertaken in terms of energy minimization. Indeed, the simultaneous requirements of finite energy and (1.2) are incompatible, since if \(\text{curl } h = \delta_{z_0}, \, z_0 \in \Omega, \) and if \(B_\varepsilon(z_0) \subset \subset \Omega, \) then

\[
\int_{\Omega \setminus B_\varepsilon(z_0)} |h|^2 \, dx = O(|\log \varepsilon|) .
\]

In the engineering literature (see, e.g., \([12, 27]\)), this problem is usually overcome by regularizing the energy, namely, by replacing the energy \(J\) in (1.3) with a new energy \(J_\varepsilon\) obtained by removing small cores of size \(\varepsilon > 0\) centered at the dislocations points \(z_i\). This allows to obtain finite-energy strains \(h_\varepsilon\) as minimizers of \(J_\varepsilon\). It was shown in \([7]\) that

\[
J_\varepsilon(h_\varepsilon) = C|\log \varepsilon| + U(z_1, \ldots, z_N) + O(\varepsilon), \tag{1.6}
\]

where \(U\) is the renormalized energy associated with the limiting strain \(h_0 = \lim_{\varepsilon \to 0} h_\varepsilon\), satisfying (1.5).

This type of asymptotic expansion was first proved by Bethuel, Brezis, and Hélein in \([5]\) for Ginzburg-Landau vortices. The case of edge dislocations was studied in \([13]\). Asymptotic expansions of the type (1.6) can also be derived using \(\Gamma\)-convergence techniques (see, e.g., \([3, 30]\) and the references therein for Ginzburg-Landau vortices, \([15, 24, 21]\) for edge dislocations, and \([1, 9, 14, 20, 22, 23, 31]\) for other dislocations models). Finally, it is important to mention that we ignore here the core energy, that is, the energy contribution proportional to \(|\log \varepsilon|\) in (1.6), which comes from the small cores that were removed to obtain \(J_\varepsilon\). We refer to \([27, 33, 35]\) for a more detailed discussion of the core energy.

The force on a dislocation at \(z_i\) due to the elastic strain is called the Peach-Köhler force, and is denoted by \(j_i\) (see \([12, 28]\)). The renormalized energy \(U\) is a function only of the positions \(\{z_1, \ldots, z_N\}\) (and of the Burgers moduli), and it is shown in \([7]\) that its gradient with respect to \(z_i\) gives the negative of the Peach-Köhler force on \(z_i\). Specifically,

\[
j_i = -\nabla_{z_i} U = \int_{\ell_i} \{W(h_0)I - h_0 \otimes (Lh_0)\} \, n \, ds, \tag{1.7}
\]

where \(\ell_i\) is a suitably chosen loop around \(z_i\) and \(n\) is the outer unit normal to the set bounded by \(\ell_i\) and containing \(z_i\). The quantity \(W(h_0)I - h_0 \otimes (Lh_0)\) is the Eshelby stress tensor, see \([17, 25]\).

To study the motion of dislocations it is more convenient to rewrite \(j_i\) in the form

\[
j_i(z_i) = b_i \mathbf{JL} \left[\sum_{j \neq i} k_j(z_i; z_j) + \nabla u_0(z_i; z_1, \ldots, z_N) \right] \tag{1.8}
\]

(see \([7]\) for a proof of this derivation). Here \(k_j(\cdot; z_j)\) is the fundamental singular strain generated by the dislocation \(z_j\), where

\[
k_j(x; y) := \frac{b_j}{2\pi} \frac{\lambda^T (x - y)}{|\Lambda(x - y)|^2}, \quad (x, y) \in \mathbb{R}^2 \times \mathbb{R}^2, \, x \neq y, \tag{1.9}
\]
\[
\mathbf{J} := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \Lambda := \begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix}.
\]

Straightforward calculations show that, for \((x, y) \in \mathbb{R}^2 \times \mathbb{R}^2, x \neq y\), we have

\[
\operatorname{div}_y(L \nabla_y k_j(x; y)) = 0,
\]

\[
\operatorname{div}_x(L k_j(x; y)) = 0,
\]

and, for \((x, y) \in \mathbb{R}^2 \times \mathbb{R}^2\),

\[
\text{curl}_x k_j(x; y) = b_j \delta_y(x).
\]

Also, for fixed \(z_1, \ldots, z_N \in \Omega\), the function \(u_0(\cdot; z_1, \ldots, z_N)\) is a solution of the Neumann problem

\[
\begin{cases}
\operatorname{div}_x(L \nabla_x u_0(x; z_1, \ldots, z_N)) = 0, & x \in \Omega, \\
L(\nabla_x u_0(x; z_1, \ldots, z_N) + \sum_{i=1}^N k_i(x; z_i)) \cdot n(x) = 0, & x \in \partial \Omega.
\end{cases}
\]

The expression of (1.8) contains two contributions accounting for the two different kinds of forces acting on a dislocation when other dislocations are present: the interactions with the other dislocations and the interactions with \(\partial \Omega\). The latter balances the tractions of the forces generated by all the dislocations. Indeed, the function \(\nabla u_0(x; z_1, \ldots, z_N)\) represents the elastic strain at the point \(x \in \Omega\) due to the presence of \(\partial \Omega\) and the dislocations at \(z_i\) with Burgers moduli \(b_i\). For this reason, we refer to \(\nabla u_0(x; z_1, \ldots, z_N)\) as the boundary-response strain at \(x\) due to \(Z\).

Following [12], we will assume the dislocations will move in the glide direction that maximally dissipates the (renormalized) energy. The set of glide directions, \(G := \{g_1, \ldots, g_M\}\), is crystallographically determined and is discrete.

When many dislocations are present, the dynamics is non-trivial. Dislocations whose Burgers moduli have the same sign will repel each other, while attraction occurs if the Burgers moduli have opposite signs. This can be seen by investigating (1.8) in the case of two dislocations, and extended to an arbitrary number of dislocations by superposition, since the system (1.5) is linear. In addition, because \(G\) a discrete set, the motion need not be continuous with respect to the direction. Cross-slip and fine cross-slip may occur whenever it is more convenient for the system to switch direction, in the former case, or to bounce at a faster and faster time scale between two glide directions, in the latter. In this last situation, macroscopically, a dislocation is able to move along a direction which is not in \(G\), but belongs to the convex hull of two glide directions. We discuss this in more detail in Section 2.5.

Since the direction of the motion of dislocations can change discontinuously and may not be uniquely determined, we cannot use the standard theory of ordinary differential equations to study the dynamics. Instead we will use differential inclusions (see [19]).

We refer to [2, 8, 29, 34, 36] and the references contained therein for other results on the dynamics of dislocations. In particular, it is important to point out that, due to the discrete set of glide directions and the maximal dissipation criterion introduced in [25], our analysis significantly departs from that of Ginzburg-Landau vortices, where the motion of vortices can be derived from a gradient flow (see the review paper of Serfaty [32], see also [2]).
In forthcoming work and in collaboration with Thomas Hudson, we plan to study the behavior of dislocations as they approach the boundary and at collisions. In particular, preliminary results show that dislocations are attracted to the boundary.

The structure of the paper is as follows. Section 2 addresses the dynamics for a system of dislocations: a brief introduction on differential inclusion is presented in Subsection 2.1, and the framework for the dynamics is presented in Subsection 2.2. Local existence of the solutions to the dynamics problem is addressed in Subsection 2.3, while Subsection 2.4 deals with local uniqueness of the solution. A description of cross-slip and fine cross-slip is presented in Subsection 2.5, where we give analytic proofs of the scenarios presented in [12]. In Section 3 we discuss the case of multiple dislocations simultaneously exhibiting fine cross-slip and provide numerical simulations of the dynamics. Some special cases are discussed in Section 4, namely the unit disk (Subsection 4.1), the half-plane and the plane (Subsections 4.2, 4.3), and finally the notion of mirror dislocations is introduced in Subsection 4.1. We collect some technical proofs in the appendix.

2. Dislocation Dynamics

We now turn our attention to the dynamics of the system Z. As explained in the introduction, the direction of the motion of dislocations can change discontinuously and this motivates its study using differential inclusions. We begin this section with some preliminaries on the theory developed by Filippov [19]. We introduce the setting for dislocation dynamics in Subsections 2.1 and 2.2, and prove local existence and uniqueness in Subsections 2.3 and 2.4, respectively.

2.1. Preliminaries on Differential Inclusions.

The theory developed by Filippov [19] provides a notion of solution to an ordinary differential inclusion. Given an interval I and a set-valued function $H : D \to \mathcal{P}(\mathbb{R}^d)$, where $D \subseteq \mathbb{R}^{d+1}$ and $\mathcal{P}(\mathbb{R}^d)$ is the power set of \mathbb{R}^d, a solution on I of the differential inclusion

\[\dot{x} \in H(t, x(t)) \quad (2.1) \]

is an absolutely continuous function $x : I \to \mathbb{R}^d$ such that $(t, x(t)) \in D$ and $\dot{x}(t) \in H(t, x(t))$ for almost every $t \in I$.

In order to state a local existence theorem for (2.1), we need to introduce the definition of continuity for a set valued map (see [19]). Given two nonempty sets $A, B \subseteq \mathbb{R}^d$, we recall that the Hausdorff distance between A and B is given by

\[d_H(A, B) := \max \left\{ \sup_{a \in A} \text{dist}(a, B), \sup_{b \in B} \text{dist}(b, A) \right\} \]

Remark 2.1. In the special case in which the sets A and B are cartesian products, that is, $A = A_1 \times A_2 \subseteq \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$ and $B = B_1 \times B_2 \subseteq \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$, we have that

\[d_H(A, B) \leq d_H(A_1, B_1) + d_H(A_2, B_2). \]

(2.2)

To see this, let $a = (a_1, a_2) \in A$ and fix $\varepsilon > 0$. Then there exist $b_1^* \in B_1$ and $b_2^* \in B_2$ such that

\[||a_i - b_i^*|| \leq \text{dist}(a_i, B_i) + \varepsilon \quad \text{for } i = 1, 2. \]

Since $b^* := (b_1^*, b_2^*) \in B$, we have that

\[\text{dist}(a, B) \leq ||a - b^*|| \leq ||a_1 - b_1^*|| + ||a_2 - b_2^*|| \leq \text{dist}(a_1, B_1) + \text{dist}(a_2, B_2) + 2\varepsilon. \]
By exchanging the roles of A and B, we obtain (2.2).

Definition 2.2 (Continuity and Upper Semicontinuity). Given $D \subset \mathbb{R}^{d+1}$ and a set-valued function $H : D \to \mathcal{P}(\mathbb{R}^d)$, we say that H is continuous if

$$d_\mathcal{H}(H(y_n), H(y)) \to 0 \quad \text{for every } y, y_n \in D \text{ such that } y_n \to y.$$

We say that H is upper semicontinuous if

$$\sup_{a \in H(y)} \text{dist}(a, H(y)) \to 0 \quad \text{for every } y, y_n \in D \text{ such that } y_n \to y.$$

It follows from the definition that any continuous set-valued function is upper semicontinuous.

The proof of the following theorem can be found in [19, pg. 77].

Theorem 2.3 (Local Existence). Let $D \subset \mathbb{R}^{d+1}$ be open and let $H : D \to \mathcal{P}(\mathbb{R}^d)$ be upper semicontinuous, and such that $H(t, x)$ is nonempty, closed, bounded, and convex for every $(t, x) \in D$. Then for every $(t_0, x_0) \in D$ there exist $h > 0$ and a solution $x : [t_0 - h, t_0 + h] \to \mathbb{R}^d$ of the problem

$$\dot{x}(t) \in H(t, x(t)), \quad x(t_0) = x_0.$$ \hspace{1cm} (2.3)

Moreover, if D contains a cylinder $C := [t_0 - T, t_0 + T] \times B_r(x_0)$, for some $r, T > 0$, then $h \geq \min\{T, r/m\}$, where $m := \sup_{(t, x) \in C} |H(t, x)|$.

Next we address uniqueness of solutions to (2.3). We say that right uniqueness holds for (2.3) at a point (t_0, x_0) if there exists $t_1 > t_0$ such that any two solutions to the Cauchy problem (2.3) coincide on the subset of $[t_0, t_1]$ on which they are both defined. Similarly, we say that left uniqueness holds for (2.3) at a point (t_0, x_0) if there exists $t_1 < t_0$ such that any two solutions to the Cauchy problem (2.3) coincide on the subset of $[t_1, t_0]$ on which they are both defined. We we say that uniqueness holds for (2.3) at a point (t_0, x_0) if both left and right uniqueness hold for (2.3) at (t_0, x_0).

Unlike the case of ordinary differential equations, for differential inclusions the question of uniqueness is significantly more delicate. We will consider here a very special case. Suppose that $V \subset \mathbb{R}^d$ is an open set and is separated into open domains V^\pm by a $(d - 1)$-dimensional C^2 surface S. Let $f : (a, b) \times (V \setminus S) \to \mathbb{R}^d$, and define $f^\pm : (a, b) \times V^\pm \to \mathbb{R}^d$ as $f^\pm(t, x) := f(t, x)$ for $x \in V^\pm$. Assume that f^\pm can both be extended in a C^1 way to $(a, b) \times V$, and denote these extensions by \tilde{f}^\pm. Define

$$H(t, x) := \begin{cases} \{f(t, x)\} & \text{for } x \notin S, \\ \text{co}(\tilde{f}^-(t, x), \tilde{f}^+(t, x)) & \text{for } x \in S, \end{cases}$$ \hspace{1cm} (2.4)

and consider the differential inclusion (2.3). Here for a set $E \subset \mathbb{R}^d$ we denote by $\text{co}E$ the convex hull of E, that is, the smallest convex set that contains E.

It can be shown that the function H defined in (2.4) satisfies the conditions of Theorem 2.3, and local existence follows. In the following theorems, we denote by $n(x_0)$ the unit normal to S at $x_0 \in S$ directed from V^- to V^+. The following theorem can be found in [19, pg. 110].
Theorem 2.4 (Local Uniqueness). Let $H : (a,b) \times V \to \mathcal{P}(\mathbb{R}^d)$ be given as in (2.4), where f, V, and S are as above. If $(t_0, x_0) \in (a,b) \times S$ is such that $\hat{f}^-(t_0, x_0) \cdot n(x_0) > 0$ or $\hat{f}^+(t_0, x_0) \cdot n(x_0) < 0$, then right uniqueness holds for (2.3) at the point (t_0, x_0).

Similarly, if $\hat{f}^-(t_0, x_0) \cdot n(x_0) < 0$ or $\hat{f}^+(t_0, x_0) \cdot n(x_0) > 0$, then left uniqueness holds for (2.3) at the point (t_0, x_0).

Next we discuss cross-slip and fine cross-slip.

Theorem 2.5 (Cross-Slip; [19] Corollary 1, p.107). Let $(t_0, x_0) \in (a,b) \times S$ be such that $\hat{f}^-(t_0, x_0) \cdot n(x_0) > 0$ and $\hat{f}^+(t_0, x_0) \cdot n(x_0) > 0$. Then uniqueness holds for (2.3) at the point (t_0, x_0). Moreover, the unique solution x to (2.3) passes from V^- to V^+, that is, there exist $t_1 < t_0 < t_2$ such that $x(t)$ belongs to V^- for $t \in [t_1, t_0]$ and to V^+ for $t \in (t_0, t_1]$. Similarly, if $\hat{f}^-(t_0, x_0) \cdot n(x_0) < 0$ and $\hat{f}^+(t_0, x_0) \cdot n(x_0) < 0$, then uniqueness holds for (2.3) at the point (t_0, x_0) and the unique solution passes from V^+ to V^-.

Theorem 2.6 ([19] Corollary 2, p.108). Let $(t_0, x_0) \in (a,b) \times S$ be such that

$$
\hat{f}^-(t_0, x_0) \cdot n(x_0) > 0 \quad \text{and} \quad \hat{f}^+(t_0, x_0) \cdot n(x_0) < 0. \tag{2.5}
$$

Then there exists $a \leq t_1 < t_0$ such that the problem (2.1) admits exactly one solution curve x^- with $x^-(t) \in V^-$ for $t \in (t_1, t_0)$ and $x^-(t_0) = x_0$, and exactly one solution curve x^+ with $x^+(t) \in V^+$ for $t \in (t_1, t_0)$ and $x^+(t_0) = x_0$.

Lemma 2.7. Assume that the conditions (2.5) hold for $(t_0, x_0) \in (a,b) \times S$. Let $x(t)$ be a solution to $\ddot{x} = \hat{f}^+(t, x)$ on an interval $[t_0, T]$ with $x(t_0) = x_0 \in S$. Then there exists $\delta > 0$ such that $x(t) \in V^+ \cap U$ for $t \in (t_0, t_0 + \delta)$. Similarly, if $\ddot{x} = \hat{f}^-(t, x)$ on an interval $[t_0, T]$ with $x(t_0) = x_0 \in S$, then there exists $\delta > 0$ such that $x(t) \in V^- \cap U$ for $t \in (t_0, t_0 + \delta)$.

Proof. Let $h := \min\{-\hat{f}^+(t_0, x_0) \cdot n(x_0), \hat{f}^-(t_0, x_0) \cdot n(x_0)\}$. Then $h > 0$ by hypothesis, and therefore, by continuity of \hat{f}^\pm and n, there exist neighborhood I_0 and U_0 of t_0 and x_0, respectively, such that $\hat{f}^+(t, x) \cdot n(x) < -\frac{1}{2} h$ and $\hat{f}^-(t, x) \cdot n(x) > \frac{1}{2} h$ for $(t, x) \in I_0 \times U_0$ and $\ddot{x} \in U_0 \cap S$.

We can write S locally as the graph of a function. Denoting points $x = (\xi, y) \in \mathbb{R}^{d-1} \times \mathbb{R}$, there is $r > 0$ such that we can write (without loss of generality) $S \cap B_r(x_0) = \{(\xi, y) \in B_r(x_0) : y = \Phi(\xi)\}$ for some Φ of class C^2. The sets V^\pm are locally defined as $V^+ \cap B_r(x_0) = \{(\xi, y) \in B_r(Z_0) : y > \Phi(\xi)\}$ and $V^- \cap B_r(x_0) = \{(\xi, y) \in B_r(Z_0) : y < \Phi(\xi)\}$. By rotating the coordinate axes, if necessary, we can assume that the tangent hyperplane to S at x_0 is $\{(\xi, y) : y = 0\}$, so that $\nabla \Phi(x_0) = 0$, where $x_0 = (\xi_0, y_0)$. Then the unit normal to S at x_0 is $n(x_0) = n(\xi_0, \Phi(\xi_0)) = (0, 1)$.

Consider the solution to $\ddot{x} = \hat{f}^+(t, x)$ with $x(t_0) = x_0$. Since x is continuous, there is $\delta_1 > 0$ such that $x(t) \in U_0$ for $t \in (t_0, t_0 + \delta_1)$, and in this interval it satisfies $x(t) = x_0 + \int_{t_0}^t \hat{f}^+(s, x(s))ds$. Hence,

$$
y(t) = x(t) \cdot n(x_0) = x_0 \cdot n(x_0) + \int_{t_0}^t \hat{f}^+(s, x(s)) \cdot n(x_0) ds < y_0 - \frac{h}{2}(t - t_0). \tag{2.6}
$$

Writing $x(t) = (\xi(t), y(t))$, we have $x(t) \cdot n(x_0) = y(t)$. Additionally, $\Phi(\xi(t)) = \Phi(\xi(t_0)) + \nabla \Phi(\xi(t_0)) \cdot (\xi(t) - \xi(t_0)) + o(t - t_0) = y_0 + o(t - t_0)$. Therefore, (2.6)
implies there is \(\delta < \delta_1 \) such that
\[
y(t) < \Phi(\xi(t)) - \frac{h}{2} (t - t_0) + o(t - t_0) < \Phi(\xi(t))
\]
for \(t \in (t_0, t_0 + \delta) \). Thus, \(x(t) = (\xi(t), y(t)) \in V^- \cap B_r(x_0) \) for \(t \in (t_0, t_0 + \delta) \). The proof of the result for solutions to \(\dot{x} = \tilde{f}^-(t, x) \) is similar.

\[\text{Corollary 2.8 (Fine Cross-Slip). Assume that the conditions (2.5) hold for } (t_0, x_0) \in (a, b) \times S. \text{ Then there exist } \delta > 0 \text{ and a unique solution } x \text{ defined on } [t_0, t_0 + \delta) \text{ to the initial value problem (2.3) that is confined to } S. \]

\[\text{Proof.} \text{ Existence and uniqueness are consequences of Theorems 2.3 and 2.4. Let } T \text{ be the maximal existence time provided by Theorem 2.3.} \]

As in the proof of Lemma 2.7, there are neighborhoods \(I_0 \) and \(U_0 \) of \(t_0 \) and \(x_0 \), respectively, such that \(\tilde{f}^+(t, x) \cdot \mathbf{n}(\tilde{x}) < -\frac{1}{2} h \) and \(\tilde{f}^-(t, x) \cdot \mathbf{n}(\tilde{x}) > \frac{1}{2} h \) for \((t, x) \in I_0 \times U_0 \) and \(\tilde{x} \in U_0 \cap S \), with \(h = \min\{-\tilde{f}^+(t_0, x_0) \cdot \mathbf{n}(x_0), \tilde{f}^-(t_0, x_0) \cdot \mathbf{n}(x_0)\} \).

By continuity of \(x(t) \), there exists a \(\delta > 0 \) such that \(x(t) \in U_0 \) for \(t \in (t_0, t_0 + \delta) \). Suppose there is \(t_1 \in (t_0, t_0 + \delta) \) such that \(x(t_1) \notin S \). Without loss of generality, we can assume \(x(t_1) \in V^+ \), and we define
\[s_1 := \sup\{s \in [t_0, t_1) : x(s) \notin V^+\},\]
i.e., \(s_1 \) is the last time \(x(t) \) belongs to \(S \) before entering \(V^+ \) and remaining in \(V^+ \) for \(t \in (s_1, t_1] \). It follows that \(x(t) \) solves \(\dot{x} = \tilde{f}^+(t, x) \) on \([s_1, t_1]\) with \(x(s_1) \in S \). Since the hypotheses of Lemma 2.7 are satisfied, there is a unique solution to \(\dot{x} = \tilde{f}^+(t, x) \) on \([s_1, s_1 + \delta]\) for some \(\delta > 0 \), where \(x(t) \in V^- \) for \(t \in (s_1, s_1 + \delta) \). This contradicts the fact that \(x(t) \in V^+ \) on \([s_1, t_1]\). We conclude that \(x(t) \in S \) for \(t \in [t_0, t_0 + \delta) \).

\[\text{Remark 2.9. In view of Corollary 2.8, the velocity field } \dot{x} \text{ is tangent to } S, \text{ therefore it must be orthogonal to } \mathbf{n}(x), \text{ for } x \in S. \text{ Moreover, by (2.4), } \dot{x} \text{ belongs to } \text{co}\{\tilde{f}^-(t, x), \tilde{f}^+(t, x)\}, \text{ and so,}
\]
\[\dot{x} = \mathbf{f}^0(t, x) \in H(t, x), \quad \text{where} \quad \mathbf{f}^0(t, x) := \alpha \tilde{f}^+(t, x) + (1 - \alpha) \tilde{f}^-(t, x)\]
and \(\alpha = \alpha(t, x) \in (0, 1) \) is given by
\[\alpha = \frac{\tilde{f}^-(t, x) \cdot \mathbf{n}(x)}{\tilde{f}^-(t, x) \cdot \mathbf{n}(x) - \tilde{f}^+(t, x) \cdot \mathbf{n}(x)},\]
since \(\mathbf{f}^0(t, x) \cdot \mathbf{n}(x) = 0 \).

2.2. Setting for the Dynamics. We now turn our attention to the dynamics of the system \(Z \). We will neglect inertia and any external body forces, and consider only the Peach-Köhler force \(j_1 \), as given in (1.8).

Recall that a screw dislocation is a line in a three-dimensional cylindrical body \(B \), and is represented by a point in the cross-section \(\Omega \). The motion of dislocations (often called dislocation glide) in crystalline materials is restricted to a discrete set of crystallographic planes called glide planes, which are spanned by \(\mathbf{e}_3 \) and vectors \(\mathbf{g} \) called glide directions, determined by the lattice structure of that material. We will consider the glide directions as a fixed finite collection of unit vectors in \(\mathbb{R}^2 \), denoted by
\[\mathcal{G} := \{\mathbf{g}_1, \ldots, \mathbf{g}_M\} \subset S^1,\]
with the requirement that if \(\mathbf{g} \in \mathcal{G} \) then \(-\mathbf{g} \in \mathcal{G}\). The dislocation glide is restricted to the directions in \(\mathcal{G} \), so the equation of motion for \(\mathbf{z}_i \) has the form

\[
\dot{\mathbf{z}}_i = \mathcal{V}_i \mathbf{g}_i, \quad \mathbf{g}_i \in \mathcal{G}
\]

and \(\mathcal{V}_i \) is a scalar velocity.

In [12] motion laws are proposed, where a variable mobility \(M(\mathbf{g}) \) and Peierls force \(F(\mathbf{g}) \) are incorporated to obtain equations of the form

\[
\dot{\mathbf{z}}_i = M(\mathbf{g}_i)[\max\{\mathbf{j}_i \cdot \mathbf{g}_i - P(\mathbf{g}_i), 0\}]^p \mathbf{g}_i, \tag{2.7}
\]

with the exponent \(p > 0 \) allowing for various “power-law kinetics”. The mobility function \(M \) favors some directions of dislocation glide. The Peierls force, \(P \geq 0 \), is a threshold force, acting as a static friction. If the Peach-Köhler force along \(\mathbf{g}_i \) is below the threshold, then the dislocation will not move. Glide initiates when \(\mathbf{j}_i \cdot \mathbf{g}_i > P(\mathbf{g}_i) \). In this paper we will assume the simplest form of linear kinetics \((p = 1) \) with vanishing Peierls force \((P \equiv 0) \) and isotropic mobility \((M \equiv 1) \). Thus (2.7) takes the form

\[
\dot{\mathbf{z}}_i = (\mathbf{j}_i(\mathbf{z}_i) \cdot \mathbf{g}_i) \mathbf{g}_i \quad \text{for} \quad \mathbf{g}_i \in \mathcal{G}, \tag{2.8}
\]

where we recall that

\[
\mathbf{j}_i(\mathbf{z}_i) = b_i J \mathbf{L} \left[\sum_{j \neq i} \mathbf{k}_j(\mathbf{z}_i; \mathbf{z}_j) + \nabla u_0(\mathbf{z}_i; \mathbf{z}_1, \ldots, \mathbf{z}_N) \right], \tag{2.9}
\]

with \(\mathbf{k}_j \) and \(u_0 \) given in (1.9) and (1.12), respectively.

Remark 2.10. The formula (2.9) gives the force on the dislocation at \(\mathbf{z}_i \), and it shows that, as a function of \(\mathbf{z}_i \), the force \(\mathbf{j}_i \) is smooth in the interior of \(\Omega \setminus \{\mathbf{z}_1, \ldots, \mathbf{z}_{i-1}, \mathbf{z}_{i+1}, \ldots, \mathbf{z}_N\} \). That is, provided \(\mathbf{z}_i \) is not colliding with another dislocation or with \(\partial \Omega \), then the force is given by a smooth function. Of course, \(\mathbf{j}_i \) depends on the positions of all the dislocations, and the same reasoning applies to \(\mathbf{j}_i \) as a function of any \(\mathbf{z}_j \).

Following the model presented in [12], the choice of glide direction in (2.8) is determined by a maximal dissipation inequality for dislocation glide. This means that the direction of motion of \(\mathbf{z}_i \) is the glide direction that is most closely aligned with \(\mathbf{j}_i \). Thus, since \(\mathbf{j}_i \) is determined by all the dislocations \(\mathbf{z}_1, \ldots, \mathbf{z}_N \), and since \(\mathcal{G} \) is discrete, the selection of the glide direction \(\mathbf{g}_i \in \mathcal{G} \) depends in a discontinuous fashion on the dislocations positions. To stress this fact, we will often write \(\mathbf{g}_i = \mathbf{g}_i(\mathbf{z}_1, \ldots, \mathbf{z}_N), i \in \{1, \ldots, N\} \).

We note that, at any point where \(\mathbf{z}_i(t) \) is differentiable and where (2.8) is satisfied, we have

\[
\frac{d}{dt} U(\mathbf{z}_1, \ldots, \mathbf{z}_N) = \sum_{i=1}^{N} \nabla_{\mathbf{z}_i} U \cdot \dot{\mathbf{z}}_i = -\sum_{i=1}^{N} (\nabla_{\mathbf{z}_i} U \cdot \mathbf{g}_i)^2 \leq 0 \tag{2.10}
\]

holds. The dissipation in (2.10) is maximal when \(\mathbf{g}_i \) maximizes \(\{\mathbf{j}_i \cdot \mathbf{g} \mid \mathbf{g} \in \mathcal{G}\} \).

Note, however, that when there is more than one glide direction \(\mathbf{g} \) that maximizes \(\mathbf{j}_i \cdot \mathbf{g} \), then (2.8) becomes ill-defined. This leads us to consider differential inclusions in place of differential equations. The problem consists in solving the system of differential inclusions

\[
\{ \dot{\mathbf{z}}_i \in F_i(Z), \quad \mathbf{z}_i(0) = \mathbf{z}_{i,0}, \}
\]
where
\[Z := (z_1, \ldots, z_N) \quad \text{and} \quad Z_0 := (z_{1,0}, \ldots, z_{N,0}) \]
belong to \(\Omega^N \subset \mathbb{R}^{2N} \) and, for \(\ell = 1, \ldots, N \),
\[F_\ell(Z) := \{ (j_\ell(Z) \cdot g) g : g \in \arg \max_{g' \in \mathcal{G}} \{ j_\ell(Z) \cdot g' \} \}. \quad (2.11) \]

Setting
\[G_\ell(Z) := \arg \max_{g' \in \mathcal{G}} \{ j_\ell(Z) \cdot g' \}, \quad (2.12) \]
the vectors \(g \in G_\ell(Z) \) represent the glide directions closest to \(j_\ell(Z) \) (see [12]), that is,
\[j_\ell(Z) \cdot g \geq j_\ell(Z) \cdot g' \quad \text{for all} \quad g' \in \mathcal{G}. \quad (2.13) \]
We are interested in the physically realistic case where the span of the glide directions is all of \(\mathbb{R}^2 \), otherwise dislocations are restricted to one-dimensional motion and cannot abruptly change direction. Therefore, we assume that
\[\text{span}(\mathcal{G}) = \mathbb{R}^2. \quad (2.14) \]
When \(j_\ell(Z) \neq 0 \), the set \(F_\ell \) can either contain a single element, which we will call \(g_\ell(Z) \), or two distinct elements, denoted by \(g^-_\ell(Z) \) and \(g^+_\ell(Z) \), and in this case \(j_\ell(z_\ell) \) is the bisector of the angle formed by \(g^-_\ell(Z) \) and \(g^+_\ell(Z) \).

Remark 2.11. Notice that if \(j_\ell(Z) = 0 \), then any glide direction \(g \in \mathcal{G} \) satisfies (2.13) and therefore \(G_\ell(Z) = \mathcal{G} \).

In view of the comments above, we have
\[F_\ell(Z) = \begin{cases} \{ 0 \} & \text{if } j_\ell(Z) = 0, \\
\{ (j_\ell(Z) \cdot g_\ell(Z)) g_\ell(Z) \} & \text{if } j_\ell(Z) \neq 0 \text{ and } G_\ell(Z) = \{ g_\ell(Z) \}, \\
\{ (j_\ell(Z) \cdot g^-_\ell(Z)) g^-_\ell(Z) \} & \text{if } j_\ell(Z) \neq 0 \text{ and } G_\ell(Z) = \{ g^+_\ell(Z) \}, \end{cases} \quad (2.15) \]
and the problem becomes
\[\begin{cases} \dot{Z} \in F(Z), \\
Z(0) = Z_0, \end{cases} \quad (2.16) \]

where
\[F(Z) := F_1(Z) \times \cdots \times F_N(Z) \subset \mathbb{R}^{2N}. \quad (2.17) \]

The domain of the set-valued function \(F \) must be chosen in such a way that the forces \(j_\ell(Z) \) are well-defined, and so collisions must be avoided. We denote by
\[\Pi_{jk} := \{ Z \in \Omega^N : z_j = z_k, j \neq k \} \quad (2.18) \]
the set where dislocations \(z_j \) and \(z_k \) collide, and we define the domain of \(F \) to be
\[D(F) := \Omega^N \setminus \bigcup_{j<k} \Pi_{jk}. \quad (2.19) \]
Recall that the force \(j_\ell \) is not defined for \(z_\ell \in \partial \Omega \). Since \(\Omega \) is open, boundary collisions are also excluded from \(D(F) \).
2.3. **Local Existence.** Following Section 2.2, and in view of (2.16) and (2.17), we consider the differential inclusion

\[
\begin{aligned}
\dot{Z} &\in \co F(Z), \\
Z(0) &= Z_0.
\end{aligned}
\]

The following lemma, whose proof is given in Section 5.1, shows that the convex hull of \(F(Z)\) is given by

\[
\hat{F}(Z) := (\co F_1(Z)) \times \cdots \times (\co F_N(Z)),
\]

where, by (2.15),

\[
\co F_\ell(Z) = \begin{cases}
\{0\} & \text{if } j_\ell(Z) = 0, \\
\{\langle j_\ell(Z) \cdot g_\ell(Z) \rangle g_\ell(Z)\} & \text{if } j_\ell(Z) \neq 0 \text{ and } G_\ell(Z) = \{g_\ell(Z)\}, \\
\Sigma_\ell(Z) & \text{if } j_\ell(Z) \neq 0 \text{ and } G_\ell(Z) = \{g_\ell^+(Z)\},
\end{cases}
\]

with \(\Sigma_\ell(Z)\) the segment of endpoints \(\langle j_\ell(Z) \cdot g_\ell^-(Z) \rangle g_\ell^-(Z)\) and \(\langle j_\ell(Z) \cdot g_\ell^+(Z) \rangle g_\ell^+(Z)\).

Lemma 2.12. Let \(F_\ell(Z)\) be defined as in (2.11) for \(\ell = 1, \ldots, N\), and let \(F(Z)\) be as in (2.17). Then \(\co F(Z) = \hat{F}(Z)\), where \(\hat{F}(Z)\) is defined in (2.21).

Lemma 2.12 is useful for understanding the dynamics in \(\Omega\) rather than in \(\Omega^N\). Each \(Z_n\) moves in some direction \(g_\ell \in G\), unless the arg max in (2.12) is multivalued, in which case \(Z_n\) moves in a direction belonging to the convex hull of \(g_\ell^+\) and \(g_\ell^-\).

Lemma 2.13. Let \(D(F)\) be defined in (2.19). Then the set-valued map \(F : D(F) \rightarrow P(\mathbb{R}^{2N})\) defined in (2.17) is continuous (according to Definition 2.2).

Proof. Let \(Z, Z_n \in D(F)\) be such that \(Z_n \rightarrow Z\) as \(n \rightarrow \infty\). In view of Remark 2.1, it suffices to show that for every \(\ell \in \{1, \ldots, N\}\),

\[
d_H(F_\ell(Z_n), F_\ell(Z)) \rightarrow 0 \quad \text{as } n \rightarrow \infty.
\]

Fix \(\ell \in \{1, \ldots, N\}\). We consider the two cases \(j_\ell(Z) = 0\) and \(j_\ell(Z) \neq 0\).

If \(j_\ell(Z) = 0\), then by (2.15) \(F_\ell(Z) = \{0\}\). In turn, again by (2.15) the continuity of \(j_\ell\) (cf. Remark 2.10 and (2.19)), \(d_H(F_\ell(Z_n), 0) \leq ||j_\ell(Z_n)|| \rightarrow 0\) as \(n \rightarrow \infty\).

If \(j_\ell(Z) \neq 0\), then, again by continuity of \(j_\ell\), \(j_\ell(Z_n) \neq 0\) for all \(n \geq n_0\) for some \(n_0 \in \mathbb{N}\). Taking \(n_0\) larger, if necessary, we claim that \(g^-_{\ell}(Z_n), g^+_{\ell}(Z_n) \in \{g^-_\ell(Z), g^+_\ell(Z)\}\) for \(n \geq n_0\). Arguing by contradiction, if the claim fails, since \(G\) is finite, there exists \(e \in G \setminus \{g^+_\ell(Z)\}\) such that \(g^-_{\ell}(Z_n) = e\) or \(g^+_{\ell}(Z_n) = e\) for infinitely many \(n\). By (2.13) and (2.12), \(j_\ell(Z_n) \cdot e \geq j_\ell(Z_n) \cdot g\) for all \(g \in G\) and for infinitely many \(n\). Letting \(n \rightarrow \infty\) and using the continuity of \(j_\ell\), it follows that \(j_\ell(Z) \cdot e \geq j_\ell(Z) \cdot g\) for all \(g \in G\), which implies that \(e \in G_\ell(Z)\), which is a contradiction. Thus the claim holds.

In particular, we have shown that \(F_\ell(Z_n) = \langle j_\ell(Z_n) \cdot g^+(Z) \rangle g^+(Z)\rangle\) for \(n \geq n_0\), hence \(d_H(F_\ell(Z_n), F_\ell(Z)) \leq ||j_\ell(Z_n) - j_\ell(Z)|| \rightarrow 0\) as \(n \rightarrow \infty\). This concludes the proof.

Corollary 2.14. Let \(F : D(F) \rightarrow P(\mathbb{R}^{2N})\) be defined by (2.17) and (2.19), and consider the set valued map \(\co F(Z), Z \in D(G)\). Then \(\co F(Z)\) is nonempty, closed, convex for every \(Z \in D(F)\), and \(\co F\) is continuous.
Proof. For all \(\mathbf{Z} \in \mathcal{D}(F) \), the set \(\text{co } F(\mathbf{Z}) \) is nonempty because \(F(\mathbf{Z}) \) is nonempty. By definition of convexification, \(\text{co } F(\mathbf{Z}) \) is closed and convex. By Lemma 2.13, the set valued map \(F \) is continuous, and therefore so is \(\text{co } F \) (see Lemma 16, page 66 in [19]). This corollary is proved. \(\square \)

Note that \(\text{co } F \) is not bounded on \(\mathcal{D}(F) \) because \(|z_i - z_j| \) and \(\text{dist}(z_i, \partial \Omega) \) can become arbitrarily small, and thus \(j_i \) can become unbounded (see (1.8) and (1.9)).

Theorem 2.15 (Local existence). Let \(\Omega \subset \mathbb{R}^2 \) be a connected open set. Let \(F : \mathcal{D}(F) \to \mathcal{P}(\mathbb{R}^{2N}) \) be defined as in (2.17) and (2.19) with each \(F_{\ell} \) as in (2.15), and let \(\mathbf{Z}_0 \in \mathcal{D}(F) \) be a given initial configuration of dislocations. Then there exists a solution \(\mathbf{Z} : [-T, T] \to \mathcal{D}(F) \) to (2.20), with \(T \geq r_0/m_0 \), where

\[
0 < r_0 < \text{dist}(\mathbf{Z}_0, \partial \mathcal{D}(F)) \quad \text{and} \quad m_0 := \max_{\mathbf{Z} \in B(\mathbf{Z}_0, r_0)} \left(\sum_{\ell=1}^N |j_{\ell}(\mathbf{Z})|^2 \right)^{1/2}. \tag{2.23}
\]

Proof. The function \(F \) is bounded on the ball \(B(\mathbf{Z}_0, r_0) \subset \mathcal{D}(F) \). Hence, by Corollary 2.14, the set valued map \(\text{co } F \) satisfies the conditions of Theorem 2.3 in \(B(\mathbf{Z}_0, r_0) \), and thus local existence holds. \(\square \)

Remark 2.16. In view of (2.19) and (2.23), solutions to the problem (2.20) exist as long as dislocations stay away from \(\partial \Omega \) and do not collide.

2.4. Local Uniqueness.

The set where dislocations can move in either of two different glide directions is called ambiguity set and denoted by \(\mathcal{A} \). To be precise, we define

\[
\mathcal{A} := \bigcup_{\ell=1}^N \mathcal{A}_{\ell}, \quad \text{where} \quad \mathcal{A}_{\ell} := \{ \mathbf{Z} \in \mathcal{D}(F) : \text{card}(\mathcal{G}_{\ell}(\mathbf{Z})) = 2 \}, \tag{2.24}
\]

and \(\mathcal{G}_{\ell}(\mathbf{Z}) \) is defined in (12.2). On \(\mathcal{A}_{\ell} \) the direction of the Peach-Köhler force \(j_{\ell} \) bisects two different glide directions that are closest to it. Note that \(j_{\ell}(\mathbf{Z}) \neq 0 \) for \(\mathbf{Z} \in \mathcal{A}_{\ell} \), because \(\text{card}(\mathcal{G}) \geq 4 \) by assumption (2.14) and since \(\mathbf{g} \in \mathcal{G} \) implies \(-\mathbf{g} \in \mathcal{G} \).

The uniqueness results in Subsection 2.1 can only be applied at points \(\mathbf{Z}_0 \in \mathcal{A} \) in which the ambiguity set \(\mathcal{A} \) is locally a \((2N - 1)\)-dimensional smooth surface separating \(\mathcal{D}(F) \) into two open sets in a neighborhood of \(\mathbf{Z}_0 \). In this subsection we shall that \(\mathcal{A} \) is a \((2N - 1)\)-dimensional smooth surface outside of a “singular set” and we estimate the Hausdorff dimension of this set.

Lemma 2.17. For all \(\ell \in \{1, \ldots, N\} \) the functions \(j_{\ell}(z_1, \ldots, z_N) \) are analytic on any compact subset of \(\mathcal{D}(F) \).

Proof. Observe that if a smooth function \(v \) satisfies the partial differential equation

\[
\text{div } (L \nabla v) = 0 \quad \text{in} \quad \Omega, \quad \text{then} \quad w(x_1, x_2) := v(\lambda x_1, x_2) \quad \text{satisfies} \quad \text{the partial differential equation} \quad \Delta w = 0 \quad \text{in} \quad \Omega.
\]

Hence, without loss of generality, we may assume that \(\lambda = 1 \) (i.e. \(L = \mu I \)), so that (1.11a) and (1.12) reduce to

\[
\Delta_y k_{\ell}(x; y) = 0, \quad (x, y) \in \mathbb{R}^2 \times \mathbb{R}^2, \quad x \neq y, \tag{2.25}
\]

and, for fixed \(z_1, \ldots, z_N \in \Omega, \)

\[
\begin{align*}
\Delta_x u_0(x; z_1, \ldots, z_N) &= 0, \quad x \in \Omega, \\
\nabla_x u_0(x; z_1, \ldots, z_N) \cdot \mathbf{n}(x) &= -\sum_{i=1}^N k_i(x; z_i) \cdot \mathbf{n}(x), \quad x \in \partial \Omega. \tag{2.26}
\end{align*}
\]
A solution to (2.26) is given by

\[u_0(x; z_1, \ldots, z_N) = \int_{\partial \Omega} G(x, y) \sum_{i=1}^{N} k_i(y; z_i) \cdot n(y) \, ds(y), \]

(2.27)

where \(G \) is the Green’s function for the Neumann problem. Consider \(u_0 \) as a function in \(\Omega^{N+1} \subset \mathbb{R}^{N+1} \). Fix \(K_i \subset \subset \Omega \) for \(i = 0, \ldots, N \). If \((x, Z) \in K := K_0 \times K_1 \times \cdots \times K_N \), then the integrand in (2.27) is uniformly bounded, and we can find the derivatives of \(u_0 \) with respect to each \(z_{i,m} \) by differentiating under the integral sign in (2.27).

Using (2.25), (2.26), and (2.27) we have

\[\Delta_{(x, Z)} u_0 = \Delta_x u_0 + \Delta_{z_i} u_0 + \cdots + \Delta_{z_N} u_0 \]

\[= 0 + \sum_{i=1}^{N} \int_{\partial \Omega} G(x, y) \Delta_z (k_i(y; z_i) \cdot n(y)) \, ds(y) = 0. \]

Observe that in a small ball around \((x, Z) \in K\), \(u_0 \) is a \(C^2 \) function in each variable because the formula (2.27) has singularities only on the boundary. Since a harmonic \(C^2 \) function on an open set is analytic in that set (cf. [18, Chapter 2]), we deduce that \(u_0 \) is analytic in the interior of \(\Omega^{N+1} \), and thus \(u_0(z_i; Z) \) is also analytic (though, possibly no longer harmonic). By (2.9) we have that \(j_\ell \) is analytic away from the boundary and away from collisions, because in this case each \(k_i(z_\ell; z_i) \) is harmonic in both \(z_\ell \) and \(z_i \).

\[\square \]

Fix \(Z^* \in A_\ell \). There are two maximizing glide directions for \(z_\ell \), denoted by \(g_\ell^+(Z^*) \) and \(g_\ell^-(Z^*) \) (i.e. \(\mathcal{G}_\ell(Z^*) = \{g_\ell^+(Z^*), g_\ell^-(Z^*)\} \), as defined in (2.12)). For simplicity we will write \(g_\ell^\pm := g_\ell^+(Z^*) \). Let \(B_h(Z^*) \) be a ball around \(Z^* \) with radius \(h > 0 \) small enough so that \(B_h(Z^*) \subset D(F) \), and for any \(Z \in B_h(Z^*) \) one of the following three possibilities holds: \(\mathcal{G}_\ell(Z) = \{g_\ell^+\} \), \(\mathcal{G}_\ell(Z) = \{g_\ell^-\} \), or \(\mathcal{G}_\ell(Z) = \{g_\ell^+, g_\ell^-\} \). Such \(h \) exists because of the continuity of \(j_\ell \) and the fact that \(j_\ell(Z^*) \neq 0 \) (cf. the discussion following (2.24)). We denote by \(g_0 \in \mathbb{R}^2 \) the vector

\[g_0 := g_\ell^+ - g_\ell^-, \]

(2.28)

which is a well-defined constant vector for \(Z \in B_h(Z^*) \) (see the proof of Lemma (2.13)). Note that if \(\partial^\beta j_\ell(Z) \cdot g_0 \neq 0 \) for some multi-index \(\beta = (\beta_1, \ldots, \beta_N) \in \mathbb{N}^N_0 \) with \(|\beta| = 1 \), then \(A_\ell \) is locally a smooth manifold. With \(g_0 \) as in (2.28), we define the singular sets

\[S_\ell := \{Z \in A_\ell : j_\ell(Z) \cdot g_0 = 0, \nabla_Z (j_\ell(Z) \cdot g_0) = 0\}, \quad \ell = 1, \ldots, N. \]

(2.29)

Each \(S_\ell \) contains the points where \(A_\ell \) could fail to be a manifold, and is an obstruction to uniqueness of solutions to (2.20).

We now estimate the Hausdorff dimension of the singular sets. We adapt an argument from [26], which follows [10]; recall that \(S_\ell \subset \mathbb{R}^{2N}, \ell = 1, \ldots, N \).

Lemma 2.18. Let \(S_\ell \) be defined as in (2.29). Then \(\dim(S_\ell) \leq 2N - 2 \).

Proof. Fix \(\ell \in \{1, \ldots, N\} \) and \(Z^* \in A_\ell \). As in the discussion above, set \(g_0 := g_\ell^+ - g_\ell^- \in \mathbb{R}^2 \setminus \{0\} \), where \(g_\ell^\pm \) are uniquely defined in \(B_h(Z^*) \) for \(h > 0 \) small enough.

We will be considering derivatives in all the \(z_i \) directions except for \(i = \ell \). For this purpose, we introduce the notations \(\Delta_{z_\ell}, \nabla_{z_\ell}, \) and \(D^2_{z_\ell} \) to denote the Laplacian, the
gradient, and the Hessian with respect to $z_1, \ldots, z_{\ell-1}, z_{\ell+1}, \ldots, z_N$, respectively. We also write N_ℓ for the set of multi-indices α such that ∂^α does not contain any derivatives in the z_ℓ directions, that is,

$$N_\ell := \{ \alpha \in \mathbb{N}_0^{2N} : \alpha = (\alpha_1, \ldots, \alpha_{\ell-1}, 0, \alpha_{\ell+1}, \ldots, \alpha_N) \}. \quad (2.30)$$

For $m \geq 2$ we define

$$\tilde{M}_\ell^m := \{ Z : j_\ell(Z) \cdot g_0 = 0, \partial^2 j_\ell(Z) \cdot g_0 = 0 \text{ for all } \alpha \in N_\ell \text{ such that } |\alpha| < m, \text{ and } \partial^\alpha (j_\ell(Z) \cdot g_0) \neq 0 \text{ for some } \alpha \in N_\ell, \text{ with } |\alpha| = m \},$$

and also

$$\tilde{M}_\ell^\infty := \{ Z : j_\ell(Z) \cdot g_0 = 0, \partial^\alpha (j_\ell(Z) \cdot g_0) = 0 \text{ for all } \alpha \in N_\ell \}. \quad (2.31)$$

Therefore

$$S_\ell \subset \{ Z : j_\ell(Z) \cdot g_0 = 0, \nabla Z_\ell (j_\ell(Z) \cdot g_0) = 0 \} = \tilde{M}_\ell^\infty \cup \left(\bigcup_{m \geq 2} \tilde{M}_\ell^m \right).$$

By Lemma 5.3 in the appendix, we have that $\tilde{M}_\ell^\infty = \emptyset$.

Let $m \geq 2$ and let $Z_0 \in \tilde{M}_\ell^m$. Then there exists $\beta \in N_\ell$ such that $|\beta| = m - 2$, and $D^2_{\tilde{Z}_\ell} (\partial^\beta j_\ell(Z_0) \cdot g_0) \neq 0$.

Thus, if we define $v(Z) := \partial^\beta j_\ell(Z) \cdot g_0$, then $D^2_{\tilde{Z}_\ell} v(Z_0)$ is a symmetric matrix that is not identically zero, so it must have at least one non-zero eigenvalue, say λ_i.

Observe that Trace($D^2_{\tilde{Z}_\ell} v(Z)$) = $\Delta_{\tilde{Z}_\ell} (\partial^\beta j_\ell(Z) \cdot g_0) = 0$ because $\Delta_{\tilde{Z}_\ell} (j_\ell(Z) \cdot g_0) = 0$. But Trace($D^2_{\tilde{Z}_\ell} v(Z_0)$) = $\sum_{k=1}^{2N-2} \lambda_k$, where λ_k are the eigenvalues, and $\lambda_i \neq 0$, and so there is another non-zero eigenvalue, say λ_j. Define $w(Y) := v(RY)$, where R is a rotation matrix such that

$$D^{2}_{\tilde{Y}_\ell} w(Y_0) = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{2N-2} \end{pmatrix},$$

where $Y_0 := R^{-1} Z_0$. Since λ_i and λ_j are different from zero, there are two distinct multi-indices $\alpha_1, \alpha_2 \in N_\ell$ with $|\alpha_k| = 1$ such that

$$\nabla_{\tilde{Y}_\ell} \partial^{\alpha_k} w(Y_0) \neq 0, \quad k = 1, 2.$$

Hence, applying the Implicit Function Theorem to $\partial^{\alpha_1} w$ and $\partial^{\alpha_2} w$, we conclude that $\mathcal{M} = \{ Y : \partial^{\alpha_1} w(Y) = 0, \partial^{\alpha_2} w(Y) = 0 \}$ is a $(2N-2)$-dimensional manifold in a neighborhood of Y_0. Since $\tilde{M}_\ell^m \subset \mathcal{M}$, we have that S_ℓ is contained in a countable union of manifolds with dimension at most $2N-2$. \hfill \square

We proved that the collection of *singular points*

$$\mathcal{E}_{\text{sing}} := \bigcup_{\ell=1}^{N} S_\ell,$$

with S_ℓ defined in (2.29), has dimension at most $2N-2$. Further, each A_ℓ is a $(2N-1)$-dimensional smooth manifold away from points on S_ℓ but, in general, the set \mathcal{A} defined in (2.24) will not be a manifold at points $Z \in A_\ell \cap A_j$ for $\ell \neq j$. For this reason we need to exclude the set

$$\mathcal{E}_{\text{int}} := \{ Z \in \mathbb{R}^{2N} : Z \in A_\ell \cap A_j \text{ for some } \ell, j \in \{1, \ldots, N\}, \ell \neq j \}. \quad (2.32)$$
Uniqueness at points in \mathcal{E}_{int} is significantly more delicate and will be discussed in Section 3.

If $Z \in A_\ell$, then $j_\ell(Z) \neq 0$, but it could be that $j_k(Z) = 0$ for some $k \neq \ell$. This would mean that the glide direction for z_ℓ would not be well-defined at Z, and could cause an obstruction to uniqueness. In view of this, we set

$$\mathcal{E}_{\text{zero}} := \{Z \in \mathcal{D}(F) : j_k(Z) = 0 \text{ for some } k \in \{1, \ldots, N\}\}.$$

Reasoning as in Lemma 2.18, $\text{dim}(\mathcal{E}_{\text{zero}} \cap \{\nabla j_k \text{ has rank } 0\}) \leq 2N - 2$. On the other hand, $\text{dim}(\mathcal{E}_{\text{zero}} \cap \{\nabla j_k \text{ has rank } 2\}) = 2N - 2$, by the Implicit Function Theorem. The set $\mathcal{E}_{\text{zero}} \cap \{\nabla j_k \text{ has rank } 1\}$ could have dimension at most $2N - 1$.

For each $\ell \in \{1, \ldots, N\}$ define

$$I_\ell := A_\ell \setminus (S_\ell \cup \mathcal{E}_{\text{int}} \cup \mathcal{E}_{\text{zero}}).$$

(2.33)

Let $\hat{Z} \in I_\ell$. Since $\hat{Z} \notin S_\ell$ (see (2.29)), there is an $r > 0$ so that $B_r(\hat{Z}) \cap A_\ell$ is a $(2N-1)$-dimensional smooth manifold, and A_ℓ divides $B_r(\hat{Z})$ into two disjoint, open sets V^\pm. Since the functions j_k are continuous by Lemma 2.17 for all $k \in \{1, \ldots, N\}$, and $\hat{Z} \notin \mathcal{E}_{\text{zero}}$, by taking r smaller, if necessary, we can assume that $j_k(Z) \neq 0$ for all $Z \in B_r(\hat{Z})$ and for all $k \in \{1, \ldots, N\}$. In turn, since $\hat{Z} \notin \mathcal{E}_{\text{int}}$, again by continuity and by taking r even smaller, $g_k(Z) \equiv g_k(\hat{Z})$ for all $Z \in B_r(\hat{Z})$ and for all $k \neq \ell$, and $g_\ell(Z) \equiv g_\ell^+(Z)$ for $Z \in V^+$. Let now $f : B_r(\hat{Z}) \setminus A_\ell \to \mathbb{R}^{2N}$, $f = (f_1, \ldots, f_N)$, be the function defined by

$$f_k(Z) := (j_k(Z) \cdot g_k(\hat{Z}))g_k(\hat{Z}) \quad \text{if } k \neq \ell,$$

$$f_\ell(Z) := (j_\ell(Z) \cdot g_\ell^+(\hat{Z}))g_\ell^+(\hat{Z}) \quad \text{if } Z \in V^+. \quad (2.34)$$

We define f^\pm as the restrictions of f to V^\pm, and we extend them smoothly to the ball $B_r(\hat{Z})$ by setting $\hat{f}_k(Z) := f_k(Z)$ if $k \neq \ell$ and $\hat{f}_\ell(Z) := (j_\ell(Z) \cdot g_\ell^+(\hat{Z}))g_\ell^+(\hat{Z})$.

Let $n(\hat{Z})$ denote the unit normal vector to A_ℓ at \hat{Z} directed from V^- to V^+. Motions starting in V^+ will move towards or away from A_ℓ according to whether $\hat{f}^+(\hat{Z}) \cdot n(\hat{Z}) < 0$ or $\hat{f}^+(\hat{Z}) \cdot n(\hat{Z}) > 0$. Similarly, motions starting in V^- will move towards or away from A_ℓ according to whether $\hat{f}^-(\hat{Z}) \cdot n(\hat{Z}) > 0$ or $\hat{f}^-(\hat{Z}) \cdot n(\hat{Z}) < 0$.

We define the set of source points

$$\mathcal{E}_{\text{src}} := \{Z \in \Omega^N : Z \in I_\ell \text{ for some } \ell \in \{1, \ldots, N\},$$

$$\hat{f}^+(Z) \cdot n(Z) > 0 \text{ and } \hat{f}^-(Z) \cdot n(Z) < 0\}.$$

If $Z \in \mathcal{E}_{\text{src}}$ there are two solution curves originating at \hat{Z}, one that moves into V^+ and one that moves into V^-. Thus there is no uniqueness at source points.

Theorem 2.19 (Local Uniqueness). Let $T > 0$ and let $Z : [-T, T] \to \mathbb{R}^{2N}$ be a solution to (2.20). Assume that there exist $t_1 \in [-T, T]$ and $Z_1 \in I_\ell$, for some $\ell \in \{1, \ldots, N\}$, such that $Z(t_1) = Z_1$ and

$$\hat{f}^-(Z_1) \cdot n(Z_1) > 0 \quad \text{or} \quad \hat{f}^+(Z_1) \cdot n(Z_1) < 0,$$

(2.35)

where \hat{f}^\pm are the extensions of the functions f^\pm defined in terms of the function f given in (2.34) with $\hat{Z} = Z_1$. Then right uniqueness holds for (2.20) at the point (t_1, Z_1).

Proof. By (2.35), $Z_0 \notin \mathcal{E}_{\text{src}}$, therefore, by the previous discussion, the result follows from Theorem 2.4. \square
Remark 2.20. Existence time is limited by the possibility of collisions between dislocations, that is, \(|z_i - z_j| \to 0\), or between a dislocation and \(\partial \Omega\), that is, \(\text{dist}(z_i, \partial \Omega) \to 0\). Additionally, uniqueness is limited by possible intersections of \(Z(t)\) with \(S_l \cup E_{\text{int}} \cup E_{\text{zero}} \cup E_{\text{src}}\). The ambiguity set \(A\) is smooth except possibly on the singular sets \(S_l\), which are at most \((2N - 2)\)-dimensional by Lemma 2.18, or points in \(E_{\text{int}}\).

2.5. Cross-Slip and Fine Cross-Slip. We expect to see two kinds of motion at points where the force is not single-valued. If a dislocation point \(z_\ell\) is moving in the direction \(g_\ell\) and the configuration \(Z = (z_1, \ldots, z_N)\) arrives at a point on \(A_\ell\) where \(g_\ell^\pm\) are two glide directions that are equally favorable to \(z_\ell\), then \(z_\ell\) could abruptly transition from motion along \(g_\ell^-\) to motion along \(g_\ell^+\). Such a motion is called cross-slip (see Figure 1). Heuristically, cross-slip occurs when, on one side of \(A_\ell\), the vector field \(F\) (see (2.20)) is pointing toward \(A_\ell\), while the other side \(F\) is pointing away from \(A_\ell\). If the configuration \(Z\) is in the region where \(F\) points toward \(A_\ell\), then \(Z\) approaches \(A_\ell\) and arrives at it in a finite time. The configuration then leaves \(A_\ell\), moving into the region where \(F\) points away from \(A_\ell\).

\[\text{Figure 1. Cross-slip. The glide directions are } G = \{\pm e_1, \pm e_2\}, \text{ where } e_i \text{ is the } i\text{-th basis vector. In (a), dislocation } z_1 \in \Omega \text{ is undergoing cross-slip, switching direction from } g_1^- = e_2 \text{ to } g_1^+ = e_1, \text{ while dislocations } z_2 \text{ and } z_3 \text{ glide normally along directions } g_2 = e_1 \text{ and } g_3 = -e_2, \text{ respectively. In (b) the same motion is represented in } \mathbb{R}^{2N}; \text{ the motion of } Z \text{ changes direction while crossing the surface } A_1, \text{ where the velocity field is multivalued. (Here, } N = 3.\]

Another possibility is that the vector field \(F\) points towards \(A_\ell\) on both sides of \(A_\ell\). In this case, at a point on \(A_\ell\), a motion by \(z_\ell\) in the \(g_\ell^+\) direction will drive the configuration \(Z\) to a region where \(j_\ell\) is most closely aligned with \(g_\ell^-\), but then motion by \(z_\ell\) along \(g_\ell^-\) immediately forces \(Z\) to intersect the surface \(A_\ell\) again. Motion by \(z_\ell\) along \(g_\ell^-\) then pushes \(Z\) into a region where \(j_\ell\) is most closely aligned with \(g_\ell^+\), which forces \(Z\) back to \(A_\ell\). A motion such as this one on a finer and finer scale will appear as motion along the surface \(A_\ell\). Following [12], such a motion is called fine cross-slip. See Figure 2, where the dislocation \(z_1\) is undergoing fine cross-slip. In part (a) it is shown how it follows a curve \(l\) rather than one of the glide directions \(g \in G\). In part (b) the same phenomenon is shown in \(\mathbb{R}^{2N} \ (N = 3)\), where the point \(Z\) hits \(A_1\) and starts moving along it.
The following theorems formalize the behaviors described above and provide an analytical validation of the notions of cross-slip and fine cross-slip introduced in \[12\]. We refer to the discussion preceding Theorem 2.19 for the definitions of \(n(Z)\) and \(V^\pm\) for \(Z \in I_\ell\).

Theorem 2.21 (Cross-Slip). Let \(T > 0\) and let \(Z : [-T, T] \to \mathbb{R}^{2N}\) be a solution to \((2.20)\). Assume that there exist \(t_1 \in (-T, T)\) and \(Z_1 \in I_\ell\), for some \(\ell \in \{1, \ldots, N\}\), such that \(Z(t_1) = Z_1\),

\[
\hat{f}^- (Z_1) \cdot n(Z_1) > 0, \quad \text{and} \quad \hat{f}^+ (Z_1) \cdot n(Z_1) > 0,
\]

where \(f\) is the function defined in \((2.34)\). Then uniqueness holds for \((2.20)\) at the point \((t_1, Z_1)\) and the solution passes from \(V^-\) to \(V^+\). Similarly, if

\[
\hat{f}^- (Z_1) \cdot n(Z_1) < 0 \quad \text{and} \quad \hat{f}^+ (Z_1) \cdot n(Z_1) < 0,
\]

then uniqueness holds for \((2.20)\) at the point \((t_1, Z_1)\) and the solution passes from \(V^+\) to \(V^-\).

Proof. Since \(\hat{f}^\pm\) are \(C^1\) extensions of \(f^\pm := f|_{V^\pm}\), the result follows from Theorem 2.5. \(\square\)

Theorem 2.22 (Fine Cross-Slip). Let \(T > 0\) and let \(Z : [-T, T] \to \mathbb{R}^{2N}\) be a solution to \((2.20)\). Assume that there exist \(t_1 \in (-T, T)\) and \(Z_1 \in I_\ell\), for some \(\ell \in \{1, \ldots, N\}\), such that \(Z(t_1) = Z_1\),

\[
\hat{f}^- (Z_1) \cdot n(Z_1) > 0 \quad \text{and} \quad \hat{f}^+ (Z_1) \cdot n(Z_1) < 0,
\]

where \(f\) is the function defined in \((2.34)\). Then right uniqueness holds for \((2.20)\) at the point \((t_1, Z_1)\) and there exists \(\delta > 0\) such that \(Z\) belongs to \(A_\ell\) and solves the ordinary differential equation for all \(t \in [t_1, t_1 + \delta]\),

\[
\dot{Z} = f^0 (Z) \in \text{co } F(Z), \quad \text{where} \quad f^0 (Z) := \alpha(Z) \hat{f}^+ (Z) + (1 - \alpha(Z)) \hat{f}^- (Z)
\]
and $\alpha(Z) \in (0, 1)$ is defined by

$$
\alpha(Z) := \frac{\hat{f}^-(Z) \cdot n(Z)}{\hat{f}^-(Z) \cdot n(Z) - \hat{f}^+(Z) \cdot n(Z)}.
$$

Proof. The result follows from Corollary 2.8. \hfill \Box

Note that the cross-slip and fine cross-slip trajectories that we have described in Theorems 2.21 and 2.22 satisfy the conditions for right uniqueness in Theorem 2.19. Specifically, if (2.36) or (2.37) holds, then (2.35) holds (i.e., $Z_1 \notin E_{src}$).

3. More on Fine Cross-Slip

In Subsection 2.1 we have discussed uniqueness only in the special case in which f is discontinuous across a $(d - 1)$-dimensional hypersurface. The case when two or more such $(d - 1)$-dimensional hypersurfaces meet is significantly more involved and can lead to non-uniqueness of solutions for Filippov systems (see, e.g., [16]).

In our setting, this situation arises at points in the set E_{int} defined in (2.32). Indeed, in Theorem 2.22 we assumed that Z_1 does not belong to the intersection of two hypersurfaces (see (2.32) and (2.33)). In this section we study fine cross-slip in the case in which Z_1 belongs to E_{int}. For simplicity, we consider only the case in which only two hypersurfaces intersect at a point. See Figure 3.

Assume that there exists $Z_1 \in A_\ell \cap A_k$ for $k \neq \ell$, with $Z_1 \notin A_i$ for $i \neq \ell, k$ and $Z_1 \notin E_{zero} \cup S_i \cup S_k$. Consider the case of fine cross-slip conditions along both A_ℓ and A_k. Specifically, at Z_1, the vectors $j_\ell(Z_1)$ and $j_k(Z_1)$ are well-defined and bisect two maximally dissipative glide directions g_{ℓ}^\pm and g_k^\pm, respectively. By assumption, the other $j_i(Z_1)$ have uniquely defined maximally dissipative glide directions. By Lemma 2.12, the set-valued vector field has the form $\text{co } F(Z_1) = (\text{co } F_1(Z_1), \ldots, \text{co } F_N(Z_1))$, where (see (2.22)),

$$
\text{co } F_i(Z_1) = F_i(Z_1) = \{(j_i(Z_1) \cdot g_i(Z_1))g_i(Z_1)\}
$$

![Figure 3. Simultaneous fine cross-slip.](image)
for $i \neq k, \ell$ and
\[F_i(Z) = \{s_i(j_i(Z_1) \cdot g_i^+(Z_1))g_i^+(Z_1) + (1 - s_i)(j_i(Z_1) \cdot g_i^- (Z_1))g_i^- (Z_1), s_i \in [0, 1]\} \]
for $i = k, \ell$. Additionally, there is a ball $B_h(Z_1) \subset D(F)$ that is separated into two open sets V_{ℓ}^+ by A_ℓ, such that, for $Z \in V_{\ell}^+$, $F_\ell(Z) = \{(j_\ell(Z_1) \cdot g_\ell^+(Z_1))g_\ell^+(Z_1), Z_1\}$ and for $Z \in V_{\ell}^-$, $F_\ell(Z) = \{(j_\ell(Z_1) \cdot g_\ell^-(Z_1))g_\ell^-(Z_1), Z_1\}$. Similarly, $B_h(Z_1)$ is separated into two open sets V_{k}^\pm by A_k where the corresponding equalities hold. Since we are avoiding singular points, let $n_\ell(Z_1)$ and $n_k(Z_1)$ denote the normals to A_ℓ and A_k at Z_1, where $n_i(Z_1)$ points from V_{i}^- to V_{i}^+ for $i = k, \ell$.

Now, at the intersection of two surfaces, B_h is divided into four regions, so there will be four vector fields that will need to satisfy some projection conditions in order for fine cross-slip to occur. For $i \neq k, \ell$, set $f_i(Z) := (j_i(Z) \cdot g_i(Z))g_i(Z)$ for $Z \in B_h(Z_1)$. Set $f_{\ell}^+(Z) := (j_\ell(Z) \cdot g_{\ell}^+(Z))g_{\ell}^+(Z)$ for $Z \in V_{\ell}^+$ and $f_{\ell}^+(Z) := (j_\ell(Z) \cdot g_{\ell}^+(Z))g_{\ell}^+(Z)$ for $Z \in V_{\ell}^-$. By assumption, f_{ℓ}^\pm and f_{ℓ}^\pm can be extended in a C^1 way to $B_h(Z_1)$, where we denote these extensions by \tilde{f}_{ℓ}^\pm and \tilde{f}_{ℓ}^\pm. Define the extended vector fields in $B_h(Z_1)$,
\[
\begin{align*}
\tilde{f}_{\ell}^{(+)}(Z) &= (f_1(Z), \ldots, \hat{f}_{\ell}^+(Z), \ldots, f_N(Z)), \\
\tilde{f}_{\ell}^{(-)}(Z) &= (f_1(Z), \ldots, \hat{f}_{\ell}^-(Z), \ldots, f_N(Z)),
\end{align*}
\]
\[
\begin{align*}
\tilde{f}_{k}^{(+)}(Z) &= (f_1(Z), \ldots, \hat{f}_{k}^+(Z), \ldots, f_N(Z)), \\
\tilde{f}_{k}^{(-)}(Z) &= (f_1(Z), \ldots, \hat{f}_{k}^-(Z), \ldots, f_N(Z)).
\end{align*}
\]
The fine cross-slip conditions are that the surfaces A_k and A_ℓ are attracting at Z_1, so that
\[
\begin{align*}
f^{(+)}(Z_1) \cdot n_k(Z_1) < 0, \\
f^{(+)}(Z_1) \cdot n_\ell(Z_1) < 0, \\
f^{(-)}(Z_1) \cdot n_k(Z_1) > 0, \\
f^{(-)}(Z_1) \cdot n_\ell(Z_1) > 0,
\end{align*}
\]
By taking h smaller, if necessary, we can assume that $Z \notin A_i$ for $i \neq k, \ell$, that $Z \notin \mathcal{E}_{\text{zero}} \cup S_k \cup S_\ell$, and that (3.2a)–(3.2d) continue to hold for all $Z \in B_h(Z_1)$.

We now show that the only possible motion is along the intersection $A_k \cap A_\ell$.

Theorem 3.1. Let $T > 0$ and let $Z : [-T, T] \to \mathbb{R}^{2N}$ be a solution to (2.20). Assume that there exist $t_1 \in [-T, T]$ and Z_1 as above such that $Z(t_1) = Z_1$. Then there exists $\delta > 0$ such that Z is unique in $[t_1, t_1 + \delta]$ and $Z(t)$ belongs to $A_k \cap A_\ell$ for all $t \in [t_1, t_1 + \delta]$.

Proof. Step 1. Since $Z(t_1) = Z_1$, by continuity we can find $t_2 > t_1$ such that $Z(t) \in B_h(Z_1)$ for all $t \in [t_1, t_2]$. We claim that $Z(t)$ belongs to $A_k \cap A_\ell$ for all $t \in [t_1, t_2]$. Indeed, suppose by contradiction that there exists $t_3 \in [t_1, t_2]$ such that Z leaves A_k, that is, $Z(t_3) \in V_{k}^+$ (the case of V_{k}^- is similar, as well as the case of leaving A_ℓ and going into V_{ℓ}^+). Define
\[
\tau_1 := \sup\{s \in [t_1, t_3] : Z(s) \notin V_{k}^+\},
\]
which is the last time Z was in A_k before entering and remaining in V_{k}^+. **Case 1.** Suppose that $Z(\tau_1) \notin A_\ell$. Then $Z(\tau_1)$ belongs to either V_{ℓ}^+ or V_{ℓ}^-. Without loss of generality, we assume that $Z(\tau_1) \in V_{\ell}^+$. Since $Z(\tau_1) \in A_k$ by
definition, and it does not belong to any other \(A_i\), only the \(k\)-th component of the force is double-valued at \(Z(\tau_1)\). Thus, \(Z(\tau_1)\) is a point satisfying the hypotheses of Theorem 2.22 because \(f^{(+,\pm)}(Z(\tau_1)) \cdot n_k(Z(\tau_1)) < 0\). Therefore there is \(\delta > 0\) such that \(Z(t) \in A_k\) for \(t \in [\tau_1, \tau_1 + \delta]\), which contradicts the definition of \(\tau_1\).

Case 2. By Case 1, \(Z(\tau_1) \in A_k\). We claim that
\[
Z(t) \in A_k \quad \text{for all } t \in [\tau_1, t_3].
\]

If (3.3) fails, then there is \(t_4 \in (\tau_1, t_3]\) such that \(Z(t_4) \notin A_k\), and so \(Z(t_4)\) is in \(V_k^+ \cup V_k^-\). Without loss of generality, assume \(Z(t_4) \in V_k^+\), and define
\[
\tau_2 := \sup\{s \in [\tau_1, t_4] : Z(s) \notin V_k^+\}.
\]
which is the last time \(Z\) was in \(A_k\). If \(\tau_2 > \tau_1\), then \(Z(\tau_2) \in A_k\) and \(Z(\tau_2) \notin A_k\) because \(Z(t) \in V_k^+\) on \([\tau_1, t_4]\). Hence \(Z(\tau_2)\) is a point that satisfies the hypotheses of the fine cross-slip theorem because \(f^{(+,\pm)}(Z(\tau_2)) \cdot n(Z(\tau_2)) < 0\), and so there is \(\delta > 0\) such that \(Z(t) \in A_k\) for \(t \in [\tau_2, \tau_2 + \delta]\). This contradicts the definition of \(\tau_2\).

Therefore \(\tau_2 = \tau_1, Z(\tau_2) \in A_k \cap A_k\), and \(Z(t) \in V_k^+ \cap V_k^-\) for \(t \in (\tau_2, t_1]\). We deduce that \(Z\) satisfies \(Z = f^{(+,\pm)}(Z)\) on \((\tau_2, t_3]\), thus
\[
Z(t) = Z(\tau_2) + \int_{\tau_2}^t f^{(+,\pm)}(Z(s)) \, ds, \quad t \in [\tau_2, t_4].
\]

Applying the argument from the proof of Corollary 2.8, we can reach a contradiction as follows. Locally \(A_k\) is given by the graph of a function, so without loss of generality we can write \(A_k \cap B_r(Z(\tau_2)) = \{Z = (\xi, y) \in B_r(Z(\tau_2)) : y = \Phi(\xi)\}\) for a function \(\Phi\) of class \(C^2\). Denote \(Z(\tau_2)\) as \((\xi_0, y_0) = Z(\tau_2)\). Without loss of generality, we can assume that \(\nabla \Phi(\xi_0) = 0\) so \(n_k(Z(\tau_2)) = (0, 1)\) and
\[
V_k^+ \cap B_r(Z(\tau_2)) = \{(\xi, y) \in B_r(Z(\tau_2)) : y > \Phi(\xi)\},
\]
\[
V_k^- \cap B_r(Z(\tau_2)) = \{(\xi, y) \in B_r(Z(\tau_2)) : y < \Phi(\xi)\}.
\]

From (3.2a), which holds in \(B_r(Z)\), we have the same condition as (3.2a) at the point \(Z(\tau_2) \in B_r(Z)\). Set \(h := -f^{(+,\pm)}(Z(\tau_2)) \cdot n(Z(\tau_2)) > 0\), and find a neighborhood \(V\) of \(Z(\tau_2)\) such that \(-f^{(+,\pm)}(Z) \cdot n(Z) > \frac{1}{2} h\) for \(Z \in V\) and \(Z \in V \cap A_k\). From (3.4) we have
\[
Z(t) \cdot n(Z(\tau_2)) = Z(\tau_2) \cdot n(Z(\tau_2)) + \int_{\tau_2}^t f^{(+,\pm)}(Z(s)) \cdot n(Z(\tau_2)) \, ds < Z(\tau_2) \cdot n(Z(\tau_2)) - \frac{t - \tau_2}{2} h.
\]

Using \(n(Z(\tau_2)) = (0, 1)\) and writing \(Z(t) = (\xi(t), y(t))\), we obtain
\[
y(t) < y_0 - \frac{t - \tau_2}{2} h.
\]

But \(\Phi(\xi(t)) = \Phi(\xi(\tau_2)) + 0 + o(t - \tau_2) = \Phi(\xi_0) + o(t - \tau_2) = y_0 + o(t - \tau_2)\). So (3.5) becomes
\[
y(t) < y_0 - \frac{t - \tau_2}{2} h = \Phi(\xi(t)) - \frac{t - \tau_2}{2} h + o(t - \tau_2) < \Phi(\xi(t))
\]
for \(0 < t - \tau_2 < \delta\) for some \(\delta > 0\). This implies that \(Z(t) \in V_k^-\) for \(t \in (\tau_2, \tau_2 + \delta]\), which contradicts the fact that \(Z(t) \in V_k^+\) for \(t \in (\tau_2, t_4]\).
Thus, we have shown that (3.3) holds. Since \(Z(t_3) \in V_k^+ \) for all \(t \in (\tau_1, t_3) \). This, together with (3.3) and Theorem 2.22, implies that

\[
\dot{Z}(t) = f^{(+,0)}(Z(t)) = \alpha(Z(t))f^{(+,+)}(Z(t)) + (1 - \alpha(Z(t)))f^{(+,-)}(Z(t))
\]

for \(t \in (\tau_1, t_3) \), where

\[
\alpha(Z(t)) = \frac{f^{(+,+)}(Z(t)) \cdot n_\ell(Z(t))}{f^{(+,+)}(Z(t)) \cdot n_\ell(Z(t)) - f^{(+,-)}(Z(t)) \cdot n_\ell(Z(t))}.
\]

Using the same argument with \(\Phi \) as above (starting from (3.4)) and the fact that \(f^{(+,0)}(Z(t)) \cdot n_\ell(Z(t)) < 0 \), we conclude that \(Z(t) \in V_k^- \), yielding a contradiction. This shows that \(t_3 \) cannot exist, and, in turn, that \(Z(t) \in A_k \cap A_\ell \) for all \(t \in [t_1, t_2] \).

Step 2. In view of the previous step, we have that \(Z(t) \in A_k \cap A_\ell \) for all \(t \in [t_1, t_2] \).

In turn,

\[
\dot{Z}(t) \cdot n_\ell(Z(t)) = 0 \quad \text{and} \quad \dot{Z}(t) \cdot n_k(Z(t)) = 0
\]

for \(\mathcal{L}^1 \)-a.e. \(t \in [t_1, t_2] \). Moreover, \(\dot{Z}(t) \in coF(Z(t)) \) for \(\mathcal{L}^1 \)-a.e. \(t \in [t_1, t_2] \). Finally, since \(Z(t) \in B_h(Z_1) \) for all \(t \in [t_1, t_2] \), we have that (3.2a)-(3.2d) hold with \(Z(t) \) in place of \(Z_1 \) for all \(t \in [t_1, t_2] \) and \(Z(t) \notin A_i \) for \(i \neq k, \ell \) and \(Z(t) \notin E_{zero} \cup S_r \cup S_k \) for all \(t \in [t_1, t_2] \). Hence, we can apply Lemma 5.4 in the appendix with \(Z(t) \) in place of \(Z_1 \) to conclude that \(\dot{Z}(t) \) is uniquely determined for \(\mathcal{L}^1 \)-a.e. \(t \in [t_1, t_2] \). This concludes the proof. \(\square \)

Remark 3.2. The argument in Step 1 does not rely on the fact that only two surfaces are intersecting. Any number of surfaces would be treated the same way, but with more subcases for showing the motion does not leave the intersection. However, establishing uniqueness would require a different argument from the one in Lemma 5.4.

3.1. Identification of \(A_\ell \) with a curve in \(\Omega \)

Each dislocation point \(z_\ell \) moves in \(\Omega \subset \mathbb{R}^2 \) according to \(z_\ell = (j_\ell(Z) \cdot g_\ell(Z))g_\ell(Z) \), but the dynamics is understood in the larger space \(\Omega^N \subset \mathbb{R}^{2N} \). If \(z_\ell \) is exhibiting fine cross-slip, then \(z_\ell \) moves along a curve that is not a straight line parallel to a glide direction. In this section, we describe the fine cross-slip motion of \(z_\ell \) in \(\Omega \) in terms of the dynamics of the system in \(\Omega^N \). That is, we will examine fine cross-slip for \(z_\ell \), which occurs when the solution curve \(Z(t) \in \Omega^N \) lies inside the set \(A_\ell \), via a projection into \(\Omega \).

The projection \(z_\ell(t) \) of \(Z(t) \) onto its \(\ell \)-th components is the fine cross-slip curve in \(\Omega \), with \(z_\ell(t) = (z_{\ell,1}(t), z_{\ell,2}(t)) \) for \(t \in [t_0, t_1] \).

Recall that \(A_\ell \) is locally given by the zero-level set of the function \(j_\ell \cdot g_0 \). Specifically, if \(Z_0 = (z_{0,1}, \ldots, z_{0,N}) \in A_\ell \), then there exists \(r > 0 \) such that

\[
A_\ell \cap B_r(Z_0) = \{ Z \in \Omega^N : j_\ell(Z) \cdot g_0(Z) = 0 \},
\]

where \(g_0(Z) = g_\ell^+ - g_\ell^- \) is constant in \(B_r(Z_0) \). Additionally, the normal to \(A_\ell \) is given (up to a sign) by

\[
n := \frac{\nabla (j_\ell(Z) \cdot g_0(Z))}{|\nabla (j_\ell(Z) \cdot g_0(Z))|} \in \mathbb{R}^{2N},
\]

which is assumed to be non-zero in \(A_\ell \cap B_r(Z_0) \). We write \(n = (n_1, \ldots, n_N) \), with \(n_i \in \mathbb{R}^2 \), for \(i = 1, \ldots, N \).
Assuming that no other dislocations exhibit fine cross-slip, the fine cross-slip conditions at $Z_0 \in A_\ell$ are (with the appropriate sign for n)

$$n \cdot \left((\hat{1}_1(Z_0) \cdot g_1)g_1, \ldots, (\hat{j}_r(Z_0) \cdot g_r^+)g_r^+, \ldots, (\hat{j}_N(Z_0) \cdot g_N)g_N \right) < 0,$$

$$n \cdot \left((\hat{1}_1(Z_0) \cdot g_1)g_1, \ldots, (\hat{j}_r(Z_0) \cdot g_r^-)g_r^-, \ldots, (\hat{j}_N(Z_0) \cdot g_N)g_N \right) > 0.$$

Note that we dropped the explicit dependence of each g_i on Z because they are constant in $B_r(Z_0)$. Thus, since $(\hat{j}_r(Z_0) \cdot g_r^+) = (\hat{j}_r(Z_0) \cdot g_r^-)$,

$$0 > n \cdot \left(0, \ldots, (\hat{j}_\ell(Z_0) \cdot g_\ell^+)g_\ell^+, \ldots, 0 \right) = (\hat{j}_\ell(Z_0) \cdot g_\ell^+)n_\ell \cdot g_\ell^0.$$

This implies $n_\ell \neq 0 \in \mathbb{R}^2$, i.e., by (3.8), we have

$$\frac{\partial}{\partial z_{\ell,1}} \left(j_\ell(z_1, \ldots, z_N) \cdot g_\ell^0(z_1, \ldots, z_N) \right) \neq 0.$$

(3.9)

Let us write \hat{Z} for points in \mathbb{R}^{2N-1} of the form $\hat{Z} := (z_1, \ldots, z_{\ell-1}, z_{\ell,2}, z_{\ell+1}, \ldots, z_N)$, where the $z_{\ell,1}$ component is omitted.

From (3.7) and (3.9), the Implicit Function Theorem yields $r_1 > 0$, $r_2 \in (0, r)$, and a function $\varphi : B_{r_1}(Z_0) \subset \mathbb{R}^{2N-1} \rightarrow \mathbb{R}$, where $Z_0 := (z_{0,1}, \ldots, z_{0,\ell-1}, z_{0,\ell+1}, \ldots, z_{0,N})$, such that $\varphi(Z_0) = z_{0,\ell,1}$ and

$$A_\ell \cap B_{r_2}(Z_0) = \{ Z \in \Omega^N : z_{\ell,1} = \varphi(\hat{Z}) \}.$$

That is, locally, A_ℓ is the graph of φ. If $Z(t)$ is a solution curve lying in $A_\ell \cap B_{r_2}(Z_0)$ for $t \in [t_0, t_1]$ with $Z(t_0) = Z_0$, then

$$Z(t) = (z_1(t), \ldots, \varphi(\hat{Z}(t)), z_{\ell,2}(t), \ldots, z_N(t)) \in A_\ell$$

for $t \in [t_0, t_1]$. In particular, the projection of $Z(t)$ onto its ℓ-th components gives the fine cross-slip curve

$$z_\ell(t) = (z_{\ell,1}(t), z_{\ell,2}(t)) = (\varphi(\hat{Z}(t)), z_{\ell,2}(t)), \quad t \in [t_0, t_1].$$

(3.10)

Note that $n_\ell(Z(t))$ is not directly related to the fine cross-slip curve given by (3.10) because $n_\ell(Z(t))$ is not orthogonal to $z_\ell(t)$, in general. We have

$$0 = n(Z(t)) \cdot \dot{Z}(t) = \sum_{i=1}^N n_i(Z(t)) \cdot \dot{z}_i(t),$$

so

$$n_\ell(Z(t)) \cdot \dot{z}_\ell(t) = - \sum_{i \neq \ell} n_i(Z(t)) \cdot \dot{z}_i(t),$$

and the sum on the right-hand side need not be zero.

3.2. Numerical Simulations. The simulation of (2.20) may be undertaken using standard numerical ODE integrators, provided sufficient care is taken in resolving the evolution near the “ambiguity surfaces” A_ℓ. A discrete time step leads to a numerical integration that oscillates back and forth across an attracting ambiguity surface in case of fine cross-slip. On the macro-scale, this appears as fine cross-slip since the small oscillations across the surface average out and what remains is motion approximately tangent to A_ℓ. To compute the vector field, one must solve the Neumann problem (1.12) at each time step, so a fast elliptic PDE solver is needed in practice.
An example is shown in Figures 4 and 5, where we have simulated a system of \(N = 12 \) screw dislocations with each Burgers modulus \(b_i = 1 \) for \(i = 1, \ldots, 12 \), and where the domain is the unit disk. The integration is done in \(\Omega^{12} \subset \mathbb{R}^4 \), but the graphics depict the path each \(z_i \) takes in \(\Omega \subset \mathbb{R}^2 \). All but one dislocation exhibit normal glide motions, while the dislocation at the center exhibits fine cross-slip, as is visible in Figure 5. In this case, the solution to the Neumann problem is explicit (cf. (4.3)), so it is not difficult to simulate systems with more dislocations and observe more complicate behavior, such as multiple dislocations simultaneously exhibiting fine cross-slip, corresponding to motion along the intersection of multiple ambiguity surfaces in the full space \(\Omega^N \). The simulation depicted in Figures 4 and 5 was run until a dislocation collided with the boundary. Since all dislocations have positive Burgers moduli, they repel each other, and no collision between dislocations occurs, and the dynamics can be continued until a boundary collision.

Figure 4. The forces are repulsive and the dislocations move mostly along the glide directions \(G = \{ \pm e_1, \pm e_2, \pm \frac{1}{\sqrt{2}} (e_1 + e_2) \} \). All but one (the one at the center) move along a glide direction until one of them hits the boundary. The dislocation in the middle moves along \(-e_1 \) but then exhibits fine cross-slip.

4. Special Cases

In this section we consider some special domains \(\Omega \) for which the Peach-Köhler force can be explicitly determined (i.e. the solution to the Neumann problem (1.12) is known), specifically the unit disk \(B_1 \), the half-plane \(\mathbb{R}^2_+ \), and the plane \(\mathbb{R}^2 \). The last two cases do not technically fit in our previous discussion, because \(\Omega \) is unbounded. However, the Neumann problem is well-defined for these settings and we are able to discuss the dislocation dynamics.

In what follows we will use the fact that the boundary-response strains generated from each dislocation are “decoupled” in the following sense. Define \(u_0^i \) as

\[
u_0^i(x; z_i) := \int_{\partial \Omega} G(x, y) \text{Lk}_i(y; z_i) \cdot n(y) \, ds(y),\]

where \(G(x, y) \) is the Green’s function for the domain \(\Omega \), and \(\text{Lk}_i(y; z_i) \) is the link function from \(i \) to \(y \).
where G is the Green's function for the Neumann problem. Then $u_i^e(\cdot; z_i)$ solves (1.12) with only one dislocation, i.e.,

$$
\begin{cases}
\text{div}_x \left(L \nabla_x u_i^e(x; z_i) \right) = 0, & x \in \Omega, \\
L \left(\nabla_x u_i^e(x; z_i) + k_i(x; z_i) \right) \cdot n(x) = 0, & x \in \partial \Omega.
\end{cases}
$$

Thus the boundary-response strain at x due to a dislocation at z_i with Burgers modulus b_i is given by $\nabla_x u_i^e(x; z_i)$, and the total boundary-response strain at x due to the system \mathcal{Z} is $\nabla_x u_0(x; z_1, \ldots, z_N) = \sum_{i=1}^N \nabla_x u_i^e(x; z_i)$.

If we consider two dislocations z_1 and z_2 with Burgers moduli b_1 and b_2, respectively, that collide in Ω, then by (1.9) the boundary data in (1.12) satisfies

$$
L(k_1(x; z_1) + k_2(x; z_2)) \cdot n(x) \to L \left(k_1(x; z_1) + \frac{b_2}{b_1} k_1(x; z_1) \right) \cdot n(x), \quad \text{as } z_2 \to z_1.
$$

Notice that $k_1(\cdot; z_1) + (b_2/b_1)k_1(\cdot; z_1)$ is the singular strain generated by a single dislocation located at z_1 with Burgers modulus $b_1 + b_2$. The same argument applies to an arbitrary number N of dislocations by linearity of (1.12). Thus, unlike the singular strain which becomes infinite if any two dislocations collide in Ω (see (1.9)), the boundary-response strain is oblivious to collisions between dislocations. Although the boundary-response strain is well-defined when dislocations collide with each other, it is not well-defined if a dislocation collides with $\partial \Omega$.

4.1. The Unit Disk. Consider the case $\Omega = B_1 = \{ x \in \mathbb{R}^2 : |x| < 1 \}$ and $\lambda = \mu = 1$, so that $L = I$. For $z \in B_1$ we define $\overline{z} \in B_1^c$ to be the reflection of z across the unit circle ∂B_1,

$$
\overline{z} := \begin{cases}
\frac{z}{|z|^2} & \text{if } z \in B_1 \setminus \{ 0 \}, \\
\infty & \text{if } z = 0.
\end{cases}
$$

For fixed $z_i \in B_1$, it can be seen that the function

$$
u_i^e(x; z_i) := \begin{cases}
\frac{b_i}{\pi} \arctan \left(\frac{x_2 - \overline{z}_{i,2}}{x_1 - \overline{z}_{i,1} + |x - \overline{z}_i|} \right), & \text{if } z \neq 0, \\
0, & \text{if } z = 0
\end{cases}
$$

Figure 5. These plots are magnified views of the motion of z_1. The motion begins at the dot on the right and ends at the square on the left. The motion abruptly begins to fine cross-slip and eventually moves back to a gliding motion as the fine cross-slip motion becomes aligned with $-e_1$.

\[\text{Figure 5. These plots are magnified views of the motion of } z_1. \text{ The motion begins at the dot on the right and ends at the square on the left. The motion abruptly begins to fine cross-slip and eventually moves back to a gliding motion as the fine cross-slip motion becomes aligned with } -e_1. \]
satisfies
\[
\begin{cases}
\Delta x u^i_0(x; z_i) = 0, & x \in B_1, \\
\nabla x u^i_0(x; z_i) \cdot n(x) = -k_i(x; z_i) \cdot n(x), & x \in \partial B_1,
\end{cases}
\]
and
\[
\nabla x u^i_0(x; z_i) = -k_i(x; \bar{z}_i) \quad \text{for all } x \in B_1. \tag{4.2}
\]
Note that \(\nabla u^i_0 \) is singular only at the point \(x = \bar{z}_i \notin B_1 \).

As discussed at the beginning of Section 4, for a system of dislocations given by \(Z \) and \(B \), the solution to the Neumann problem (1.12) is given by
\[
u_0(x; z_1, \ldots, z_N) = \sum_{i=1}^N u^i_0(x; z_i)
\]
with \(u^i_0 \) as in (4.1). Thus, combining (2.9) and (4.2), we have
\[
\tilde{j}_i(z_1, \ldots, z_N) = b_i J \left(\sum_{i \neq \ell} k_i(z_\ell; z_i) - \sum_{i=1}^N k_i(z_\ell; z_i) \right). \tag{4.3}
\]
Formula (4.3) greatly simplifies numerical simulations of the dislocation dynamics. Without an explicit formula, one must solve the Neumann problem at each timestep.

From (4.3), we can see that the boundary of \(B_1 \) attracts dislocations. If \(N = 1 \) and \(z_1 \in B_1 \setminus \{0\} \), then
\[
\tilde{j}_1(z_1) = -b_1 J k_1(z_1; z_1) = -\frac{b_1^2}{2\pi} \frac{z_1 - z_1}{|z_1 - z_1|^2} = -\frac{b_1^2}{2\pi} \frac{z_1}{1 - |z_1|^2}
\]
since \(z - z = z(1 - |z|^{-2}) \). Thus, the force is directed radially outward (toward the nearest boundary point to \(z_1 \)) and diverges as \(z_1 \to \partial B_1 \). If \(z_1 = 0 \) then \(\tilde{j}_1 = 0 \) and \(z_1 \) will not move. Otherwise, a single dislocation in \(B_1 \) will be pulled to \(\partial B_1 \), and will collide with \(\partial B_1 \) in a finite time (assuming the glide directions span \(\mathbb{R}^2 \)). If \(N > 1 \), then the other dislocations produce boundary forces that will pull on \(z_\ell \) in the directions \(-b_\ell b_i(z_\ell - z_i)\) for each \(i \).

The sets \(\mathcal{A}_\ell \) as given in (2.24) are smooth, because they are locally given by \(\tilde{j}_\ell \cdot g_0 = 0 \) for a fixed vector \(g_0 \) (cf. equation (2.28)), and by (4.3), \(\tilde{j}_\ell \cdot g_0 \) is a rational function with singularities only at collision points.

4.2. The Half-Plane. Although the theory developed in this paper only applies to bounded domains, the equation for the Peach-Köhler force (1.8) is still well-defined, provided there is a weak solution to the Neumann problem (1.12). For the special cases of the half-plane and the plane we present an explicit expression for the Peach-Köhler force without resorting to the renormalized energy.

Let \(\Omega = \mathbb{R}^2_+ := \{x \in \mathbb{R}^2 : x_2 > 0\} \) and let \(\lambda = \mu = 1 \). The solution to (1.12) is given in terms of the inverse tangent, using a reflected point across \(\partial \mathbb{R}^2_+ = \{x_2 = 0\} \).

For all \(z = (z_1, z_2) \in \mathbb{R}^2 \) define \(\tilde{z} := (z_1, -z_2) \). Then for \(z_i \in \mathbb{R}^2_+ \),
\[
u^i_0(x; z_i) := -\frac{b_i}{\pi} \arctan \left(\frac{x_2 - \tilde{z}_{i,2}}{x_1 - \tilde{z}_{i,1} + |x - \tilde{z}_i|^2} \right) \tag{4.4}
\]
satisfies
\[
\begin{cases}
\Delta x u^i_0(x; z_i) = 0, & x \in \mathbb{R}^2_+ \\
\nabla x u^i_0(x; z_i) \cdot n(x) = -k_i(x; z_i) \cdot n(x), & x \in \partial \mathbb{R}^2_+,
\end{cases}
\]
and
\[
\nabla x u^i_0(x; z_i) = -k_i(x; \tilde{z}_i) \quad \text{for all } x \in \mathbb{R}^2_+.
\]
Again, we have \(u_0(x; z_1, \ldots, z_N) = \sum_{i=1}^N u_i^0(x; z_i) \) with \(u_i^0 \) as in (4.4), and the Peach-Köhler force is

\[
j_\ell(z_1, \ldots, z_N) = b_\ell J \left(\sum_{i \neq \ell} k_i(z_\ell; z_i) - \sum_{i=1}^N k_i(z_\ell; z_i) \right). \tag{4.5}\]

From (4.5) it is again not difficult to see that a single dislocation \(z_1 \) in \(\mathbb{R}_+^2 \) with Burgers modulus \(b_1 \) is attracted to \(\partial \mathbb{R}_+^2 \). As in the case of the disk, the ambiguity set \(A \) is smooth except at the intersections of the \(A_\ell \).

4.3. The Plane. The case \(\Omega = \mathbb{R}^2 \) and \(\lambda = \mu = 1 \) is the simplest case. There is no boundary so \(u_0 \equiv 0 \) and, by (1.8), the Peach-Köhler force is then

\[
j_\ell(z_1, \ldots, z_N) = b_\ell J \sum_{i \neq \ell} k_i(z_\ell; z_i). \tag{4.6}\]

Even though the renormalized energy has not been defined for unbounded domains, in the case of the plane we can formally write \(j_\ell = -\nabla z_\ell U \), where, up to an additive constant,

\[
U(z_1, \ldots, z_N) = -\sum_{i=1}^{N-1} \sum_{j=i+1}^N \frac{b_i b_j}{2\pi} \log |\Lambda(z_i - z_j)|,
\]

with \(A \) defined in (1.10).

In general, it can be difficult to exhibit an example that shows analytically fine cross-slip (though it is regularly observed in numerical simulations). However, in the case \(\Omega = \mathbb{R}^2 \), this can be done with two dislocations as follows. Suppose we have a system of two dislocations \(Z = (z, w) \in \mathbb{R}^4 \) with Burgers moduli \(b_1 = -b_2 =: b > 0 \), respectively. Under these assumptions, (4.6) reduces to

\[
j_1(z, w) = \frac{b^2}{2\pi} \frac{z - w}{|z - w|^2} = -j_2(z, w). \tag{4.7}\]

Assume that the glide directions are along the lines \(x_2 = \pm x_1 \),

\[
G = \{ \pm g_1, \pm g_2 \}, \quad g_1 := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad g_2 := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}. \tag{4.8}\]

There are two cases of initial conditions \(Z_0 = (z_0, w_0) \) with \(z_0 = (z_{0,1}, z_{0,2}), w_0 = (w_{0,1}, w_{0,2}) \) to consider: either \(z_0 \) and \(w_0 \) are aligned along a vertical or horizontal line, or they are not. That is, either \(z_{0,1} = w_{0,1} \) or \(z_{0,2} = w_{0,2} \) (but not both), or \(z_{0,i} \neq w_{0,i} \) for \(i = 1, 2 \).

We begin by considering the case \(z_{0,2} = w_{0,2} \). Let \(y := z_{0,2} = w_{0,2} \), and without loss of generality take \(w_{0,1} > z_{0,1} \). From (4.7) we have

\[
j_1(Z_0) = j_1(z_{0,1}, y, w_{0,1}, y) = \frac{b^2}{2\pi} \frac{1}{w_{0,1} - z_{0,1}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = -j_2(Z_0). \tag{4.9}\]

Since \(w_{0,1} - z_{0,1} > 0 \), we see that \(j_1(Z_0) \) is aligned with \((1, 0) \) and \(j_2(Z_0) \) is aligned with \((-1, 0) \). Thus, the maximally dissipative glide directions for \(z \) are \(g_1 \) and \(g_2 \) (see (4.8)) and the maximally dissipative glide directions for \(w \) are \(-g_1 \) and \(-g_2 \).

Define \(g_1^0 := g_1 - g_2 = (0, \sqrt{2}) \) and \(g_2^0 := -g_1 + g_2 = -g_1^0 \), so that locally, near \(Z_0 \), the ambiguity surfaces are \(A_1 \cap B_r(Z_0) = \{ Z : j_1(Z) \cdot g_1^0 = 0 \} \), \(A_2 \cap B_r(Z_0) = \{ Z : j_1(Z) \cdot g_2^0 = 0 \} \).
\{Z : j_2(Z) \cdot g_2^0 = 0\} for some small \(r > 0\). From (4.7) we see that \(j_1(Z) \cdot g_1^0 = 0\) if and only if \(z_2 = w_2\), and the same holds for \(j_2(Z) \cdot g_2^0 = 0\), so that

\[A_1 \cap B_r(Z_0) = A_2 \cap B_r(Z_0) = \{Z = (z, w) \in B_r(Z_0) : z_2 = w_2\}. \]

This is a degenerate situation, since the ambiguity surfaces \(A_1\) and \(A_2\) coincide locally, and instead of having four vector fields near the intersection, we have two vector fields. That is, the fields \(\mathbf{f}^{(+,+)}\) and \(\mathbf{f}^{(-,-)}\) (see (3.1)) are defined on either side of the surface \(A_1\), but since \(A_1 = A_2\), there are no regions where the fields \(\mathbf{f}^{(-,+)}\) or \(\mathbf{f}^{(+,-)}\) are defined. We choose a sign for the normal to \(A_1\) and \(A_2\) at \(Z_0\) and set

\[n := \frac{1}{\sqrt{2}}(0, 1, 0, -1). \] (4.10)

Recall the convention that \(A_1\) (and \(A_2\)) divides \(B_r(Z_0)\) into two regions, \(V^\pm\) and \(n\) points from \(V^-\) to \(V^+\). A point in \(V^+\) is of the form \(Z_0 + \varepsilon n = (z_{0,1}, y + \varepsilon/\sqrt{2}, w_{0,1}, y - \varepsilon/\sqrt{2})\), and from (4.7)

\[j_1(Z_0 + \varepsilon n) = \frac{b^2}{2\pi} \left(\frac{w_{0,1} - z_{0,1}}{(z_{0,1} - w_{0,1})^2 + 2\varepsilon^2} \right) = -j_2(Z_0 + \varepsilon n), \]

so \(g_2\) is the maximally dissipative glide direction for \(Z\), and \(-g_2\) is the maximally dissipative glide direction for \(w\) if \(Z \in V^+\). Similarly, a point in \(V^-\) is of the form \(Z_0 - \varepsilon n = (z_{0,1}, y - \varepsilon/\sqrt{2}, w_{0,1}, y + \varepsilon/\sqrt{2})\), and the maximally dissipative glide directions for \(Z\) and \(w\) in this case are \(g_1\) and \(-g_1\), respectively. Thus, we have for \(Z \in B_r(Z_0)\),

\[\mathbf{f}^{(+,+)}(Z) := (j_1(Z) \cdot g_2)g_2 \cdot (j_2(Z) \cdot (-g_2))(-g_2), \]

\[\mathbf{f}^{(-,-)}(Z) := (j_1(Z) \cdot g_1)g_1 \cdot (j_2(Z) \cdot (-g_1))(-g_1). \]

Since \(j_1(Z) = -j_2(Z)\) we have

\[\mathbf{f}^{(+,+)}(Z) := (j_1(Z) \cdot g_2)g_2 \cdot (-g_2), \quad \mathbf{f}^{(-,-)}(Z) := (j_1(Z) \cdot g_1)(g_1, -g_1). \] (4.11)

From (4.8) and (4.9) we have \(j_1(Z_0) \cdot g_1 = j_1(Z_0) \cdot g_2 = \frac{b^2}{2\sqrt{2}\pi}(w_{0,1} - z_{0,1})^{-1} > 0\), and from (4.8) and (4.10) we have \(n \cdot (g_2, -g_2) = -1\) and \(n \cdot (g_1, -g_1) = 1\). Thus,

\[n \cdot \mathbf{f}^{(+,+)}(Z_0) = -\frac{b^2}{2\sqrt{2}\pi(w_{0,1} - z_{0,1})} < 0, \quad n \cdot \mathbf{f}^{(-,-)}(Z_0) = \frac{b^2}{2\sqrt{2}\pi(w_{0,1} - z_{0,1})} > 0, \]

so the fine cross-slip conditions (3.2) are satisfied (there are no conditions for \(\mathbf{f}^{(+,-)}\) or \(\mathbf{f}^{(-,+)}\) since locally \(A_1 = A_2\)). By (3.6), \(\dot{Z}\) must be a convex combination of \(\mathbf{f}^{(+,+)}\) and \(\mathbf{f}^{(-,-)}\), \(\dot{Z} = \alpha \mathbf{f}^{(+,+)}(Z) + (1 - \alpha) \mathbf{f}^{(-,-)}(Z)\), and the trajectory \(Z(t) \in A_1 = A_2\) for some time interval \([0, T]\). Therefore, \(Z(t) = (z(t), w(t)) = (z_1(t), z_2(t), w_1(t), w_2(t))\) and \(z_2(t) = w_2(t)\) for \(t \in [0, T]\). From (4.11) and the fact that \(j_1(Z) \cdot g_1 = j_1(Z) \cdot g_2\) whenever \(z_2 = w_2\), we have

\[\dot{Z} = \alpha ((j_1(Z) \cdot g_2)(g_2, -g_2) + (1 - \alpha)(j_1(Z) \cdot g_1)(g_1, -g_1)) \]

\[= \frac{b^2}{4\pi(w_1 - z_1)} (1, 1 - 2\alpha, -1, 2\alpha - 1). \]

The condition \(n \cdot \dot{Z} = 0\) yields \(\alpha = \frac{1}{2}\), so the equations of motion (3.6) are

\[\ddot{Z} = (\dot{z}_1, \dot{z}_2, \dot{w}_1, \dot{w}_2) = \frac{1}{2} \left(\mathbf{f}^{(+,+)}(Z) + \mathbf{f}^{(-,-)}(Z) \right) = \frac{b^2}{4\pi(w_1 - z_1)} (1, 0, -1, 0). \]
In particular, $\dot{z}_2 = 0$, $\dot{w}_2 = 0$, and $z_2(0) = y = w_2(0)$, so $z_2(t) = y = w_2(t)$ for $t \in [0, T]$. The equations for z_1 and w_1 are easily solved with

$$z_1(t) = -\frac{1}{2} \left((w_{0,1} - z_{0,1})^2 - \frac{b^2}{\pi} t \right) + \frac{1}{2} (z_{0,1} + w_{0,1})$$

$$w_1(t) = \frac{1}{2} \left((w_{0,1} - z_{0,1})^2 - \frac{b^2}{\pi} t \right) + \frac{1}{2} (z_{0,1} + w_{0,1}).$$

This implies that the trajectory $Z(t)$ moves on $\mathcal{A}_1 = \mathcal{A}_2$ up to the maximal time $T = \pi^2 (w_{0,1} - z_{0,1})^2$, and $z_1(t)$ increases from $z_{0,1}$ while $w_1(t)$ decreases from $w_{0,1}$, with the two meeting at $z_1(T) = w_1(T) = \frac{1}{2} (z_{0,1} + w_{0,1})$. At this collision, the dynamics are no longer well-defined.

If the initial condition has z_0 and w_0 vertically aligned, then the same analysis applies, but the situation is rotated.

If z_0 and w_0 are not aligned vertically or horizontally, then a regular glide motion occurs until either $z_1 = w_1$ or $z_2 = w_2$, and then the above analysis applies. To see this, consider $z_0 = (z_{0,1}, z_{0,2})$ and $w_0 = (w_{0,1}, w_{0,2})$, and without loss of generality, assume that $w_{0,1} > z_{0,1}$ and $w_{0,2} > z_{0,2}$ (the other cases are similar). In this case

$$j_1(z_0) = \frac{b^2}{2\pi |z_0 - w_0|^2} \left(\frac{w_{0,1} - z_{0,1}}{w_{0,2} - z_{0,2}} \right) = -j_2(z_0).$$

Since $w_{0,1} - z_{0,1} > 0$ and $w_{0,2} - z_{0,2} > 0$, the maximally dissipative glide directions for j_1 and j_2 are g_1 and $-g_1$, respectively. Thus, z glides in the g_1 direction, so that z_1 and z_2 increase from $z_{0,1}$ and $z_{0,2}$, while w glides in the $-g_1$ direction, so w_1 and w_2 decrease from $w_{0,1}$ and $w_{0,2}$. At some time t_1 we must obtain either $z_1(t_1) = w_1(t_1)$ or $z_2(t_1) = w_2(t_1)$. If only one of these equalities holds, we are in the situations described above and fine cross-slip occurs. If both of these equalities hold, then z and w have collided and the dynamics is no longer defined.

Remark 4.1 (Mirror Dislocations). A direct inspection of equations (4.3) and (4.5) shows that the force on z_i in $\Omega = B_1$ and $\Omega = \mathbb{R}_+^2$ is the same as the force on z_i in \mathbb{R}^2 if one adds N dislocations with opposite Burgers moduli at the points \bar{z}_i in the case $\Omega = B_1$, and at \bar{z}_i in the case $\Omega = \mathbb{R}_+^2$, for $i = 1, \ldots, N$.

5. **Appendix**

We collect some technical results that are needed in the proofs from Section 2.

5.1. **Proof of Lemma 2.12.**

Proof of Lemma 2.12. Let $Z \in \mathbb{R}^{2N}$ be fixed. For simplicity, in this proof we drop the explicit dependence on Z. By (2.15) we can write $F_t = \{p_t, q_t\}$, with
The case $N = 1$ is trivial since $F^{(1)}(Z) = \{p_1, q_1\}$ and any $V^{(1)} \in \hat{F}^{(1)}(Z)$ is of the form $V^{(1)} = s_1p_1 + (1 - s_1)q_1 \in co F^{(1)}(Z)$. Now assume that $F^{(N-1)}(Z) \subseteq co F^{(N-1)}(Z)$ for some N. Let $V^{(N)} \in \hat{F}^{(N)}(Z)$, so

$$
V^{(N)} = \begin{pmatrix}
 s_1p_1 + (1 - s_1)q_1 \\
 \vdots \\
 s_Np_N + (1 - s_N)q_N
\end{pmatrix} = \begin{pmatrix}
 V^{(N-1)}
\end{pmatrix},
$$

for $V^{(N-1)} \in \hat{F}^{(N-1)}(Z)$. By the induction hypothesis, $V^{(N-1)} \in co F^{(N-1)}(Z)$, so there exist $\{\alpha_i\}_{i=1}^{2^{N-1}}$ and $V_i^{(N-1)} \in F^{(N-1)}(Z)$ such that $\alpha_i \in [0, 1]$, $\sum_{i=1}^{2^{N-1}} \alpha_i = 1$ and

$$
V^{(N-1)} = \begin{pmatrix}
 s_1p_1 + (1 - s_1)q_1 \\
 \vdots \\
 s_{N-1}p_{N-1} + (1 - s_{N-1})q_{N-1}
\end{pmatrix} = \sum_{i=1}^{2^{N-1}} \alpha_i V_i^{(N-1)}.
$$

We define $V_i^{(N)} \in F^{(N)}(Z)$ for $i = 1, \ldots, 2^{N-1}$ as

$$
V_i^{(N)} := \begin{pmatrix}
 V_i^{(N-1)} \\
 p_N
\end{pmatrix},
V_{i+2^{N-1}}^{(N)} := \begin{pmatrix}
 V_i^{(N-1)} \\
 q_N
\end{pmatrix} \text{ for } i = 1, \ldots, 2^{N-1},
$$
and we define the coefficients \(\beta_i \in [0,1] \) for \(i = 1, \ldots, 2^N \) as
\[
\beta_i := s_N \alpha_i, \quad \beta_{i+2^{N-1}} := (1-s_N) \alpha_i \quad \text{for } i = 1, \ldots, 2^{N-1}.
\]

Hence, \(\sum_{i=1}^{2^N} \beta_i = 1 \) and
\[
V^{(N)}(F) = \begin{pmatrix} V^{(N-1)}_N \alpha_i \hat{V}^{(N-1)}_i (s_Np_N + (1-s_N)q_N) \\
\sum_{i=1}^{2^{N-1}} \alpha_i \hat{V}^{(N-1)}_i (s_Np_N + (1-s_N)q_N) \end{pmatrix}
\]
\[
= \begin{pmatrix} \sum_{i=1}^{2^{N-1}} s_N \alpha_i \hat{V}^{(N-1)}_i (s_Np_N + (1-s_N)q_N) \\
\sum_{i=1}^{2^{N-1}} \alpha_i \hat{V}^{(N-1)}_i (s_Np_N + (1-s_N)q_N) \end{pmatrix}
\]
\[
= \sum_{i=1}^{2^{N-1}} s_N \alpha_i \hat{V}^{(N-1)}_i + \sum_{i=1}^{2^{N-1}} \alpha_i \hat{V}^{(N-1)}_i = \sum_{i=1}^{2N} \beta_i \hat{V}^{(N)} = \sum_{i=1}^{2N} \beta_i \hat{V}^{(N)} = \text{co } F^{(N)}(Z).
\]

5.2. Lemmas on the Singular Set.

Lemma 5.1. The set \(D(F) \), as defined in (2.19), is open and connected.

Proof. From (2.19) and (2.18), it is clear that \(D(F) \) is open. We will now show that \(D(F) \) is path connected. Let \(w, z_1, \ldots, z_N \in \Omega \) be distinct points, and let \(Z, \hat{Z} \in D(F) \) be given by \(Z = (z_1, \ldots, z_N) \) and \(\hat{Z} = (z_1, \ldots, z_{\ell-1}, w, z_{\ell+1}, \ldots, z_N) \). We construct a continuous path \(\gamma : [0,1] \to D(F) \) with \(\gamma(0) = Z \) and \(\gamma(1) = \hat{Z} \) as follows.

Note that \(\Omega \setminus \{z_1, \ldots, z_{\ell-1}, z_{\ell+1}, \ldots, z_N\} \) is path connected. Thus there is a path \(\gamma_\ell : [0,1] \to \Omega \setminus \{z_1, \ldots, z_{\ell-1}, z_{\ell+1}, \ldots, z_N\} \) with \(\gamma_\ell(0) = z_\ell \) and \(\gamma_\ell(1) = w \). Then setting \(\gamma(t) = (z_1, \ldots, z_{\ell-1}, \gamma(t), z_{\ell+1}, \ldots, z_N) \) for each \(t \in [0,1] \) gives a path in \(D(F) \) from \(Z \) to \(\hat{Z} \).

We can now connect any \(Z = (z_1, \ldots, z_N) \in D(F) \) to any other \(W = (w_1, \ldots, w_N) \in D(F) \) by first moving \(z_1 \) to \(w_1 \) as above, then \(z_2 \) to \(w_2 \), and so on, until all the \(z_i \) are moved to \(w_i \), producing a path from \(Z \) to \(W \). □

To prove the following lemma we will use the fact that the renormalized energy (see (1.6)) diverges logarithmically with the relative distance between the dislocations, that is,
\[
U(z_1, \ldots, z_N) = -\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{\mu \lambda b_i b_j}{4\pi} \log |\Delta(z_i - z_j)| + O(1)
\]
am \(|z_i - z_j| \to 0 \). We refer to [7] for a proof.

Lemma 5.2. Fix \(\ell \in \{1, \ldots, N\} \) and let \(e \in \mathbb{R}^2 \setminus \{0\} \) be fixed. Then the set \(V = \{ Z \in D(F) : j_\ell(Z) \cdot e = 0 \} \) has empty interior.

Proof. The set \(V \) is closed because \(j_\ell \) is continuous. Suppose there is a ball \(B \subset V \). From Lemma 2.17, we have that \(j_\ell(Z) \cdot e \) is analytic in \(B \) and is constant, therefore \(j_\ell(Z) \cdot e \) is constant in the largest connected component of \(D(F) \) containing \(B \). Hence, by Lemma 5.1, \(j_\ell(Z) \cdot e = 0 \) in \(D(F) \). From (1.7), we have that
\[
\nabla_{z_\ell} U(Z) \cdot e = 0 \quad \text{in } D(F),
\]

(5.2)
so U is constant when z_ℓ varies along the direction e.

Consider a fixed $Z^* = (z_1, z_2, \ldots, z_N) \in D(F)$. Let $h > 0$, and for $\delta \in (0,h]$ define $z^\delta_\ell := z_\ell + \delta e$. We assume that h_0 small enough so that $z^\delta_\ell \in \Omega \setminus \{z_1, \ldots, z_N\}$ for $\delta \in (0,h_0]$. Fix a $k \neq \ell$ and $h \in (0,h_0)$, and let Z^h be the point in $D(F)$ obtained by replacing z_k in Z^* with z^h_k, i.e.,

$$Z^h := \{z_1, \ldots, z_\ell, \ldots, z_{k-1}, z^h_k, z_{k+1}, \ldots, z_N\}.$$

Letting $\delta_n = \left(1 - \frac{1}{n}\right) h$, we construct the sequence $\{Z_n\} \subset D(F)$ given by

$$Z_n := \{z_1, \ldots, z_\ell + \delta_n e, \ldots, z_{k-1}, z^h_k, z_{k+1}, \ldots, z_N\}.$$

We have $Z_1 = Z^h$, and

$$Z_n \to Z_\infty := \{z_1, \ldots, z^h_\ell, \ldots, z_{k-1}, z^h_k, z_{k+1}, \ldots, z_N\} \quad \text{as } n \to \infty.$$

Note that $Z_\infty \notin D(F)$ because z_ℓ and z_k are colliding as $n \to \infty$. In particular, by (5.1), $|U(Z_n)| \to \infty$ as $n \to \infty$. On the other hand, in the sequence $\{Z_n\}$, only the ℓ-th dislocation is moving, and it is moving along the direction e, so from (5.2), $U(Z_n)$ remains constant for all n. We have reached a contradiction and we conclude that V does not contain any ball.

\begin{lemma}
The set \tilde{M}_f^∞, as defined in (2.31), is empty.
\end{lemma}

\begin{proof}
Without loss of generality, let $\ell = 1$. Recall that

$$\tilde{M}_f^\infty = \{Z : j_\alpha(Z) \cdot g_0 = 0, \, \partial^\alpha (j_1(Z) \cdot g_0) = 0 \text{ for all } \alpha \in N_1\},$$

with N_1 defined in (2.30). Suppose that $\tilde{M}_f^\infty \neq \emptyset$ and $\tilde{Z} = (\tilde{z}_1, \ldots, \tilde{z}_N) \in \tilde{M}_f^\infty$. Since $j_1 : g_0$ is analytic and $\tilde{Z} \in \tilde{M}_f^\infty$, we have that $j_1(Z) \cdot g_0 = j_1(Z) \cdot g_0$ for $Z \in \{\tilde{z}_1\} \times V$, where V is open in \mathbb{R}^{2N-2}. Take V to be the largest connected component of $D(F)$ with $z_1 = \tilde{z}_1$, which, by the same argument as Lemma 5.1, can be written $\{\tilde{z}_1\} \times V = \{Z \in D(F) : z_1 = \tilde{z}_1\}$. We cannot follow the energy approach of Lemma 5.2, because that would require moving z_1, which is fixed. Instead, let $0 < \varepsilon_0 \ll 1$ and construct a sequence $\{Z_n\} \subset V_0$, where

$$V_0 := \left\{Z \in V : \min_{i \in \{1, \ldots, N\}} \text{dist}(z_i, \partial \Omega) > \varepsilon_0 \right\},$$

(ε_0 is only required to assure we do not have boundary collisions). To be precise, choose $z_3, \ldots, z_N \in \Omega$ pairwise distinct and such that $z_k \neq \tilde{z}_1$ and dist$(z_k, \partial \Omega) > \varepsilon_0$ for every $k = 3, \ldots, N$. Therefore, for $n \geq 1$ and $\delta_0 > 0$ sufficiently small, $Z_n := (\tilde{z}_1, \tilde{z}_1 + \delta_n g_0, z_3, \ldots, z_N)$ belongs to V_0, where where $\delta_n = \delta_0/n$. Then $j_1(Z_n) \cdot g_0 = j_1(Z) \cdot g_0$ by construction, but $Z_\infty \notin D(F)$, where $Z_\infty = \lim_{n \to \infty} Z_n$, because the first and second dislocations have collided.

For each n, all the components of Z_n are a bounded distance from $\partial \Omega$. Thus, by (1.9), (1.12), and standard elliptic estimates, there exists $C > 0$ such that $|\nabla u(\tilde{z}_1; Z_n)| \leq C$ for all n. For each n the singular strains $|k_i(\tilde{z}_1; z_i)|$ are bounded for $i \geq 3$. However, $|k_3(\tilde{z}_1; z_3 + \delta_n g_0)| \geq c/\delta_n \to \infty$ as $n \to \infty$, for some $c > 0$. Thus, we see from (1.9) and (1.8) that for large n, the force $j_1(Z_n)$ will be large in magnitude and aligned closely with $b_1 b_2 (\tilde{z}_1 - (\tilde{z}_1 + \delta_n g_0))$ (i.e., $j_1(Z_n)$ will be nearly parallel or anti-parallel to g_0). Therefore, $j_1(Z) \cdot g_0 = j_1(Z_n) \cdot g_0 \geq c_1 |j_1(Z_n)| \cdot |g_0| \to \infty$ as $n \to \infty$, for some $c_1 > 0$, which contradicts the fact that $j_1(Z) \cdot g_0 = j_1(Z) \cdot g_0$. We conclude that $\tilde{M}_f^\infty = \emptyset$.

\end{proof}
The following lemma was used in the proof of Theorem 3.1.

Lemma 5.4. Let $Z_1 \in A_k \cap A_{\ell}$ for $k \neq \ell$, but $Z_1 \notin A_i$ for $i \neq k, \ell$. Also, assume that $Z_1 \notin E_{\text{zero}} \cup S_i \cup S_k$ and that (3.2a)-(3.2d) hold. Then there is at most one $Z \in \text{co} F(Z_1)$ such that

$$n_k(Z_1) \cdot Z = 0 \quad \text{and} \quad n_\ell(Z_1) \cdot Z = 0,$$

where n_k and n_ℓ are normal vectors for A_k and A_ℓ, respectively.

Proof. Without loss of generality, assume that $k = 1$ and $\ell = 2$. Then (3.1) become

$$f^{(+,+)}(Z_1) = (\hat{f}^+_1(Z_1), \hat{f}^+_2(Z_1), f_3(Z_1), \ldots, f_N(Z_1)),$$

$$f^{(+,-)}(Z_1) = (\hat{f}^+_1(Z_1), \hat{f}^-_2(Z_1), f_3(Z_1), \ldots, f_N(Z_1)),$$

$$f^{(-,+)}(Z_1) = (\hat{f}^-_1(Z_1), \hat{f}^-_2(Z_1), f_3(Z_1), \ldots, f_N(Z_1)),$$

$$f^{(-,-)}(Z_1) = (\hat{f}^-_1(Z_1), \hat{f}^-_2(Z_1), f_3(Z_1), \ldots, f_N(Z_1)).$$

From now on, we will omit the dependence on Z_1 and simply write $f^{(+,+)}$, etc. The important feature of the form of these four fields is that

$$(\hat{f}^+_1 - \hat{f}^-_1, 0, \ldots, 0) = f^{(+,+)} - f^{(-,+)} = f^{(+,-)} - f^{(-,-)},$$

$$(0, \hat{f}^-_2 - \hat{f}^-_2, 0, \ldots, 0) = f^{(+,+)} - f^{(+,-)} = f^{(-,+)} - f^{(-,-)}.$$ (5.4a) (5.4b)

Then (3.2a)-(3.2d) become

$$n_1 \cdot f^{(+,+)} < 0, \quad n_1 \cdot f^{(+,-)} < 0, \quad n_1 \cdot f^{(-,+)} > 0, \quad n_1 \cdot f^{(-,-)} > 0$$

$$n_2 \cdot f^{(+,+)} < 0, \quad n_2 \cdot f^{(+,-)} > 0, \quad n_2 \cdot f^{(-,+)} < 0, \quad n_2 \cdot f^{(-,-)} > 0.$$ (5.5a) (5.5b)

Let $Z \in \text{co} F(Z_1)$ satisfy (5.3). From Lemma 2.12, we have that there exist $s, t \in [0, 1]$ such that

$$Z = (s\hat{f}^+_1 + (1 - s)\hat{f}^-_1, t\hat{f}^+_2 + (1 - t)\hat{f}^-_2, f_3, \ldots, f_N)$$

$$= (s(f^{(+,+)} - f^{(-,+)}), t(f^{(+,+)} - f^{(+,-)}) + (f^-_2, f_3, \ldots, f_N)$$

$$= s(f^{(+,+)} - f^{(-,+)} + t(f^{(+,+)} - f^{(+)}) + f^{(-,-)},$$

where we used (5.4). By (5.6), the conditions in (5.3) become

$$n_1 \cdot (f^{(+,+)} - f^{(-,+)})s + n_1 \cdot (f^{(+,+)} - f^{(+,-)})t = -n_1 \cdot f^{(-,+)},$$

$$n_2 \cdot (f^{(+,+)} - f^{(-,+)})s + n_2 \cdot (f^{(+,+)} - f^{(-,+)})t = -n_2 \cdot f^{(-,+)},$$

or, equivalently,

$$A \begin{pmatrix} s \\ t \end{pmatrix} = b,$$

where

$$A := \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} n_1 \cdot (f^{(+,+)} - f^{(-,+)}) & n_1 \cdot (f^{(+,+)} - f^{(+)}) \\ n_2 \cdot (f^{(+,+)} - f^{(-,+)}) & n_2 \cdot (f^{(+,+)} - f^{(-,+)}) \end{pmatrix}$$

and

$$b := \begin{pmatrix} -n_1 \cdot f^{(-,+)} \\ -n_2 \cdot f^{(-,+)} \end{pmatrix}.$$ (5.7) (5.8)

To prove the lemma it is enough to show that there is a unique choice of s and t that satisfy (5.7). We prove this by using (5.5) to show that $\det A > 0.$
From (5.5a) we have
\[a_{11} = \mathbf{n}_1 \cdot (\mathbf{f}^{(+,+)} - \mathbf{f}^{(-,-)}) < 0, \quad \text{and} \quad \mathbf{n}_1 \cdot (\mathbf{f}^{(+,+)} - \mathbf{f}^{(-,-)}) < 0 \quad (5.9) \]
Thus, by (5.4b) and (5.8)
\[0 > \mathbf{n}_1 \cdot (\mathbf{f}^{(+,+)} - \mathbf{f}^{(-,-)}) = \mathbf{n}_1 \cdot (\mathbf{f}^{(+,+)} - \mathbf{f}^{(++,+)} + \mathbf{n}_1 \cdot (\mathbf{f}^{(-,+)} - \mathbf{f}^{(-,-)}) \quad (5.10) \]
\[= a_{11} + a_{12}. \]
Again using (5.5a), we have
\[\mathbf{n}_1 \cdot (\mathbf{f}^{(+,-)} - \mathbf{f}^{(-,+)}) < 0. \]
Thus
\[0 > \mathbf{n}_1 \cdot (\mathbf{f}^{(+,-)} - \mathbf{f}^{(-,+)}) = \mathbf{n}_1 \cdot (\mathbf{f}^{(+,+)} - \mathbf{f}^{(++,+)} + \mathbf{n}_1 \cdot (\mathbf{f}^{(+,-)} - \mathbf{f}^{(-,-)}) \quad (5.11) \]
\[= -a_{12} + a_{11}. \]
Combining equations (5.10) and (5.11) we have
\[a_{11} < a_{12} < -a_{11} \implies |a_{12}| < -a_{11} = |a_{11}|. \quad (5.12) \]
Similarly,
\[a_{22} = \mathbf{n}_2 \cdot (\mathbf{f}^{(++,+,+)} - \mathbf{f}^{(++,+,+)} < 0, \quad \mathbf{n}_2 \cdot (\mathbf{f}^{(++,+,+)} - \mathbf{f}^{(++,+,+)} < 0, \quad (5.13) \]
\[\mathbf{n}_2 \cdot (\mathbf{f}^{(++,+,+)} - \mathbf{f}^{(++,+,+)} < 0. \]
Noting that, from (5.4) and (5.8), we have \(a_{21} = \mathbf{n}_2 \cdot (\mathbf{f}^{(++,+,+)} - \mathbf{f}^{(++,+,+)} = \mathbf{n}_2 \cdot (\mathbf{f}^{(++,+,+)} - \mathbf{f}^{(++,+,+)} so
\[0 > \mathbf{n}_2 \cdot (\mathbf{f}^{(++,+,+)} - \mathbf{f}^{(++,+,+)} = \mathbf{n}_2 \cdot (\mathbf{f}^{(++,+,+)} - \mathbf{f}^{(++,+,+)} + \mathbf{n}_2 \cdot (\mathbf{f}^{(++,+,+)} - \mathbf{f}^{(++,+,+)} \quad (5.14) \]
\[= a_{22} + a_{21}, \]
and
\[0 > \mathbf{n}_2 \cdot (\mathbf{f}^{(++,+,+)} - \mathbf{f}^{(++,+,+)} = \mathbf{n}_2 \cdot (\mathbf{f}^{(++,+,+)} - \mathbf{f}^{(++,+,+)} + \mathbf{n}_2 \cdot (\mathbf{f}^{(++,+,+)} - \mathbf{f}^{(++,+,+)} \quad (5.15) \]
\[= -a_{21} + a_{22}. \]
Combining equations (5.14) and (5.15) we have
\[a_{22} < a_{21} < -a_{22} \implies |a_{21}| < -a_{22} = |a_{22}|. \quad (5.16) \]
From (5.12) and (5.16) we have
\[0 < |a_{11}| |a_{22}| - |a_{12}| |a_{21}| \leq |a_{11}| |a_{22}| - a_{12} a_{21} = a_{11} a_{22} - a_{12} a_{21} = \det A, \]
where we also used that \(a_{11}, a_{22} < 0 \) from (5.9) and (5.13). \(\square \)

Acknowledgments

The authors warmly thank the Center for Nonlinear Analysis (NSF Grant No. DMS-0635983), where part of this research was carried out. The research of I. Fonseca was partially funded by the National Science Foundation under Grant No. DMS-0905778 and that of G. Leoni under Grant No. DMS-1007989. T. Blass, I. Fonseca, and G. Leoni also acknowledge support of the National Science Foundation under the PIRE Grant No. OISE-0967140. The work of M. Morandotti was partially supported by grant FCT, UTA/CMU/MAT/0005/2009.
References

