






2. Construct a path insideMk from c to one of such crossings by intersecting the contraction
of the curve with Mk. By construction, the contraction of the closed curve and, in
particular, its intersection with Mk must live in Mfree. This stablishes the non-F -
cagedness of c and concludes the proof.

B.1 Construction of the Contractible Curve

The contractible curve must satisfy two requirements:

• All crossings of the curve through Mk, except for c, must be non-F -caging.

• Both the curve and its contraction must live in Mfree.

Let B ⊂ Rd be a ball containing O such that any placement of the point fingers outside B
is a non-F -caging configuration of the manipulator. We will say that any configuration with
the point fingers outside B is at infinity. Note that, since O is compact, B must exist. If the
manipulator has n fingers, we can choose B to be a ball containing O with diameter dB > n·dO

π ,
where dO is the diameter of the object. All configuration of the manipulator with all fingers in
the exterior of B are non-cages, and consequently also a non-F -cages. We will assume then the
escaping paths α+ and α− to terminate respectively at configurations c+ and c− at infinity.

We construct the contractible path by closing the concatenation of α+ and α− outside
B, which will guarantee that all crossings through Mk will correspond to to non-F -caging
configurations. Following Proposition 1, if we want to construct a contractible curve inMfree,
we can do it independently for each point finger. We illustrate in Figure 10 the process of
completing the path for an individual finger.

Figure 10: Completion of the contractible curve in the workspace of point finger pi. In the case
of dimension 2 we choose αi outside the ball Πi(B) such that the resultant winding number of
the closed curve formed by the concatenation of Πi(α

+), αi and Πi(α
−) is zero.

Each point finger p+
i = Πi(c

+) must be joined with the corresponding point finger p−i =
Πi(c

−) outside B and in a contractible way. If the dimension of the workspace is d = 2, as
illustrated in Figure 10, the completion path goes along the boundary of B enough times to
undo the winding number of the concatenation Πi (α+ ⊕ α−). If d > 2, since the object is a
standard topological ball, the exterior of the object must be homeomorphic to the exterior of
an euclidean ball, and in particular must be simply connected. Consequently, we can always
connect the ends of the escaping paths such that the resultant closed curve is contractible. We
will call α to such a completion curve and β to the resultant contractible curve α+ ⊕ α⊕ α−.
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B.2 Intersection of the Contraction with Mk

The contractibility of β implies the existence of an homotopy H : [0, 1]× [0, 1] −→Mfree that
contracts the closed path to c. We want to construct the intersection of H(S) with Mk. We
will show that H can always be approximated by a well behaved contraction that yields a
non-degenerate intersection.

The boundary of the square S = [0, 1]× [0, 1] maps into the curve β, with the inconvenience
that three of the sides of the square map to c. To avoid this, and simplify posterior derivations,
we consider the quotient map π that identifies them into a single point in the boundary of S.
The map π transforms S into a disc D whose boundary has a one to one mapping onto the
contractible curve β.

The characteristic properties of the quotient topology [13], expressed in Lemma 1 induce a
unique continuous map H̃ : D −→Mfree that commutes the diagram in Figure 11.

Lemma 1 (Passing to the Quotient). Suppose π : X −→ Y is a quotient map, B is a topological
space, and f : X −→ B is any continuous map that is constant on the fibers of π (i.e., if
π(p) = π(q), then f(p) = f(q)). Then there exists a unique continuous map f̃ : Y −→ B such
that f = f̃ ◦ π:

X

π
��

f

  

Y
f̃

// B

From now on when mentioning the contraction we will refer to the quotient version H̃ of
the homotopy. We will call q to the point in the boundary of D that maps into c.

Figure 11: Construction of the homotopy H̃ induced by the quotient map. Note that H̃(q) = c.

The path that allows c to escape insideMk lives in H̃ (D)∩Mk. The construction of that
intersection relies on the Lemma 2, borrowed from [15]:

Lemma 2 (Milnor’s Lemma). Let M be an m-dimensional manifold and N an n-dimensional
manifold, with m ≥ n. If f : M −→ N is smooth, and if y ∈ N is a regular value, then the set
f−1(y) ⊂M is a smooth manifold of dimension m− n.
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If M is a manifold with boundary ∂M and y is also regular for the restriction f | ∂M , then
f−1(y) is a smooth (m−n) manifold with boundary. Furthermore, the boundary ∂

(
f−1(y)

)
is

precisely equal to the intersection of f−1(y) with ∂M .

Let f be the composition f : D
H̃−→M free F−→ R. Then f−1(k), as a subset of D, is mapped

by H̃ into the mentioned intersection H̃ (D)∩Mk. Proving the existence of the escaping path
inMk is equivalent then to show the existence of a path in f−1(k) from q to another point q0

in the boundary of D. By construction, H̃ maps that path into an escaping path in Mk to a
non-F -caging configuration.

If f is smooth and k is a regular value, the application of Milnor’s Lemma says that f−1(k)
is a one dimensional smooth manifold with f−1(k) ∩ ∂D as boundary. As a consequence, q is
connected through a continuous and smooth path to a different point in ∂D within the level
set f−1(k), which finishes the proof. All that remains to see is what happens when f is not
smooth or k is not a regular value of f .

Smoothness of f

In order to grant the smoothness of f we ε-approximate it. This approximation needs to
guarantee that the contraction remains inMfree and that all crossings of the contractible path
β through Mk still remain non-F -caging. We use Whitney’s Approximation Theorem [14]
to find smooth approximations both of the curve β, and the contraction that satisfy both
constraints.

Lemma 3 (Whitney Approximation Theorem). Let M be a smooth manifold and let F :
M −→ Rk be a continuous function. Given any positive continuous function ε : M −→ R,
there is a smooth function F̂ : M −→ Rk that is ε-close to F (‖F (x)− F̂ (x)‖ < ε(x) ∀x ∈M).
If F is smooth on a closed subset A ⊂M , then F̂ can be chosen to be equal to F in A.

The challenge is to preserve two key properties of H̃ when we construct the approximation:

• All crossings of the boundary of H̃(D) through Mk, other than c, must remain non-F -
caging.

• The approximation of H̃ must still live in Mfree.

The first property was originally satisfied by making the contractible curve go to infin-
ity before crossing Mk. Spurious crossings through Mk due to the approximation must be
prevented. This is especially awkward near the crossing at c. No matter how small an ε we
choose, the ε-approximations of β and H̃ could cross again. Similarly, where H̃ makes contact
with the obstacle, the ε-approximation might violate the second property by leaving the free
space Mfree. The following procedure produces a smooth approximation while avoiding the
problems:

1. Replace the contractible curve β locally at c by a smooth patch inMfree, as in Figure 12.
The free space is defined asMfree =M\ int

[
OM

]
. Rodriguez and Mason [24] show that

this definition correctly regularizes the space, ensuring the free space has no thin bits.
Even if c is in contact with OM, there is still freedom to smoothly escape the contact
through half of the directions on the tangent space.
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2. Apply a similar patch wherever the contractible curve contacts the object. Thanks to
the regularity of the free space, Proposition 3 in [24] guarantees that these contact points
are isolated configurations.

3. Apply Whitney Approximation Theorem to approximate the contractible curve by a
smooth curve, equal to the original curve on the patches.

4. Define the contraction H̃ as before, but using the smoothed contractible curve.

5. If the contraction makes contact with the object, the approximation could violate the
second key property. Repeat the previous strategy of defining smooth patches.

6. Apply Whitney Approximation Theorem once more to approximate the contraction by a
smooth map Ĥ that equals the original contraction on the closed set ∂D ⊂ D and on any
patches, and otherwise lives in the free space Mfree. This guarantees that the boundary
of the contraction will map to the approximated contractible curve.

Figure 12: Smooth patch for replacing the contractible curve in a neighborhood of c and
eliminate possible non-smoothness at the crossing with Mk.

Regularity of k

If k is not a regular value of f , f−1(k) is not necessarily a manifold and Milnor’s Lemma
cannot be used to build the intersection of the contractible curve and Mk. We will see that,
even if that is the case, if the level set f−1(k) is well behaved, the escape path connecting q
with a boundary point of f−1(k) still exists.

We will make use of Sard’s Theorem [15] which characterizes the critical points of smooth
functions.

Lemma 4 (Sard’s Theorem). Let f : U −→ Rp be a smooth map, with U open in Rn and let
C be the set of critical points; that is the set of all x ∈ U with rank dfx < p. Then f (C) ⊂ Rp
has measure zero.

The Theorem says that the set of regular values is dense on the image of f . Consequently,
if k is a critical value, there is a monotonic sequence of regular values {kn}n, converging to k.

By virtue of Milnor’s lemma,
{
f−1(kn)

}
n

is a series of smooth one dimensional manifolds.
This level sets induce a sequence of smooth paths that gradually approach the level set f−1(k),
as illustrated in Figure 13. In general, the limit of a sequence of continuous paths does not
necessarily converge to a continuous path but, if we assume that we constructed the smooth
approximation of the contraction as a semialgebraic approximation, the function f = F ◦ H̃,
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level sets
{
f−1(kn)

}
n

and f−1(k) will also be semialgebraic. Consequently, the approximating
paths and the limit, that lives in a semialgebraic set, must also be continuous and semialgebraic.
Which concludes the proof.

(a)

(b)

Figure 13: (a) When k is a critical value, f−1(k) ⊂ D might not be a smooth manifold. Still
q is path-connected to a point q0 ∈ ∂D mapped by H̃ to a non-caging configuration. (b) To
prove it we consider the limit of a series of level sets

{
f−1(kn)

}
n

of regular points where the
path is guaranteed.
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