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Summary. While spatial sampling has received much attention in recent years,
our understanding of sampling issues in the function space of trajectories remains
limited. This paper presents a structured approach to the selection of a finite control
set, derived from the infinite function space of possible controls, which is optimal
in some useful sense. We show from first principles that the degree to which trajec-
tories overlap spatially is directly related to the relative completeness that can be
expected in sequential motion planning. We define relative completeness to mean the
probability, taken over the population of all possible worlds, that at least one tra-
jectory searched will not intersect an obstacle. Likewise, trajectories which are more
separated from each other perform better in this regard than the alternatives. A
suboptimal algorithm is presented which selects a control set from a dense sampling
of the continuum of all possible paths. Results show that this algorithm produces
control sets which perform significantly better than constant curvature arcs. The
resulting control set has been deployed on an autonomous mobile robot operating
in complex terrain in order to respond to situations when the robot is surrounded
by a dense obstacle field.

1 Introduction

There is a large body of literature regarding the computation of optimal paths
for holonomic robots, and numerous varieties of planners exist which find non-
optimal, but executable trajectories, for complex nonholonomic robots. In the
latter case, a set of vehicle commands (a control set) is often used to elaborate
the search space. Examples include forward simulation planners[5, 11], grid
based planners[2], and ego graph planners[7]. In each case the control set has
a different meaning, and a different use, but in all cases the selection of the
control set has a significant effect on the performance of the planner. Given
that there are choices to be made in discrete search space design, it would
be prudent to define metrics of performance and try to find designs which
optimize them.
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This paper concentrates on a completeness metric for finite resolution plan-
ning because we are interested in on-line planning for a high speed vehicle
operating in complex cluttered environments. While it is useful to know that
a planner is complete in the limit of infinite resolution, the more practical
problem is that of maximizing the likelihood of solving a query at the reso-
lution actually being used. Indeed, we can distinguish different planners, and
different search spaces, based on how well they perform in this regard. While
we will apply our techniques to a forward simulation planner, methods to
define optimal discrete search spaces should have broad applicability.

In a forward simulation planner, a vehicle model is used to estimate the
trajectory that the vehicle will follow in response to given control input. A
set of these controls are simulated to give a corresponding set of trajectories
which are then evaluated for hazards and propensity to achieve the goal.
Finally, a command is selected based on these evaluations and sent to the
vehicle. For the remainder of this paper controls will refer to the input to the
differential equation representing the vehicle model and trajectories will refer
to the output of this differential equation.

When using this type of planner, a very important consideration is what
commands (or, equivalently, trajectories) to evaluate. Each trajectory takes a
non-zero amount of time to evaluate, so real-time response requirements allow
only a finite number to be searched. In addition, the selection of a trajectory
set (given finite resources) has a significant effect on the completeness of the
planner. Although such control sets are often used, to the authors knowledge,
there has been no effort to evaluate finite trajectory sets in a structured man-
ner with regard to relative completeness. Certainly works such as [10] and
recent derivatives have searched the continuum to find the shortest path be-
tween any two points in an obstacle free environment. We are concerned here,
however, with dense obstacle fields. We are also concerned with meta-level and
probabilistic optimality of the search space itself rather than of any searches
of it.

In Sect. 2 the work is motivated by a discussion of why constant curvature
arcs can be a poor search space for obstacle avoidance planning at high speed.
In Sect. 3 the relative completeness of a set of trajectories is defined as the
probability that at least one trajectory from the set will not intersect an obsta-
cle in a random field of obstacles. Such a trajectory is deemed to have survived
the test. This definition is then used in Sect. 3.1 to prove that overlap between
trajectories will reduce this probability of survival. Section 3.2 extends this
idea of overlap to an environment where there is correlation between obstacles.
It suggests that trajectories which are close to each other, even if they do not
overlap, will lower the probability that at least one of the trajectories will not
intersect an obsticle. Section 4 describes a set of algorithms which generate
trajectory sets with the intent to maximize the probability of survival. Finally
Sect. 5 presents the results from numerous simulations as well as trials on a
outdoor mobile robot, all of which indicate the benefits of these trajectory
sets over simple arcs.
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2 Motivation

According to Taylor’s remainder theorem an arbitrarily smooth curve (for ex-
ample, a path curvature signal) can always be well approximated by a series of
short segments of simple curves like arcs. This seems to suggest that searching
a small set of constant curvature arcs often enough (and only executing a very
small portion during each cycle) can produce an arbitrary complex solution
trajectory. In fact this is far from correct. As illustrated in Fig. 1, finite stop-
ping distance combined with the need to guarantee vehicle safety leads the
planner to reject the right turn because it is not safe for a sufficient length.
This occurs despite the fact that subsequent planning cycles will have the
opportunity to adjust the plan to a more correct path before the obstacle is
reached. We observe this behavior on a regular basis in our experimentation.
Of course, a planner will not generate a solution if it does not search it and
the solution here is not an arc.

Fig. 1. An example of a situation in which constant curvature controls cannot
produce a valid path. A hard right turn must be commanded to to follow the corridor,
but it cannot be commanded as it intersects an obstacle within the vehicle’s stopping
distance.

The issue here is the completeness of the planner. While a forward simula-
tion planner with a finite number of controls will never be entirely complete,
some control sets are clearly better than others. A search space composed of
only left turns is intuitively a bad choice, as is a space of many 10 meter long
trajectories which deviate only slightly from each other. Having shown that
arcs are apparently not a good control set, we are compelled to ask: what is?
Arcs cannot generate the S-curves necessary to navigate in certain situations,



4 Colin J. Green and Alonzo Kelly

but at the same time S-curves cannot generate the arcs that are also some-
times necessary. From the above perspective, the problem of selecting the best
set of controls is one of selecting a finite sample of paths from the function
space of possible paths with the goal of maximizing relative completeness.
While spatial sampling has received much attention in recent years[3, 8], this
type of sampling in the space of paths remains largely unexplored.

3 Theory

Before we can begin to describe a better set of trajectories, we must first have
a definition of what makes one trajectory set better than another. A very
important characteristic of a set of trajectories, as suggested in Sect. 2, is how
complete it renders the local planner. This level of “relative completeness”
can be defined as the percentage of the time that the planner will find a path
to achieve a random goal in a random configuration of obstacles in bounded
time if a path exists. For a fully complete planner this will, of course, be
100% of the time. This is a different notion than resolution completeness[4]
or probabilistic completeness[1], neither of which consider the probability of
success within a bounded running time. Making the most of the fixed amount
of time available is an important consideration on a mobile robot with hard
real-time requirements.

For the purposes of this paper, we will consider the relative completeness
of a set of trajectories to be the probability that, when they are placed at a
random location in a random obstacle field, at least one trajectory does not
intersect any obstacles (i.e. is safe). Since the goal can be uniformly anywhere,
we can ignore its location in the analysis. Of course, the sequence of planning
problems that a real robot encounters are correlated in time as the robot
actively tries to avoid the obstacles. Nonetheless, we ignore this matter for
the moment and later suggest that even this simplified statement of optimality
leads to improved planner performance.

3.1 Computing probability

In an effort to describe a method of computing relative completeness, we must
first look at the ways in which an obstacle can intersect a trajectory. In par-
ticular it is important to pay attention to the ways in which a single obstacle
can intersect multiple trajectories. As shown in Fig. 2(a), two overlapping tra-
jectories generate a partitioning of the world into three different areas (four
if space which is not part of any trajectory is included). If an obstacle were
to occupy any part of element 01, then trajectory 1 would no longer be safe.
Similarly, an obstacle in element 10 implies trajectory 2 is not safe. But, more
interestingly, an obstacle in element 11 means both trajectories 1 and 2 are
not safe. The area of the trajectories, as shown in Fig. 2, represents the convo-
lution of the vehicle body over the trajectory. A obstacle in this area indicates
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Fig. 2. (a) Shows the overlap of the vehicle convolution for two trajectories and
the different areas a partitioning of this space produces. (b) Shows the same two
trajectories except in a situation where they no longer overlap.

that the vehicle would intersect that obstacle while traversing the trajectory.
There are many methods of finding this area, such as the one suggested by
[6].

For two trajectories the partitioning of the space is very simple, but it
becomes more complex as more trajectories are involved. Figure 2(a) illus-
trates a naming convention for elements of the partition that will be used in
this paper. Binary numbers are used to represent each subset in the spatial
partition. Each bit in these numbers indicates if the trajectory corresponding
to that bit number is a member of that subset. For example, 01 indicates
that an obstacle in this area will intersect trajectory 1 but not 2. From this
numbering scheme it is clear that there are as many as 2" elements in the
partition of the area occupied by all trajectories, where n is the number of
trajectories. In most cases there will in fact be fewer than 2" elements because
not all trajectories will overlap in every possible combination.

Now, let the boolean valued function C(R) mean that some portion of
region R contains at least one obstacle. Lets assume a function P(C(R))
which depends on the area of the region (Ag) and returns the probability that
R contains no obstacles. In addition, we require that P(C'(R1))P(C(R2)) =
P(C(R1U R2)) which simply says that probabilities depend only on the area
of a region, and not on its shape or position. It can be shown that this condition
implies a distribution for P(C(R)) which is exponential in area.

We would like to show that there is a distinct difference between the two
pairs of trajectories (in terms of probability that at least one does not inter-
sect any obstacles) shown in Figs. 2(a) and 2(b). The size and shape of the
trajectories in both cases are identical. The only difference is the overlapping
area (11 in the overlapping case, 11a and 11b in the separated case). At an
intuitive level, it is clear that overlap is not optimal because it creates an area
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where a single obstacle can hit both trajectories at the same time. A more
precise elaboration of the difference between these two cases follows.

There are a total of three cases where at least one trajectory from a set
of two will survive in a random configuration of obstacles: trajectory 1 is hit
but 2 is not, trajectory 2 is hit but 1 is not, and neither trajectory is hit. For
the overlapping case (a), the total probability is

P(C(01))P(C(10))P(C(11)) + P(C(01))P(C(10))P(C(11))

+P(C(01))P(C(10))P(C(11))

Now, using the multiplicative characteristics defined for the probability func-
tion, along with the fact that P(C(10)) = P(C(01)), because both have equal

area, and P(C(01)) =1 — P(C(01)) we have

2(1 — P(C(01)))P(C(10U11)) + P(C(01UT0 U 11)) =

2P(C(10U11)) — P(C(01U 10U 11))

The probability for the non-overlapping case (b) can be developed in a sim-
ilar fashion. For simplicity we will treat the trajectories as a single partions
(combining 01 and 1la, as well as 10 and 11b). Also note that P(C(11)) =
P(C(11a)) = P(C(11b)) because all have equal area.

P(C(01 U 11a))P(C(10 U 11b)) 4+ P(C(01 U 11a))P(C(10 U 11b))

+P(C(01U 11a))P(C(10 U 11b)) =
2(1 — P(C(01 U 11)))P(C(10U 11)) + P(C(01 U 1la U 10 U 11b)) =
2P(C(10U11)) — P(C(01U11 U10 U 11))

Notice that the difference between the probabilities for the overlapping and
non-overlapping case is that the overlapping area (11) is counted twice in the
non-overlapping case. There is a lower relative probability that there are no
obstacles in the union of those four areas, than in the three in the correspond-
ing case above, because the probability is assumed to be monotone in area.
The lower probability is subtracted in the computation of the total probability
that one trajectory survives, giving a higher total probability of at least one
one survivor in the case where there is no overlap.

At a higher level, when any two trajectories overlap they have a higher
probability of not intersecting any obstacles at all (higher by some amount, 3
which is a function of the area of overlap) because the union of their areas is
reduced. On the other hand, they have a lower probability of having only one
survivor. If either trajectory does intersect an obstacle the overlap leads to a
lower probability that the other will be safe (lower by, again, (3 for each of the
two ways this could occur). This means that the overlapping trajectories will
have a (3 lower probability of having at least one safe trajectory.
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Unfortunately, the computation of probabilities in this manner quickly be-
come computationally impossible. Given that there are 0(2") subsets in the
partition, and each one of them could intersect with one or more obstacles,
there are 0(22") possible disjoint events to evaluate. It quickly becomes im-
possible to even enumerate all the disjoint events which leave at least one
safe trajectory. Instead, approximations (described in Sect. 4.2) or numerical
methods (described in Sect. 4.3) must be used.

3.2 Computing probability with correlation

Up to this point our analysis has been lacking in one important aspect: ob-
stacles in the real world are not distributed in a completely random way, but
generally have a great deal of correlation. One way to view this correlation
is that a location in space has a higher probability of containing an obstacle
if any location nearby contains an obstacle. The increase in probability will
depend on the distance between the two locations and typically has charac-
teristics of an exponential distribution, high when the distance is small and
near zero when the distance is large. In terms of trajectories, this means that
proximity becomes akin to overlap. Any pair of trajectories is more likely to
overlap an obstacle region, and therefore to both be eliminated in search, if
they are merely close to each other and do not overlap. If we consider ob-
stacles to be regions of defined size, moving two trajectories closer together
exposes the pair to all of the sizes of obstacles which could overlap both be-
fore in addition to the smaller sized obstacles which can now span the reduced
space between them. Hence, exposure of the pair must be monotone increasing
with proximity. Conversely, the more separated any given pair is, the more
likely it is that at least one will survive. This concept of correlation could
be used to extend the theory in Sect. 3.1 to include probabilistic partitions,
which indicate areas where the presence of an obstacle has some probability
of intersecting one or more trajectories.

4 Algorithms

4.1 Reachability tree

For each of the algorithms presented here, a pool of potential trajectories is
needed. These potential trajectories are created by generating a reachability
tree, where the edges at each node are different curvature commands. Each
path through this tree is a list of commands which can be simulated using an
arbitrary vehicle model. In this case a model which limits linear and angu-
lar velocities and accelerations has been used. This arbitrary vehicle model,
combined with relevant initial conditions, such as a non-zero initial curvature,
effects the mapping from controls to trajectories. By varying the initial con-
ditions, a pool of potential control sets can be created, from which one can be
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Fig. 3. Shows an example reachability tree with outdegree of 5 and depth of 4, cor-

responding to 625 trajectories. Simulated for a vehicle with constant linear velocity
and limits on curvature and Acurvature.

selected from at run time based on the current state, which is useful on a mo-
bile robot. An example reachability tree is shown in Fig. 3. We typically use
reachability trees with an outdegree of 5-9 and depth of 5-8. There is also an
argument that one should use a larger outdegree at the root of the tree, where
a small curvature change will have a more significant effect on the shape of the
trajectory, and decrease the outdegree towards the leaves. For the purposes of
this paper we have maintained a uniform outdegree throughout the tree. The
goal of this tree is to quickly create a large sampling of potential trajectories
from the infinite number of possible trajectories. Out of this large sample, the
algorithms in Sects. 4.2 and 4.3 will select a smaller control set.

4.2 Separation based greedy algorithm

While computing the probability of at least one obstacle being in a given
area is assumed to be simple, the computation of the probability that at
least one trajectory in a large set will survive (as described in Sect. 3.1) is
computationally infeasible because the number of disjoint events that must
be enumerated grows doubly exponentially with the number of trajectories.
Moreover, adding more realistic obstacle position correlation only worsens
matters.

We instead focus on a method which capitalizes on a key point made in
Sect. 3.1 and expanded on in Sect. 3.2 : more area between trajectories leads to
a planner with higher relative completeness. The area between trajectories is
easy to compute and it is related directly to the probability that one trajectory
from a set will survive, which makes it an excellent metric to use.

The simplest algorithm to find the best set of trajectories would be to
compute the probability of one survivor for all possible trajectory sets of a
given size, and select the one with the highest probability of success. This
would require checking (Z) sets (where n is the number of trajectories in the
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reachability tree and k is the desired number of trajectories in the set). For a
minimalistic choice of n = 5° and k = 25 this would require checking 1.4e62
combinations, which is not feasible.

Instead a greedy algorithm is used, as shown in Algorithm 1. The set of
selected trajectories is seeded with the straight (zero curvature) trajectory,
to preserve the capacity to plan a straight path. Next, trajectories are added
one by one such that each trajectory added has maximal area between it
and its closest neighbor in the set selected so far. It is interesting to note
that given a large enough pool of potential trajectories, and once the bounds
of the search space have been generated, the trajectory added at any step
will have equal area between it and its first and second closest neighbors.
Otherwise a different trajectory would have been selected which trades some
of the area between it and its second closest neighbor for more area between
its first closest, increasing the smallest area. While it is somewhat feasible to
compute a separation score in relation to the entire existing set, the non-linear
behavior of a typical correlation function makes this less necessary. As the area
increases it makes less of a difference, so maximizing pairwise separation is an
indication of merit for the entire set.

In maximizing each trajectories separation from its closest neighbor, this
algorithm is attempting to minimize the dispersion[9] of the selected set of
trajectories in the space of trajectories. Dispersion of P in X is given by

d(P; X) = sup mind(z, p)
zeX PEP
In fact, Algorithm 1 is greedily minimizing the dispersion for the metric space
(X, d) where d(z,y) =AreaBetween(z,y), X is the space of trajectories in the
reachability tree, and P is the selected set of trajectories.

An additional benefit of this algorithm is that it returns a sequence of
trajectories in sorted order. This means that given a set of n well separated
trajectories, the set of k,Vk < n well separated trajectories is just the first &k
trajectories from the set of all n. This property is very similar to the property
the van der Corput sequence[9] which provides an infinite, dense, sequence
of numbers in the interval [0, 1]. This is very useful in the context of vary-
ing computing time budgets resulting from varying vehicle speeds. Example
results from this algorithms application are shown in Fig. 4.

4.3 Monte-Carlo based greedy algorithm

Another method is to compute the probability of survival from a Monte-
Carlo simulation. Monte-Carlo algorithms have often been used to overcome
combinatorial problems, and have of course been used in non-holonomic
planners[1, 9]. In this case, a number of circular obstacles are uniformly placed
in a simulated world and given a random size (drawn from a Normal distri-
bution). A set of trajectories is then placed in this world and intersections
between trajectories and obstacles are observed. If any trajectories survive,



10 Colin J. Green and Alonzo Kelly

input : potentialTrajectories,n
output: selectedTrajectories
%Seed the algorithm by adding the zero curvature trajectory
%to the list of selected trajectories
1 selected Trajectories.add(zeroCurvatureTrajectory);
2 potentialTrajectories.remove(zeroCurvatureTrajectory);
3 while selected Trajectories.size() < n do
4 maxArea «— 0;
%Evaluate each of the remaining potential trajectories
5 foreach element x of potentialTrajectories do
6 minArea « 00;
%Compare the current potential trajectory to each
%selected trajectories, looking for the minimum area
7 foreach element y of selectedTrajectories do
8 if AreaBetween (z,y) < minArea then
9 L minArea <« AreaBetween(z,y);
%Compare the current potential trajectory to the best
/%potential trajectory so far
10 if minArea > maxArea then
11 maxArea «— minArea;
12 NextBestTrajectory « x;
%Add the NextBestTrajectory to the list of selected
htrajectories
13 selected Trajectories.add(NextBest Trajectory);
14 | potentialTrajectories.remove(NextBestTrajectory);

Algorithm 1: Separation Based Algorithm

Fig. 4. (a) A set of 25 well separated trajectories. (b) A set of 25 well separated
trajectories with a high initial curvature.
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success is declared. This process is then repeated for between a thousand and
a few million times to compute the probability of survival. For this process, it
has proven to be advantageous to create a small region in front of the vehicle
which is guaranteed to contain no obstacles. Obstacles in this area have a high
probability of taking out all trajectories regardless of which set is being tested,
and this case represents the case where the planner has already failed, so it
is not interesting from the present perspective. A more complete simulation
would take into account the previous decisions made by the planner to steer
the vehicle away from oncoming obstacles.

Even though this algorithm can compute a separation score in a fairly
fast manner, a greedy algorithm is still required to search the space of all
possible combinations of trajectories. The algorithm, which is very similar to
the algorithm in Algorithm 1, is to start with the zero curvature trajectory
(using the same reasoning as before). Then, evaluate all possible trajectories,
which are not a member of the selected set, one at a time by adding it to
the selected set, and computing the new sets expected chances of survival.
Finally, keep the trajectory that gives the highest probability of survival.

Although this algorithm has its advantages (it is directly computing the
probability for the entire set) it is much slower than the algorithm described
in Sect. 4.2. In cases where the separation based algorithm takes only a few
minutes, this algorithm takes days. Even in this time frame, it is unclear if
enough Monte-Carlo steps have been taken to achieve convergence.

5 Results

A series of tests have been performed in simulation. The first set of tests were
performed using the Monte-Carlo evaluation method described in Sect. 4.3 to
compare different trajectory sets. The results of those tests are shown in Fig. 5.
This figure shows that the separation based algorithm produced trajectories
that are almost always better than the equivalent set of arcs, over a large
range of n (n is the number of trajectories in the set). In addition, the graph
shows that the separation based algorithm performed slightly better than
the Monte-Carlo simulation algorithm for n > 25, this is likely because the
number of Monte-Carlo steps had to be reduced to keep the run time under
a few days. Note that the separation based set does not perform much better
than arcs for a small control set, but the performance benefits increase as the
size of the control set increases (correspondingly, as computers get faster, or
vehicle speeds are reduce).

These trajectories were also tested in a more complex simulator. In each
planning cycle, the vehicle follows the trajectory which was sensed as obstacle
free for the longest length for some distance (which corresponds to how far
the vehicle would travel during that planning cycle). In the case of a tie, the
trajectory which terminates with the largest x coordinate is selected. This has
the effect of guiding the vehicle towards x = oo. The world is random and
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Fig. 5. The results from Monte-Carlo simulations for different trajectory sets.

infinite, so new areas of the world are populated with obstacles as the vehicle
drives through them. The obsticles are circular and have a randomly generated
size, giving the world the feel of a forest. To help prevent the vehicle from
entering infinite cycles, areas where the vehicle has driven over are considered
obstacle. In this simulator the effects of the speed of the vehicle, size of the
lookahead, and cycle time of the planner can all be tested to compare arcs
and well separated trajectories. Finally, this simulator has both a deliberative
and reactive region in its trajectories. The reactive region must be obstacle
free in order to ensure vehicle safety, while the deliberative region is used to
help guide to vehicle away from situations which could compromise the vehicle
safety. When running a test, the vehicle cannot slow down or stop. Instead, if
the vehicle is in a position where it cannot avoid an obstacle, it runs into the
obstacle and that obstacle hit is recorded. Results are computed based on how
many times, on average, the vehicle actually hit an obstacle and how many
time, on average, the safety of the vehicle could not be ensured because the
safest trajectory collided with an obstacle in the reactive region. The results
from this investigation are shown in Fig. 6. Overall there is more success
in avoiding obstacles than guaranteeing the vehicle safety. This is expected
because when vehicle safty is ignored, short segments of arcs can easily be
joined to form very complex trajectories, as discussed in Sect. 2.

Using this simulator, a problem with well separated trajectories was no-
ticed. With constant curvature arcs, at each timestep the path which the
vehicle was following on the previous timestep is always in the new control



Optimal Sampling In the Space of Paths: Preliminary Results 13

0.26 T T
—=o— Arcs - obsticle
—=— Trajectories - obsticle | _|
—&— Arcs - reactive
—— Trajectories - reactive

0.24

0.22

=
[N}

o
.
==

o
=
IS

Number of hits per meter
(=]
>

o
e o
= N

o
=}
3

0.06 i i I i i i
0 50 100 150 200 250 300 350

Number of trajectories in set

Fig. 6. The results from a dynamic vehicle simulation in an infinite world. Results
are shown for the number of obstacles hit per meter and the number of times the
safety of the vehicle could not be guaranteed per meter (reactive hits)

set. This allows the vehicle to follow a single trajectory for many cycles. With
the well separated trajectories, at each timestep the remaining portion of the
trajectory followed on the last cycle might no longer be in the set. This can
cause a failure when the vehicle is attempting to navigate around complex
obstacles. The simple solution applied to this problem is to always keep the
trajectory the vehicle followed last in the current set. The portion of the tra-
jectory before the current location is removed and the end of the trajectory is
extended by simulating the vehicle with the last command in that trajectory.
Running the same tests from Fig. 6 gives much better results, as shown in
Fig. 7. These results follow those shown in Fig. 5 in indicating that well sep-
arated trajectories are uniformly better than simple arcs. This supports that
the main conclusion is robust to the position correlation of a dynamic vehicle.

Finally, the control sets produced by the separation based algorithm have
been tested on a highly mobile outdoor robot, shown in Fig. 8. On this vehicle,
our well-separated trajectories are used in a special mode designed to allow
the planner to find a path through very complex environments where a simple
arc control sets fail. Although it is not possible to quantify the improvements
these control sets provide, it is the perception of the field team that they
provide a benefit. The difficulty in obtaining a statistically significant amount
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Fig. 7. The results from a dynamic vehicle simulation in an infinite world which
always includes, in the current trajectory set, the last trajectory which was executed.
Results are shown for the number of obstacles hit per meter and the number of times
the safety of the vehicle could not be guaranteed per meter (reactive hits)

of time on the vehicle over a large number of environments using different
control sets led us to pursue a simulation approach.

6 Conclusions and Future Work

In this paper we addressed but one of many systems engineering questions
that arise in the context of motion planning. Rather than appeal to absolute
completeness based on infinite resolution or probabilistic arguments, we have
sought instead to begin to answer a fundamental question in real-time motion
planning: what search space is most likely to solve a planning query in a given
time in any environment.

We have presented a principled definition of relative completeness at fi-
nite resolution in terms of the likelihood that at least one safe path will be
generated in any world. We have shown that trajectory overlap leads to re-
duced relative completeness and argued that trajectory separation is equally
relevant. We have shown that, in so far as we have formulated the problem, it
is intractable to solve exactly in realistic cases. On the other hand, we have
also shown that a set of well separated trajectories, even a suboptimal set
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Fig. 8. (a) A screenshot of the planner navigating in cluttered terrain using a well
separated trajectory set. (b) The vehicle on which well separated trajectories have
been tested.

generated by greedy search, outperforms both a set of arcs and a set based on
a more principled Monte Carlo search limited to a few days of computation.
We have also shown that significant improvements in obstacle avoidance can
be achieved by always ensuring that the vehicle can continue to follow the
path which is was previously attempting to follow.

Other fundamental questions of interest include the relative optimality of
a finite search space (e.g. the length of the optimal path relative to the contin-
uum solution) and its relative efficiency (e.g. how does runtime trade against
optimality). Throughout the field of robotics, investigation into the systems
engineering questions of optimal design are still in their relative infancy. Our
work is motivated by the quest to achieve the best possible result within the
constraints of available computing resources. We felt there was no clear theo-
retical basis for the choice of one control set over another and therefore sought
to construct one. Although we have not answered it exactly, it is clear that
the question of which finite search space is best is meaningful, relevant and
interesting. We have made one step here toward its solution, and we hope to
continue this line of research for other figures of merit and other classes of
planning problem.
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