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Figure 5. The effects of different parameter choices on recognition performance, (a), different intrinsic dimensionality choices in distinc-
tive visual vocabulary generation; (b), different sizes of distinctive visual vocabularies; (c), different intrinsic dimensionality choices in
distinctive feature selection for indexing and retrieving.
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Figure 6. Comparison of the performance of our approach and the N.S. algorithm [29] in some extremely challenging situations that involve
severe illumination, view point changes and cluttered background.

it emphasizes the effect of feature distinctiveness for robust
image matching.

For evaluation, we use the same publicly available
dataset as [18]. The database consists of around 8.8 thou-
sand images (each associated with a location label). Two
sets of testing images are used, one has rich and distinctive
visual structures, called the “clean set”, the other “confus-
ing set” is composed of some much more challenging im-
ages that captured more detailed parts of the scene, or ob-
jects that are common across images, such as doors, posters,
etc. Most of the features in those images are ambiguous
therefore techniques that do not emphasize on distinctive-
ness performs poorly. Both testsets are composed of 80 im-
ages with location ground-truth. For each testing image,
the 8 most similar pre-captured images are retrieved. A ma-
jority vote scheme is used for location prediction and the
performance is measured the same way as [18].

The provided dataset has 6.4 million SIFT features ex-
tracted with the HESAFF [27] region detector. Through
cross validation on a hundred of images from the database,
we set the intrinsic dimensionality n′ = 6 and the distinc-
tiveness threshold 0.9, which reduced the number of fea-
tures down to 4.2M. The baseline for comparison here are
the two algorithms developed in [18].

We measure the performance with precision-recall and
mean average precisions (mAP)(Table 2). On the clean-
set, there was no surprise that all four algorithms reached
almost perfect performance. On the much more challeng-
ing confusing-set, our approach significantly outperform

the Nistér and Stewénius algorithm (N.S.) [29] and the R.S.
algorithm proposed by [18]. Some qualitative comparisons
are illustrated in Figure 7, notice that our proposed approach
performs much better than the baseline algorithms in the
confusing environment and the extreme cases where very
few non-ambiguous features are available.

4.3. Scaling up image search with distinctive fea-
tures

In addition to the performance on the small scale bench-
mark dataset, one important performance measurement of
an image search algorithm is its scalability to large scale
datasets. We evaluate the performance of our approach on
the UKBench+Flickr dataset. In this evaluation, images in
the original UKBench dataset are used as query. The search
score is measured the same way using the top 4 returns as
mentioned earlier. A retrieval is correct if the retrieved im-
age is from the original UKBench dataset and contains the
same object as in the query image.

In this experiment, we use a fixed visual vocabulary that
has been generated using the approach proposed in this pa-
per, and we focus on the scalability of our approach and
evaluate the added benefit of the distinctive feature selection
approach in large scale applications. Two algorithms are un-
der comparison, one is the standard bag-of-words algorithm
that uses all the features for indexing and retrieving (Stan-
dard BOW); the other uses the proposed distinctive feature
selection to select and quantize only a part of the features
(Distinctive BOW).
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Figure 7. Some qualitative examples comparing our approach (Distinctive BOW) and the R.S. algorithm [18] on the localization task.
Our approach significantly outperforms these baseline algorithms in extremely confusing environment, where very few visual features are
available. (Red boxes indicate incorrectly matched images.)
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Figure 8. Performance evaluation on scaling up the object instance
recognition to large scale dataset (UKBench+Flickr). In the exper-
iment, we vary the size of the distraction Flickr dataset and moni-
tor the changes in the recognition performance when the database
scales up. The two measurements are, (a), the absolute value of
recognition accuracy; and (b), the recognition score decreasing
rate with respect to sizes of the database.

For this experiment, we extract the HESAFF SIFT fea-
tures from the UKBench+Flickr dataset using a publicly
available package [27]. Using the default parameters, the
HESAFF SIFT feature extractor generates on average 2000
features per image, and in total about 20M for the UK-
Bench dataset. We randomly sampled 10M of them for
the distinctive visual vocabulary generation. We use the
same parameters as we used in the previous experiment, i.e.,
n′
V = 25, n′

I = 25 and vocabulary size 1M .
In addition to the absolute value of the object instance

recognition score (Figure 8(a)), a better measurement for
scalability is the changing rate of the recognition scores
with respect to the database size. We measure this as the de-
crease of the recognition score for every unit number (1M )
of distraction images that are added, i.e., the slope of the
curve in Figure 8(a). Figure 8(b) shows the score decreas-
ing rate when more and more distraction images are added
to the database.

The changing rate is high at the beginning when new dis-
traction images are added and then it starts to decrease. This
phenomenon is due to the way that we measure the recog-
nition rate, i.e., all the images from the Flickr distraction
dataset are considered equally. Therefore, newly added dis-
traction images do not add a significant distraction effect to
the ones that are already in the database.

The ratio between the score decreasing rates of the two

approaches under comparison is 0.7 ∼ 0.9, i.e., applying
feature selection is 10% ∼ 30% better in scalability com-
pared to the standard bag-of-words approach, which is ben-
efited directly from the selection of distinctive features for
indexing and retrieving since the same distinctive visual vo-
cabulary is used in both approaches.

5. Conclusions and future work
In this paper, we explored an approach for image match-

ing that builds on the distinctiveness of high dimensional
features, reflected in their relationship with their nearest
neighbors. This approach compares favorably with the state
of the art in image matching tasks such as the University
of Kentucky Benchmark dataset and an indoor localization
dataset, also our approach scales up more gracefully on a
large scale Flickr dataset

There are several directions that remain to be explored.
First, the distinctiveness we rely on right now assumes a sin-
gle intrinsic dimensionality across the dataset, without fully
taking advantage of the non-uniformity property of high di-
mensional space. Second, we would also like to evaluate the
generalizability of our visual vocabulary to other datasets.
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