
Carnegie Mellon University
Research Showcase @ CMU

Computer Science Department School of Computer Science

1-2010

A Constant Factor Approximation Algorithm for
Generalized Min-Sum Set Cover
Nikhil Bansal
IBM Watson Research Center

Anupam Gupta
Carnegie Mellon University, anupamg@cs.cmu.edu

Ravishankar Krishnaswamy
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/compsci

This Conference Proceeding is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been
accepted for inclusion in Computer Science Department by an authorized administrator of Research Showcase @ CMU. For more information, please
contact research-showcase@andrew.cmu.edu.

Published In
.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fcompsci%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fcompsci%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F814&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu


A Constant Factor Approximation Algorithm for Generalized

Min-Sum Set Cover

Nikhil Bansal∗ Anupam Gupta† Ravishankar Krishnaswamy†‡

Abstract

Consider the following generalized min-sum set cover or
multiple intents re-ranking problem proposed by Azar et
al. (STOC 2009). We are given a universe of elements
and a collection of subsets, with each set S having a
covering requirement of K(S). The objective is to pick
one element at a time such that the average covering
time of the sets is minimized, where the covering time
of a set S is the first time at which K(S) elements from
it have been selected.

There are two well-studied extreme cases of this
problem: (i) when K(S) = 1 for all sets, we get the
min-sum set cover problem, and (ii) when K(S) = |S|
for all sets, we get the minimum-latency set cover prob-
lem. Constant factor approximations are known for
both these problems. In their paper, Azar et al. consid-
ered the general problem and gave a logarithmic approx-
imation algorithm for it. In this paper, we improve their
result and give a simple randomized constant factor ap-
proximation algorithm for the generalized min-sum set
cover problem.

1 Introduction

The min-sum set cover problem is a min-latency ver-
sion of the well-known set cover problem: for ease
of exposition we will consider the equivalent hitting
set formulation of the set cover problem. Here, we
are given a universe U of n elements, and a collec-
tion S = {S1, S2, . . . , Sm} of subsets with Si ⊆ U ,
and the objective is to select one element at a time
(i.e., find a linear ordering of the elements) such that
the average hitting (or “cover”) time of the sets is
minimized. Formally, we pick one element at every
time instant: if an element e is picked at time t its
cover time is Cov(e) = t. The hitting/cover time

∗IBM T. J. Watson Research Center, Yorktown Heights, NY
10598.

†Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA 15213, USA. Supported in part by NSF awards
CCF-0448095 and CCF-0729022, and an Alfred P. Sloan Fellow-
ship.

‡Research partly done while visiting IBM T. J. Watson Re-
search Center.

of a set S is Cov(S) = mine∈S Cov(e), and the goal
is to minimize

∑
S∈S Cov(S). For this problem the

greedy algorithm of picking the element which covers
the most number of uncovered sets is known to be a
4-approximation for this problem [BNBH+98, FLT04],
and this is the best possible unless P=NP [FLT04].
A problem that is similar in spirit is the min-latency
set cover problem, where the cover time of a set S is
Cov(S) = maxe∈S Cov(e), the time at which all the
elements of the set have been selected. This prob-
lem also admits a constant factor approximation algo-
rithm [HL05]. In fact, this problem easily reduces to
that of precedence-constrained scheduling on a single
machine, for which a 2-approximation is known using
various techniques [HSSW97, MQW03, CM99].

A substantial generalization of these two problems
was offered recently by Azar, Gamzu and Yin [AGY09]:
the multiple intents re-ranking problem or the gener-
alized min-sum set cover problem (GenMSSC). Here
each set S ∈ S also comes with a covering requirement
K(S) ∈ {1, 2, . . . , |S|}, and its cover time is defined to
be the time at which K(S) elements from S are selected:

Cov(S) = min{t | #(e ∈ S s.t. Cov(e) ≤ t) = K(S)}.
The goal is to minimize

∑
S Cov(S). Note that we get

the min-sum set cover problem if we set K(S) = 1 for
all sets S ∈ S, and the min-latency set cover problem
if we set K(S) = |S| for all S ∈ S. Azar et al.
[AGY09] gave an O(ln r)-approximation algorithm for
this problem, where r is the largest size of any set in
S via a modified greedy algorithm, and left open the
question of obtaining a constant factor approximation
for the problem. We resolve that question in this paper.

Theorem 1.1. The generalized min-sum set cover
problem (a.k.a the multiple intents re-ranking problem)
admits a randomized 485-approximation algorithm.

Our approach is based on formulating a strength-
ened LP relaxation for the problem, obtained by adding
the so-called “knapsack-cover inequalities” [CFLP00] to
the natural LP relaxation. This is necessary as one can
construct examples (see Section 6.2) where the natural



LP has an unbounded integrality gap. We then use a
simple stage-based randomized rounding scheme which
works as follows. We consider exponentially increasing
prefixes of time, and round the (fractional) assignments
in these prefixes to obtain partial orderings. Then, we
combine these partial orderings into a single ordering.
For any set S, our rounding guarantees an expected
cover time of O(tS), where tS is its cover time in the LP
relaxation.

1.1 Related Work The fact that the greedy algo-
rithm was a constant-factor approximation algorithm
for min-sum set cover was implicit in the work of Bay-
Noy et al. [BNBH+98], and was made explicit in papers
by Feige et al., who also simplified the proofs, both in
the conference version [FLT02], and then further in the
journal version [FLT04]. They also showed that the
4-approximation was the best possible unless P=NP.
Other variants of this problem have been studied in
different contexts, like when the set coverage is prob-
abilistic (stochastic) [CFK03], or when the cost of a set
depends on the set of uncovered elements at the time
when it is picked [MBMW05].

At the other end of the spectrum is the min-
latency set cover problem. This was formally stud-
ied by Hassin and Levin [HL05], who gave a factor e-
approximation for the problem via techniques similar
to those for the min-latency tour, a.k.a. the traveling
repairman problem. Subsequently, they observed that
min-latency set cover can be modeled as a special case
of the classic precedence-constrained scheduling prob-
lem 1|prec|∑j wjCj , for which several 2-approximation
algorithms are known using a variety of different tech-
niques (see, e.g., [CK04, KSW99] for surveys). This
special case corresponds to the so-called “bipartite con-
straints” case, where there are two types of jobs J1 and
J2. All jobs in J1 have wj = 0, pj = 1 (these corre-
spond to elements), all jobs in J2 have wj = 1, pj = 0
(these correspond to sets Sj ⊂ J1) and the precedence
constraints have the form that each job j ∈ J2 must be
preceded by the jobs Sj ⊂ J1. To see the equivalence
to min-latency set cover problem, note that any valid
schedule is just an ordering of jobs in J1 (as jobs in
J2 have size 0). Moreover, only jobs in J2 contribute to
completion time (as jobs in J1 have weight 0), and being
of size 0, a job in J2 can be assumed to be completed im-
mediately after its preceding jobs in J1 have been sched-
uled. Woeginger [Woe03] showed that this special case
(or equivalently the min-latency set cover problem) is
as hard to approximate as the general 1|prec|∑j wjCj

problem. Recently it has been shown [BK09], that as-
suming a variant of the Unique Games Conjecture, it is
hard to approximate 1|prec|∑j wjCj , and hence min-
latency set cover, to better than 2− ε for any ε > 0.

Multiple Intents Re-Ranking: The multiple
intents re-ranking problem was introduced by Azar et
al. [AGY09]. In this problem, each set S has a weight
vector wS of length |S|, and if the elements of the set are
output at times τS = (t1, t2, . . . , t|S|) where t1 < t2 <
· · · < t|S|, then the cost of the set is wS · τS ; the goal is
find an ordering of the elements that minimizes the sum
of these costs

∑
S∈S wS ·τS . (However, as noticed in that

paper, by making copies of sets, one can equivalently
imagine each set S to have a single requirement K(S),
and we are charged for the first time at which K(S)
elements from S have been chosen; i.e., the model
we use.) They showed that if all the weight vectors
were increasing or decreasing, one could get constant
factor approximations, even though the näıve greedy
algorithm could be arbitrarily bad. They then gave
an O(log r)-approximation for a greedy-like algorithm
using a clever harmonic interpolation idea; here r is the
size of the largest set in the set system. However, we can
show (see Section 6.1) that their algorithm cannot give a
constant-factor approximation for the general problem.

2 Min-sum Set Cover and GenMSSC

A key difference between min-sum set cover and the
generalized version of the problem can be illustrated
by looking at the max-coverage variants of both these
problems. In the max-coverage problem, given a bound
k, the goal is to choose k elements which maximizes
the number of sets hit. While it is known that the
greedy algorithm is a 1− 1/e approximation algorithm
for this problem, the max-coverage variant of the gen-
eralized problem becomes Dense-K-Subgraph hard even
for the case when a set is covered when 2 of its ele-
ments are selected. Indeed, given a graph G, consider
the following instance of GenMSSC: elements are the
vertices, and sets the edges. Each set e = {u, v} has
a covering requirement K(e) = 2. Clearly, the set of
k elements/vertices which “hits” the most number of
sets/edges is the collection of k vertices which induces
the most number of edges. Therefore, the max-coverage
version of GenMSSC is as hard as the Dense-K-Subgraph
problem.

Hence, while one can get constant factor approx-
imations for the min-sum set cover problem by solv-
ing the max-coverage problem for bounds of 2i (for
1 ≤ i ≤ dlog ne) and combining these solutions to get
a global linear ordering, näıvely using this approach
would fail for the GenMSSC problem. (Hassin and
Levin [HL05] use the max-coverage approach differently
for their e-approximation, and it would be interesting
to see if that approach can be extended to work for
GenMSSC.)

Our approach is based on a variation of this idea.



In particular, we use the following observation, which
suffices for our purposes even though it is too weak to
yield a useful guarantee for max-coverage. Consider the
LP formulation for the max-coverage instance given a
bound k, strengthened by adding the knapsack cover
inequalities. Let ` denote the number of sets which
are covered fractionally to an extent of at least 1/2
(or any constant) in an optimal fractional solution.
Then the solution obtained by applying a round of
randomized rounding (to the LP solution scaled by a
suitable constant factor) covers at least Ω(`) sets. At
a high level, it is this observation that forms the basis
of our algorithm and its analysis. We next describe the
details.

3 An LP Relaxation

Let [n] = {1, 2, . . . , n}, where n = |U |, the number of
elements in the universe. In the LP relaxation given
in Figure 3, xet is the indicator variable for whether
element e ∈ U is selected at time t ∈ [n], and ySt is the
indicator variable for whether set S has been covered
before time t ∈ [n].

If xet and ySt are restricted to only take values 0 or
1, then this is easily seen to be a valid formulation for
the problem. In particular, Constraints (3.1) require
that only one element can be assigned to a time slot
and constraints (3.2) require that each element must be
assigned some time slot. Constraints (3.3) correspond
to the knapsack cover constraints and require that if
ySt = 1, then for every subset of elements A, at least
K(S)− |A| elements must be chosen from the set S \A
before time t. As a consequence, we get that ySt can be
1 if and only if there have been K(S) elements picked
from S before time t. Therefore, the set would incur
an LP cost of exactly the cover time of the set in the
integral ordering (since the term (1 − ySt) would keep
contributing 1 to the LP objective until the set has been
covered).

Let Opt denote any optimal solution of the given
GenMSSC instance, and let LPOpt denote the cost of an
optimal LP solution. From the above discussion, the LP
is a valid relaxation and hence we have that,

Lemma 3.1. The LP cost LPOpt is at most the total
cover time of an optimal solution Opt.

3.1 Solving the LP: The Separation Oracle
Even though the LP formulation has an exponential
number of constraints, it can be solved assuming we
can, in polynomial time, verify if a candidate solution
(x, y) satisfies all the constraints. Indeed, consider
any fractional solution (x, y). Constraints (3.1), (3.2),
and (3.4) can easily be verified in O(mn+n2) time, one
by one.

Consider any set S, a time instant t and a particular
size a < K(S). To verify constraint (3.3), we wish to
check the following condition:

min
A:|A|=a

∑

e∈S\A

∑

t′<t

xet′ ≥ (K(S)− a) · ySt(3.5)

Now, notice that for any fixed set A of size a, the
left hand side could be rewritten as

∑
e∈S

∑
t′<t xet′ −∑

e∈A

∑
t′<t xet′ . Therefore, if the above condition were

to hold when we choose A to be the set of the a elements
with the largest values of

∑
t′<t xet′ , then it would

also hold for any other set A. Hence we can verify
constraint (3.3) in polynomial time for each choice of
set S, time t, and size a, and there are only O(mn2)
such choices to iterate over.

4 The Rounding Algorithm

Let (x∗, y∗) denote the optimal LP solution. Our
rounding algorithm proceeds in O(log n) stages, with
the ith stage operating in the time interval [1, 2i). In
stage i, we perform one round of randomized rounding
(as described below) on the fractional solution restricted
to the interval [1, 2i) and obtain a set Oi of elements. At
the conclusion of these stages, we output the elements
of O1, followed by elements of O2, O3, . . . , Odlog ne,
with the elements of any set Oj being output in an
arbitrary order. (Of course, we should only keep the
first occurrence of any element in the final output, but
imagining elements to potentially be output multiple
times will be easier for the analysis.)

The rounding process for stage i that generates the
set Oi is the following:

Algorithm 1 Randomized Rounding for stage i

1: let ti = 2i.
2: let ze,i ←

∑
t′<ti

x∗et′ be the fractional extent to
which e is selected before time ti, for each e ∈ U .

3: let pe,i ← min(1, 8ze,i) for all e ∈ U .
4: mark each element e ∈ U independently with

probability pe,i.
5: let Oi be the set of marked elements.
6: if |Oi| > 16 · 2i then drop all but 16 · 2i elements

from Oi.
7: return Oi.

5 The Analysis

In the interests of expositional simplicity, we have not
tried to optimize the constants in our analysis.

Observation 5.1. The fractional coverage of the sets
is monotonically non-decreasing. That is, y∗St ≥ y∗St′ for
all sets S ∈ S and 1 ≤ t′ ≤ t ≤ n.



minimize
∑

1≤t≤|U |

∑

S∈S
(1− ySt)(LP)

subject to
∑

e∈U

xet = 1 ∀ t ∈ [n](3.1)

∑

t∈[n]

xet = 1 ∀ e ∈ U(3.2)

∑

e∈S\A

∑

t′<t

xet′ ≥ (K(S)− |A|) · ySt ∀S ∈ S,∀A ⊆ S, ∀t ∈ [n](3.3)

xet, ySt ∈ [0, 1] ∀ e ∈ U, S ∈ S, t ∈ [n](3.4)

Figure 3.1: A Linear Programming Relaxation for GenMSSC

For any set S ∈ S, let t∗S denote the last time t at
which y∗St ≤ 1/2. The following fact is then immediate
because the set S pays at least (1− y∗St) ≥ 1/2 for each
time t ∈ [1, t∗S ].

Fact 5.1. (Lower Bound) LPOpt ≥ 1
2

∑
S t∗S

Lemma 5.1. For any set S and any stage i such that
t∗S ∈ [1, ti), the probability that K(S) elements from S
are not marked in stage i is at most e−9/8.

Proof. Consider any set S, and let Sg = {e ∈ S | ze,i ≥
1/8}. By the choice of pe,i in step 3 of our rounding
procedure, we know that all elements in Sg are definitely
marked in stage i, and any element e ∈ S \ Sg is
independently marked with probability 8ze,i. Thus, if
|Sg| ≥ K(S), then clearly the lemma holds.

Thus we consider the case when |Sg| < K(S).
Recall that we are considering a set S and stage i such
that t∗S ∈ [1, ti); since t∗S was the last time t at which
y∗St ≤ 1

2 , it follows that y∗Sti
> 1

2 . Hence, setting
A = Sg, constraint (3.3) implies that

∑

e∈S\Sg

ze,i =
∑

e∈S\Sg

∑

t′<ti

x∗et′ ≥ (K(S)− |Sg|) · y∗Sti

≥ 1
2
(K(S)− |Sg|).

Therefore, the expected number of elements from S \Sg

marked in stage i is
∑

e∈S\Sg

8ze,i ≥ 4(K(S)− |Sg|)

Since these elements are marked independently of each
other, we can use the following Chernoff bound [MR95]
(Theorem 4.2): if X1, X2, . . . , Xn are independent
{0, 1}-valued random variables with X =

∑
i Xi such

that E[X] = µ, then

Pr[X < µ(1− β)] ≤ exp(−β2

2
µ)

For our application, since we have µ ≥ 4(K(S) −
|Sg|) ≥ 4, we can substitute β = 3

4 and bound the
tail probability that fewer than (K(S)− |Sg|) elements
are marked from S \ Sg by exp(− (3/4)2

2 · 4) = e−9/8.
As the elements in Sg are all marked with probability
1, it follows that the probability that fewer than K(S)
elements are marked from S is also at most e−9/8.

Lemma 5.2. The probability that any elements are
dropped in step 6 is at most e−6.

Proof. To show this, we use the following concentra-
tion inequality [BLM00] (Theorem 1, Remark 3): if
X1, X2, . . . , Xn are independent {0, 1}-valued random
variables with X =

∑
i Xi such that E[X] = µ, then

Pr[X > µ + β)] ≤ exp(− β2

2µ + 2β/3
)

In our setting, since the probability with which an
element is picked in Oi is at most 8 times the extent
to which it was scheduled in [1, 2i) by the fractional LP
solution, the expected number of elements picked (i.e.
µ) in Oi is at most 8 · 2i. Therefore, by substituting
β = 8 · 2i and µ ≤ 8 · 2i in the above inequality, we get
that the probability of picking more than 16 · 2i is at
most exp( −64·22i

(64/3)2i ) ≤ exp(−6).

We now bound the cover time of the set S for the
above algorithm.

Theorem 5.1. (Cover Time) The expected cover
time of a set S is at most O(1)t∗S.



Proof. Let CovAlg(S) denote the cover time of set S
with respect to the ordering output by our algorithm.
For ease of analysis, we will consider a set S to be
covered in some stage i only if that t∗S ∈ [1, ti), and
moreover the set Oi returned is not truncated. Note
that if the set S is actually covered with any of these
criteria not met, its cover time only improves. Let EiS

denote the event that set S is first covered in stage i
under this modified notion of coverage. Then we have

E
[
CovAlg(S)

]
≤

dlog ne+1∑

i=dlog t∗Se
(2 · 16 · 2i)× Pr [EiS ] ,

since if S is covered in stage i, its cover time is at most∑i
j=1 16 · 2j ≤ 32 · 2i. Also, we know that any set

will certainly be covered by stage dlog ne because the
matching constraints (3.1) and (3.2) would ensure that
each element be picked to an extent 1 by time n.

Now, the event EiS that a set S is first covered in
stage i is strictly contained in the event that S is not
covered in stages dlog t∗Se, (dlog t∗Se+1), . . . , (i−2), and
(i − 1). But for any i, the event that S is not covered
in stage i occurs only when either

1. K(S) elements from S were not picked in Oi, or

2. Oi was truncated in step 6.

The former event happens with probability at most
e−9/8 from Lemma 5.1, and the latter event happens
with probability at most e−6 from Lemma 5.2. Hence,
the probability that S is not covered in any fixed stage
is at most e−9/8 + e−6 < e−1. Thus, we have

Pr [EiS ] ≤ exp(−(i− dlog t∗Se)).

Plugging this into equation (5.6), we get

E
[
CovAlg(S)

]
≤

dlog ne∑

i=dlog t∗Se
(2 · 16 · 2i)× e−(i−dlog t∗Se)

= 32 · 2dlog t∗Se ×
dlog ne∑

i=dlog t∗Se
(2/e)(i−dlog t∗Se)

≤ (64 · e
e− 2

)× t∗S

By linearity of expectation, the expected covering time
of all the sets is at most 64e

e−2

∑
S t∗S , which by Fact 5.1

is at most 128e
e−2 LPOpt ≤ 485 LPOpt. This completes the

proof of Theorem 1.1.

6 Two Examples

6.1 A Bad Example for Harmonic Interpola-
tion-Based Greedy We now give an example where
the algorithm of [AGY09] has an approximation ratio of
Ω(
√

log n) for the multiple intents re-ranking problem.
(See Section 1.1 for the problem definition; recall that
it is equivalent to our problem.)

Consider the following set system: the universe
is U = {a1, a2, . . . , an, b1, b2, . . . , bt}. There is a
“large” set S0 = {a1, a2, . . . , an} with a weight vector
wS0 = (1, 1, . . . , 1). There are also t other “small” sets
S1, S2, . . . , St, with the set Si = {bi} having a weight
vector wSi

= (Hn/2). Here, Hn is the nth harmonic
number, defined by Hn = 1 + 1/2 + . . . + 1/n.

Consider the ordering b1, b2, . . . , bt, a1, a2, . . . , an of
the vertices (henceforth called order A): . In this
ordering, any small set Si would incur a (weighted)
cost of exactly iHn

2
, while the large set incurs a cost

of (t + 1) + (t + 2) + . . . + (t + n) = nt + Θ(n2).
Therefore, the total weighted cost of such an order
would be O(t2Hn

2
+ nt + n2).

The harmonic interpolation method [AGY09] was
to replace each weight vector w = (w1, w2, . . . , wl) by
a new “harmonic” weight vector w′ = (w′1, . . . , w

′
l),

where w′j =
∑

j′≥j wj′ · 1
j′−j+1 , and then run the greedy

algorithm on these new weight vectors. Note that the
harmonic weight vector for the small sets remains the
same as the original weight vector, but the one for the
large set changes to wS0

′ = (Hn,Hn−1, . . . , Hn
2
, . . . , 1).

Now the greedy algorithm would not pick any of the
vertices from {bi : i ∈ [1, t]} during the first n/2 time
instants, since the weight vector for S0 has larger values.
Therefore, each of the small sets would incur a cost of
at least n

2 Hn
2
, and the large set incurs a cost of Ω(n2).

As a result, the total cost for the instance under this
ordering would be Ω(ntHn

2
+ n2).

Setting t = n(log n)−1/2, we see that the cost
incurred by order A is O(n2) whilst the cost incurred
by the harmonic algorithm is Ω(n2 · √log n), and this
gives us an algorithmic gap of Ω(

√
log n).

6.2 A Bad Example for the Standard LP Relax-
ation Consider the LP relaxation without the knapsack
cover inequalities for the GenMSSC problem.

We now show that the integrality gap of this LP can
be arbitrarily bad for large values of K(S). Consider the
following universe: U = l{a1, a2, . . . , an, b1, b2, . . . , bl}.
There are l sets, with set Si = {a1, a2, . . . , an, bi} for
each i ∈ [l].l Moreover, all the sets have a covering
requirement of K(S) = (n + 1). Note that this is just
an instance of the min-latency set cover problem, since
any set is covered only when all the elements contained
in it are selected.



minimize
∑

1≤t≤|U |

∑

S∈S
(1− ySt)(LPnoKC)

subject to
∑

e∈U

xet ≤ 1 ∀ t ∈ [n](6.6)

∑

t∈[n]

xet ≤ 1 ∀ e ∈ U(6.7)

∑

e∈S

∑

t′<t

xet′ ≥ K(S) · ySt ∀S ∈ S, ∀ t ∈ [n](6.8)

xet, ySt ∈ [0, 1] ∀ e ∈ U, S ∈ S, t ∈ [n](6.9)

Figure 6.2: The Natural LP Relaxation for GenMSSC

Consider the following fractional solution: Select
element at in time slot t for t ∈ [n], and element bt

in time slot (n + t) for t ∈ [l] (i.e. set xatt = 1
and xbt(n+t) = 1). Although the xet variables are
integral, the LP will now cheat when it comes to the ySt

variables (which is what contributes to the objective).
For any set S and time slot t, the LP solution sets
ySt = min(1, 1

n+1

∑
e∈S

∑
t′<t xet).

We first analyze the LP cost of this assignment:
clearly, with each element we pick from {a1, a2, . . . , an},
the ySt term would decrease by an additive 1/(n + 1);
and this happens for each set, in each of the first n time
steps. Hence, each set would incur a cost of 1 + (1 −

1
n+1 )+(1− 2

n+1 )+ . . .+(1− n−1
n+1 ) (roughly n/2) for the

first n time-steps. After this, however, we cover one set
at a time in time slots (n+1), (n+2), . . . , (n+l): but by
this time each set has only a 1/(n+1) uncovered fraction
which needs to incur any cost for this final covering step:
hence the total LP cost would be Θ(nl + 1

n+1 (nl + l2)).
However, each integer solution might as well sched-

ule the elements {a1, a2, . . . , an} before selecting the
elements {b1, b2, . . . , bl} one by one, giving a cost of
(n + 1) + (n + 2) + . . . + (n + l) = nl + l2. Now setting
n =

√
l gives us an integrality gap of Ω(

√
l).

Notice that with the knapsack cover inequality, the
ySt values cannot decrease by 1/(n + 1) with each
additional covered element. In fact, for this extreme
case of min-latency, the above LP strengthened with
the knapsack cover inequalities is equivalent to the
time-indexed LP relaxation for precedence-constrained
scheduling on a single machine, which has an integrality
gap of 2.

7 Closing Remarks

The proofs trivially extend to the case where each set S
also has a weight wS ∈ R+, and the objective function
is

∑
S wsCov(S).
The current approximation factor is a rather large

constant, and it would be interesting to pin down the
integrality gap of this LP relaxation better. For both
the extreme cases of the min-sum set cover and min-
latency set-cover, it is known that the integrality gap
of this LP relaxation is 4 (see [FLT02] for a dual-
fitting proof) and 2 [HSSW97] respectively. We have
not tried to optimize the constants in this abstract;
however, getting a substantially lower constant might
require other ideas.

References

[AGY09] Yossi Azar, Iftah Gamzu, and Xiaoxin Yin. Multi-
ple intents re-ranking. In STOC ’09: Proceedings of the
41st Annual ACM Symposium on Theory of Comput-
ing, pages 669–678, New York, NY, USA, 2009. ACM.

[BK09] Nikhil Bansal and Subhash Khot. Optimal long
code test with one free bit. In FOCS, page to appear,
2009.

[BLM00] Stéphane Boucheron, Gábor Lugosi, and Pascal
Massart. A sharp concentration inequality with ap-
plication. Random Struct. Algorithms, 16(3):277–292,
2000.

[BNBH+98] Amotz Bar-Noy, Mihir Bellare, Magnús M.
Halldórsson, Hadas Shachnai, and Tami Tamir. On
chromatic sums and distributed resource allocation.
Inform. and Comput., 140(2):183–202, 1998.

[CFK03] Edith Cohen, Amos Fiat, and Haim Kaplan. Ef-
ficient sequences of trials. In Proceedings of the Four-
teenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms (Baltimore, MD, 2003), pages 737–746, New
York, 2003. ACM.

[CFLP00] Robert Carr, Lisa Fleischer, Vitus Leung, and
Cynthia Phillips. Strengthening integrality gaps for
capacitated network design and covering problems.
In Symposium on Discrete Algorithms (SODA), pages
106–115, 2000.

[CK04] Chandra Chekuri and Sanjeev Khanna. Approx-
imation algorithms for minimizing average weighted



completion time. In Joseph Leung, Laurie Kelly, and
James H. Anderson, editors, Handbook of Scheduling:
Algorithms, Models, and Performance Analysis. CRC
Press, Inc., Boca Raton, FL, USA, 2004.

[CM99] Chandra Chekuri and Rajeev Motwani. Precedence
constrained scheduling to minimize sum of weighted
completion times on a single machine. Discrete Appl.
Math., 98(1-2):29–38, 1999.

[FLT02] Uriel Feige, László Lovász, and Prasad Tetali.
Approximating min-sum set cover. In Approxima-
tion algorithms for combinatorial optimization, volume
2462 of Lecture Notes in Comput. Sci., pages 94–107.
Springer, Berlin, 2002.

[FLT04] Uriel Feige, László Lovász, and Prasad Tetali.
Approximating min sum set cover. Algorithmica,
40(4):219–234, 2004.

[HL05] Refael Hassin and Asaf Levin. An approximation al-
gorithm for the minimum latency set cover problem. In
Algorithms—ESA 2005, volume 3669 of Lecture Notes
in Comput. Sci., pages 726–733. Springer, Berlin, 2005.

[HSSW97] Leslie A. Hall, Andreas S. Schulz, David B.
Shmoys, and Joel Wein. Scheduling to minimize av-
erage completion time: off-line and on-line approxi-
mation algorithms. Math. Oper. Res., 22(3):513–544,
1997.

[KSW99] David Karger, Cliff Stein, and Joel Wein. Schedul-
ing algorithms. In Algorithms and theory of computa-
tion handbook, pages 35–1–35–33. CRC, Boca Raton,
FL, 1999.

[MBMW05] Kamesh Munagala, Shivnath Babu, Rajeev
Motwani, and Jennifer Widom. The pipelined set cover
problem. In Database theory—ICDT 2005, volume
3363 of Lecture Notes in Comput. Sci., pages 83–98.
Springer, Berlin, 2005.

[MQW03] François Margot, Maurice Queyranne, and
Yaoguang Wang. Decompositions, network flows, and
a precedence constrained single-machine scheduling
problem. Oper. Res., 51(6):981–992, 2003.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Ran-
domized Algorithms. Cambridge University Press,
1995.

[Woe03] Gerhard Woeginger. On the approximability of
average completion time scheduling under precedence
constraints. Discrete Applied Mathematics, 131:237–
252, 2003.


	Carnegie Mellon University
	Research Showcase @ CMU
	1-2010

	A Constant Factor Approximation Algorithm for Generalized Min-Sum Set Cover
	Nikhil Bansal
	Anupam Gupta
	Ravishankar Krishnaswamy
	Published In



