
 

 

 

Proceedings of the Workshop on Software 

Engineering Foundations for End-User 

Programming (SEEUP 2009) 

Len Bass 
Grace A. Lewis 

Brad Myers 

Dennis B. Smith 

 

 

 

 

November 2009 

SPECIAL REPORT 

CMU/SEI-2009-SR-015  

Research, Technology, and System Solutions (RTSS) Program 
Unlimited distribution subject to the copyright. 

http://www.sei.cmu.edu 

http://www.sei.cmu.edu


 

 

This report was prepared for the 

SEI Administrative Agent 

ESC/XPK 

5 Eglin Street 

Hanscom AFB, MA 01731-2100 

The ideas and findings in this report should not be construed as an official DoD position. It is published in the 

interest of scientific and technical information exchange. 

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally 

funded research and development center sponsored by the U.S. Department of Defense. 

Copyright 2009 Carnegie Mellon University. 

NO WARRANTY 

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS 

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF 

ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED 

TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS 

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE 

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR 

COPYRIGHT INFRINGEMENT. 

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder. 

Internal use. Permission to reproduce this document and to prepare derivative works from this document for 

internal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions 

and derivative works. 

External use. This document may be reproduced in its entirety, without modification, and freely distributed in 

written or electronic form without requesting formal permission. Permission is required for any other external 

and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at 

permission@sei.cmu.edu. 

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with 

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research 

and development center. The Government of the United States has a royalty-free government-purpose license to 

use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, 

for government purposes pursuant to the copyright license under the clause at 252.227-7013. 

For information about purchasing paper copies of SEI reports, please visit the publications section of our website 

(http://www.sei.cmu.edu/publications/).

mailto:permission@sei.cmu.edu
http://www.sei.cmu.edu/publications/


 

i | CMU/SEI-2009-SR-015 

Table of Contents 

Acknowledgments vii 

Abstract  ix 

1 Workshop Introduction 1 
1.1 Workshop Goal 1 
1.2 Discussion 2 

2 Invited Talk: The State of the Art in End-User Software Engineering 5 

3 Extended Abstracts of Workshop Papers Published in ICSE Proceedings 9 
3.1 End-User Software Engineering: A Distributed Cognition Perspective 9 
3.2 Extending the Boundary of Spreadsheet Programming: Lessons Learned from Chinese 

Governmental Projects 19 
3.3 End-User Software Development in a Scientific Organization 20 

4 Invited Talk: Using Crystal Reports: Examples of Richly Formatted Report Creation by 
Non-Developers 23 
4.1 Context 23 
4.2 Crystal Reports 23 
4.3 Crystal Reports and End-User Programming 23 

4.3.1 Formula Language vs. Helpers 25 
4.3.2 Data Abstraction 26 
4.3.3 Programming Best Practices 26 
4.3.4 Templates 26 

4.4 Final Thoughts 27 

5 Workshop Summary 28 
5.1 Introduction to EUP State of Practice 28 
5.2 The Developer Perspective of EUP 30 
5.3 The End-User Perspective of EUP 30 
5.4 Discussion of Selected Topics 31 

5.4.1 Multi-User Creation of End-User Engineered Software 31 
5.4.2 How to Shape EUP Frameworks to Produce Better Software 32 

5.5 Workshop Review 33 
5.6 Next Steps 33 

 

  



 

ii | CMU/SEI-2009-SR-015 



 

iii | CMU/SEI-2009-SR-015 

List of Figures 

Figure 3-1: WYSIWYT supports systematic testing for end users, to help the user test and debug 
spreadsheet formulas [16]. 11 

Figure 3-2: An interactive visualization for showing end users the relative importance of different words 
to a machine- learned program’s decision-making. For example, the word “email” is fairly 
neutral in classifying messages to folder1 (pink), but is forbidden for folder2 messages 
(blue). Users are able to drag any bar up or down to explicitly change the logic of the 
learned program [10]. 13 

Figure 3-3: Correlation between total bugs fixed and number of dataflow following instances.  
Left: male (significant), right: female (not significant) [18]. 14 

Figure 4-1: Examples of Reports Created using Crystal Reports 24 

Figure 4-2: Screenshot of Crystal Reports Free Desktop Viewer 25 

Figure 4-3: Example of Crystal Report’s Formula Language 26 

 



 

iv | CMU/SEI-2009-SR-015 



 

v | CMU/SEI-2009-SR-015 

List of Tables 

Table 3-1: Strategies in Finding and Fixing Bugs. 15 

 

  



 

vi | CMU/SEI-2009-SR-015 

 



 

vii | CMU/SEI-2009-SR-015 

Acknowledgments 

There are many people that we would like to thank for making this workshop a success.  

First of all, we would like to thank the authors and presenters that shared their work with us. 

 Margaret Burnett, Oregon State University, USA  

 Andrew J. Ko, University of Washington, USA 

 Harold Schellekens, SAP BusinessObjects, Canada 

 Mark Vigder, National Research Council, Canada 

 Xingliang Yu, Chinese Academy of Sciences, China 

Next we would like to thank the workshop attendees who contributed to the lively discussion. 

 Thomas Aschauer, University of Salzburg, Austria 

 Nat Ayewah, University of Maryland at College Park, USA 

 Yvonne Dittrich, IT University of Copenhagen, Denmark 

 Suzanne Garcia, Software Engineering Institute, USA 

 Seth Holloway, University of Texas at Austin, USA 

 Holger Kienle, University of Victoria, Canada 

 Daniel Kulesz, Stuttgart University, Germany 

 Hausi Muller, University of Victoria, Canada 

 Gregory Nain, INRIA Rennes, France 

 Karl Reed, University of Milano, Italy 

 Chris Scaffidi, Oregon State University, USA 

 Joao Sousa, George Mason University, USA 

 Kathleen Stolee, University of Nebraska at Lincoln, USA 

 Kerim Yildirim, Kocaeli University, Turkey 

Finally, we thank our program committee, which made sure we had a set of high quality papers to 

frame our workshop. 

 Margaret Burnett, Oregon State University, USA  

 Steven Clarke, Microsoft Research, UK  

 Sebastian Elbaum, University of Nebraska, USA  

 Martin Erwig, Oregon State University, USA  

 Mary Beth Rosson, Pennsylvania State University, USA  

 Gregg Rothermel, University of Nebraska, USA  

 Janice Singer, National Research Council, Canada  

  



 

viii | CMU/SEI-2009-SR-015 

 



 

ix | CMU/SEI-2009-SR-015 

Abstract 

The Workshop on Software Engineering Foundations for End-User Programming (SEEUP) was 

held at the 31
st
 International Conference on Software Engineering (ICSE) in Vancouver, British 

Columbia on May 23, 2009.  

This workshop discussed end-user programming with a specific focus on the software engineering 

that is required to make it a more disciplined process, while still hiding the complexities of greater 

discipline from the end user. Speakers covered how to understand the problems and needs of the 

real end users of end-user programming. The discussion focused on the software engineering and 

supporting technology that would have to be in place to address these problems and needs. 

 

  



 

x | CMU/SEI-2009-SR-015 

 



 

1 | CMU/SEI-2009-SR-015 

1 Workshop Introduction 

We define end-user programmers as people who write programs not as their primary job function 

but in support of achieving their main goal, which is something else, such as accounting, design-

ing a web page, doing office work, performing scientific research, or creating entertainment prod-

ucts. End-user programming (EUP), their activities in writing programs, has been around for a 

long time, in the form of shell scripts and Microsoft Excel spreadsheets that allow users to auto-

mate tasks specific to their needs.  

However, since the Internet gained wider use and more particularly with the recent explosion in 

the availability of web technologies, end users now have more ways (such as JavaScript and 

Flash) to author programs, share them with others, and use programs created by others. Given the 

appropriate tools, end users can construct applications simply by using a set of drag-and-drop op-

erations that pull together capabilities from different sources. 

To fully realize the substantial potential benefits of EUP, software engineering discipline needs to 

be in place to enable the flexibility it provides and protect against the problems that might arise 

from that flexibility. For example, EUP through the Internet has vastly increased the use of shared 

code and shared data; the accompanying risk is that users are more exposed to code and data that 

is of poor quality or that might be malicious. This example is not just hypothetical: Businesses are 

seeing and understanding the impact of errors in end-user programs on their processes. The con-

cern about safeguards for EUP has become known as End-User Software Engineering (EUSE). 

To discuss EUSE, we organized a workshop on May 23, 2009 at the 31st International Conference 

on Software Engineering (ICSE 2009). Our “Workshop on Software Engineering Foundations for 

End-User Programming, SEEUP 2009” is also known as “WEUSE V: The 5th Workshop on End-

User Software Engineering,” to associate it with workshops held at previous ICSE and Computer 

Human Interaction (CHI) conferences and also at Dagstuhl, Germany. 

1.1 Workshop Goal 

The goal of the SEEUP 2009 workshop was to discuss EUP with a focus on how software engi-

neering practice can be used in ways that make it more disciplined without burdening end users 

with the complexities of the greater discipline. Specifically, the intent is to understand the prob-

lems and needs of the real user in EUP.  

We set the themes of the workshop to include discussions of: 

 the range of EUP approaches 

 specific EUP approaches that have the potential to provide significant benefits 

 mechanisms to prevent malicious use of end-user capabilities while not inhibiting legitimate 

use 

 an adoption path for EUP based on a disciplined software engineering foundation, highlight-

ing potentials and limitations of end-user programming 



 

2 | CMU/SEI-2009-SR-015 

1.2 Discussion 

EUP has a broad range of application: 

 Accounting (e.g., writing spreadsheet formulas and macros) 

 Analysis using MatLab (a leading high-level language for computationally intensive tasks) 

 Creation of web pages 

 Recording of macros in Microsoft Word 

 Automation of office tasks 

 Creation of reports and forms in business software (e.g., SAP programming) 

 “Programming” of appliances such as VCRs, remote controls, and microwave ovens 

 Scientific research 

 Authoring of educational software 

 Creation of e-mail filters 

 Configuration of synthesizers by musicians 

 Entertainment (e.g., creation of behaviors in The Sims games) 

 Web 2.0: mashups and end-user created content 

This widespread use is reflected in the variety of other names by which EUP is known and the 

areas to which it is related. The term End-User Development (EUD) seems to be preferred in Eu-

rope; it encompasses other aspects of development besides programming, such as end-user design, 

testing, and documentation. The area of Domain-Specific Languages (DSLs) is highly related to 

EUP, since most DSLs are aimed at EUPs; languages for EUP are sometimes called scripts or ma-

cros. The concepts of end-user tailoring and radical customization are related to EUP, as is visual 

programming (the use of graphics to help with programming tasks). Another related area is pro-

gramming-by-example (PBE) which is also called programming-by-demonstration (PBD). Final-

ly, we have also heard the term rapid application development (RAD) used for systems aimed at 

EUP. 

The National Science Foundation (NSF) reports that there are about 6 million scientists and engi-

neers in the U.S., most of whom do some programming as part of their jobs [10]. Also, two NSF 

workshops determined that end-user software is in need of serious attention [2]. Our own research 

found that there are about 3 million professional programmers in the United States, but more than 

12 million people say they do programming at work. Another 55 million use spreadsheets and 

databases and thus may also be considered to be doing programming [12].  

Unfortunately, given how much EUP is being done, errors are pervasive in software created by 

end users. When the software that end users create is not dependable, the people whose retirement 

funds, credit histories, e-business revenues, and even health and safety rely on decisions made 

using that software can face serious consequences. For example, a Texas oil firm lost millions of 

dollars in an acquisition deal through spreadsheet errors [11]. There are many other examples of 

spreadsheet errors causing financial losses at http://eusesconsortium.org/euperrors/. Errors in web 

page programming and even in programming e-mail filters also cause people annoyance and 

harm. 

http://eusesconsortium.org/euperrors/


 

3 | CMU/SEI-2009-SR-015 

A growing group of researchers is trying to address this problem. Two recent large collaborative 

efforts, for instance, have produced a number of promising results in this area (e.g., End-User De-

velopment [13]): 

 in the U. S., the EUSES Consortium (http://eusesconsortium.org/) 

 in Europe, the Network of Excellence on End-User Development 

(http://giove.cnuce.cnr.it/eud-net.htm)  

Also, special Interest Group meetings at CHI‟2004 [5], CHI‟2005 [6], CHI‟2007 [8], CHI‟2008 

[7], CHI‟2009 [9] and the WEUSE series of workshops at ICSE‟2005 [4], CHI‟2006 [3], Dagstuhl 

2007 (see www.dagstuhl.de/07081) and ICSE‟2008 [1], very successfully brought together re-

searchers and companies interested in this topic. 

We feel that EUSE is a multi-disciplinary problem needing software engineering research, pro-

gramming language research, education research, end-user programming research, and human-

computer interaction (HCI) research of all types. Therefore, the SEEUP 2009 workshop encour-

aged interested people to work together and to connect researchers and companies with EUP 

products. 

References 

[1] R. Abraham, M. Burnett, and M. Shaw, eds., Proceedings of the Fourth Workshop on End-

User Software Engineering (WEUSE IV). New York: ACM, 2008.  

[2] B. Boehm, and V. Basili, “Gaining intellectual control of software development,” Computer 

vol. 33, no. 5, pp. 27-33, 2000. 

[3] M. M. Burnett, et al., “The Next Step: From End-User Programming to End-User Software 

Engineering (WEUSE II),” CHI’2006'06 extended abstracts on Human factors in computing sys-

tems, Montreal, Canada, pp. 1699-1702, Apr. 2006.  

[4] S. Elbaum and G. Rothermel, eds. Proceedings of the First Workshop on End-User Software 

Engineering: WEUSE 2005. http://www.cse.unl.edu/~grother/weuse/weuse-proceedings.pdf (ac-

cessed November 15, 2009).  

[5] B. A. Myers, and M. Burnett, “End-Users Creating Effective Software (Special Interest Group 

Meeting Abstract),” Extended Abstracts of the 2004 Conference on Human Factors in Computing 

Systems, CHI’2004, Vienna, Austria, pp. 1592-1593, Apr. 2004. 

[6] B. A. Myers, M. Burnett, and M. B. Rosson, “End Users Creating Effective Software. (Special 

Interest Group),” Extended Abstracts Proceedings of the 2005 Conference on Human Factors in 

Computing Systems, CHI’2005, Portland, OR (USA), pp. 2047-2048, Apr. 2005. 

[7] B. A. Myers, et al., “End User Software Engineering: CHI‟2008 Special Interest Group Meet-

ing,” Extended Abstracts Proceedings of the 2008 Conference on Human Factors in Computing 

Systems, CHI’2008, Florence, Italy, pp. 2371-2374, Apr. 2008. 

[8] B. A. Myers, et al. “End User Software Engineering: CHI'2007 Special Interest Group Meet-

ing,” Extended Abstracts Proceedings of the 2007 Conference on Human Factors in Computing 

Systems, CHI’2007, San Jose, CA (USA), pp. 2125-2128, Apr. 2007. 

http://eusesconsortium.org/
http://www.cse.unl.edu/~grother/weuse/weuse-proceedings.pdf
http://giove.cnuce.cnr.it/eud-net.htm
http://www.dagstuhl.de/07081


 

4 | CMU/SEI-2009-SR-015 

[9] B. A. Myers, et al., “End User Software Engineering: CHI'2009 Special Interest Group Meet-

ing,” Proceedings of the 27th International Conference on Human Factors in Computing Systems, 

CHI’2009, Extended Abstracts Volume, Boston, MA (USA), pp. 2731-2734, Apr. 2009. 

[10] National Science Board, Science and Engineering Indicators 2006. National Science Founda-

tion volume 1: NSB 06-01; volume 2: NSB 06-01A, 2006. Arlington, VA. 

http://www.nsf.gov/statistics/seind06/ (accessed November 15, 2009).  

[11] R. Panko, “Finding spreadsheet errors: Most spreadsheet models have design flaws that may 

lead to long-term miscalculation,” Information Week, pp. 100, May 29, 1995. 

[12] C. Scaffidi, M. Shaw, and B. Myers, “Estimating the Numbers of End Users and End User 

Programmers,” Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC'05), Dallas, TX (USA), pp. 207-214, Sept. 2005. 

[13] H. Lieberman, F. Paterno, and V. Wulf eds., End-User Development. 2006, Springer: Dor-

drecht, The Netherlands.  

 

 

http://www.nsf.gov/statistics/seind06/


 

5 | CMU/SEI-2009-SR-015 

2 Invited Talk: The State of the Art in End-User Software 

Engineering 
Andrew J. Ko, The Information School, University of Washington, ajko@u.washington.edu 

 

From the first digital computer programs in the 1940‟s to today‟s rapidly growing software indus-

try, computer programming has become a technical skill of millions. As this profession has grown, 

however, a second, perhaps more powerful trend has begun to take shape. According to statistics 

from the U.S. Bureau of Labor and Statistics, by 2012 in the United States there will be fewer 

than 3 million professional programmers, but more than 55 million people using spreadsheets and 

databases at work, many writing formulas and queries to support their job [1]. There are also mil-

lions designing websites with Javascript, writing simulations in MATLAB [2], prototyping user 

interfaces in Flash [3], and using countless other platforms to support their work and hobbies. 

Computer programming, almost as much as computer use, is becoming a widespread, pervasive 

practice. 

What makes these “end-user programmers” different from their professional counterparts is their 

goals: professionals are paid to ship and maintain software over time; end users, in contrast, write 

programs to support some goal in their own domains of expertise. End-user programmers might 

be secretaries, accountants, children [4], teachers [5], interaction designers [3], scientists [6] or 

anyone else who finds themselves writing programs to support their work or hobbies. Program-

ming experience is an independent concern. For example, despite their considerable programming 

skills, many system administrators view programming as only a means to keeping a network and 

other services online [7]. The same is true of many research scientists [8], [6]. 

Despite their differences in priorities from professional developers, end-user programmers face 

many of the same software engineering challenges. For example, they must choose which APIs, 

libraries, and functions to use [9]. Because their programs contain errors [10], they test, verify and 

debug their programs. They also face critical consequences to failure. For example, a Texas oil 

firm lost millions of dollars in an acquisition deal through error in a spreadsheet formula [11]. The 

consequences are not just financial. Web applications created by small-business owners to pro-

mote their businesses do just the opposite if they contain bad links or pages that display incorrect-

ly, resulting in loss of revenue and credibility [12]. Software resources configured by end users to 

monitor non-critical medical conditions can cause unnecessary pain or discomfort for users who 

rely on them [13]. 

Because of these quality issues, researchers have begun to study end-user programming practices 

and invent new kinds of technologies that collaborate with end users to improve software quality. 

This research area is called end-user software engineering (EUSE). This topic is distinct from re-

lated topics in end-user development in its focus on software quality. For example, there have 

been prior surveys of novice programming environments [14], discussing systems that either help 

students acquire computing skills or enable the creation of computational artifacts; while quality 

is a concern in these contexts, this work focuses largely on learning goals. There have also been 

surveys on end-user programming [15], [16], but these focus on the construction of programs to 

mailto:ajko@u.washington.edu


 

6 | CMU/SEI-2009-SR-015 

support other goals, but not on engineering activities peripheral to construction, such as require-

ments, specifications, reuse, testing, and debugging. 

In this invited talk, I explore prior work on end-user software engineering and identify several 

themes. In particular, I make the distinction between people who create programs for other people 

to use (typically called professional programmers) and people who create programs for their own 

use (typically called end-user programmers). I then explore five kinds of software engineering 

activities, identifying several differences between these communities: 

 Requirements. In end-user programming, requirements are often emergent, tend to involve 

automating things, and they come from the user themselves. There is an interesting conti-

nuum between how many different requirements a program must satisfy: the more complex 

and diverse the requirements, the more end users must attend to software engineering goals. 

 Design and specifications. End-user programmers rarely need to explicitly define designs or 

specifications, primarily because their requirements come from themselves. However, many 

systems have found ways of rewarding the creation of explicit specifications. For example, 

some systems support a particular design process (such as web site prototyping tools). Others 

raise the level of abstraction of the programming language, making it more like a specifica-

tion language. Others still enable users to make intermediate specification languages, such as 

spreadsheet templates, and then get correctness guarantees. 

 Reuse. Most of what end-user programmers do is reuse code and APIs, but there is a wide 

range of kinds of reuse. It may be at the level of copying and pasting code, parameterizing a 

form, creating rules, or choosing from a list of existing primitives or API calls. Systems have 

supported this variety of reuse in several domains. 

 Testing and Verification. End-user programmers rarely have the incentive to explicitly test 

and verify their programs and they often are overconfident in their program‟s correctness. 

Systems have found ways to provide immediate feedback about correctness to combat this 

overconfidence. For example, spreadsheet systems have provided ways for users to confirm 

or reject output values and then see the impact of their decision on the overall spreadsheet 

correctness. 

 Debugging. The central challenge in debugging is that guessing and checking what caused an 

incorrect output or behavior requires people to have a deeper understanding of the dynamic 

dependencies in the execution of a program. This typically requires more training than is ne-

cessary to write the program in the first place. Systems have provided ways for users to trace 

backwards from faulty output, to aid in the exploration of dynamic runtime dependencies. 

In addition to the trends above, I explore several cross-cutting issues. For example, the choice to 

use any of the above systems usually involves an implicit assessment of the cost, risk, and poten-

tial reward of using the tool. Alan Blackwell‟s Attention Investment model [17] is a helpful way 

of evaluating these. This model has been converted into a design strategy called Surprise, Explain, 

Reward [18] in which the system creates some surprise (such as a conflict between the reasoning 

of the user and the system), explains the potential for a reward (such as improved program cor-

rectness), and then provides the reward (such as an increase the program‟s testedness). 



 

7 | CMU/SEI-2009-SR-015 

I conclude the talk by arguing that most of the above techniques allow users to structure their 

work in a way that is consistent with their goals by providing incremental, immediate feedback 

for a range of software engineering techniques. Because feedback is incremental, users can pro-

ceed in whatever order makes sense for their work and still get useful feedback from the system. 

The immediacy of feedback is crucial to overcome end-user programmers lack of a disciplined 

and rigorous software engineering practice. This incremental, immediate feedback design strategy 

has the potential to generalize to many end-user software engineering tools. 

References 

[1] C. Scaffidi, M. Shaw, and B. Myers, “Estimating the Numbers of End Users and End User 

Programmers,” Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC'05), 2005, pp. 207-214. 

[2] N. Gully, “Improving the Quality of Contributed Software on the MATLAB File Exchange,” 

The Next Step: From End-User Programming to End-User Software Engineering (WEUSE II 

Workshop at CHI’2006), Montreal, Québec, Canada. [Online] Available: 

http://eusesconsortium.org/weuseii/proceedings.php (accessed: October 31, 2009). 

[3] B. Myers, S. Park, Y. Nakano, G. Mueller, and A. J. Ko, “How designers design and program 

interactive behaviors,” Proceedings of the 2008 IEEE Symposium on Visual Languages and Hu-

man-Centric Computing - Volume 00, 2008, pp. 177-184 . 

[4] M. Petre, and A. F. Blackwell, “Children as unwitting end-user programmers,” Proceedings of 

the IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2007), 

2007, pp. 239-242. 

[5] S. Wiedenbeck, “Facilitators and inhibitors of end-user development by teachers in a school 

environment.” Proceedings of the IEEE Symposium on Visual Languages and Human-Centric 

Computing (VL/HCC’05), 2005, pp. 215-222. 

[6] J. Segal, “Some problems of professional end user developers.” Proceedings of the 2007 IEEE 

Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2007), 2007, pp. 111-

118. 

[7] R. Barrett, E. Kandogan, P. P. Maglio, E. M. Haber, L. A. Takayama, and M. Prabaker, “Field 

studies of computer system administrators: analysis of system management tools and practices,” 

Proceedings of the 2004 ACM Conference on Computer Supported Cooperative Work, 2004, pp. 

388-395. 

[8] J. Carver, R. Kendall, S. Squires, and D. Post, “Software engineering environments for scien-

tific and engineering software: a series of case studies,” Proceedings of the 29th International 

Conference on Software Engineering, 2007, pp. 550-559. 

[9] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers in end-user programming sys-

tems,” Proceedings of the 2004 IEEE Symposium on Visual Languages and Human-Centric Com-

puting (VL/HCC’04), 2004, pp. 199-206. 

http://eusesconsortium.org/weuseii/proceedings.php


 

8 | CMU/SEI-2009-SR-015 

[10] R. Panko, “What we know about spreadsheet errors,” Journal of End User Computing, vol. 2, 

pp. 15-21, 1998. 

[11] R. Panko, “Finding spreadsheet errors: most spreadsheet models have design flaws that may 

lead to long-term miscalculation,” Information Week, p. 100, May 29,1995. 

[12] M. B. Rosson, J. Ballin, and J. Rode, “Who, what, and how: A survey of informal and profes-

sional web developers,” Proceedings of the 2005 IEEE Symposium on Visual Languages and Hu-

man-Centric Computing (VL/HCC’05), 2005, pp. 199-206. 

[13] E. Orrick, “GE Healthcare Integrated IT Solutions, Centricity,” The Next Step: From End-

User Programming to End-User Software Engineering (WEUSE II Workshop at CHI’2006), Mon-

treal, Québec, Canada. [Online] Available: http://eusesconsortium.org/weuseii/proceedings.php. 

(accessed: October 31, 2009). 

[14] C. Kelleher and R. Pausch, “Lowering the barriers to programming: A taxonomy of pro-

gramming environments and languages for novice programmers,” ACM Computing Surveys, vol. 

37, issue 2, pp. 83-137, 2005. 

[15] A. Sutcliffe and N. Mehandjiev, “End-user development,” Communications of the ACM, vol. 

47, issue 9, pp. 31-32, 2004. 

[16] H. Lieberman, F. Paterno, and V. Wulf, eds. End-User Development. 2006, Springer: Dor-

drecht, The Netherlands.  

[17] A. F. Blackwell, “First steps in programming: A rationale for attention investment models,” 

Proceedings of the IEEE 2002 Symposia on Human Centric Computing Languages and Environ-

ments (HCC'02), 2002, pp. 2-10. 

[18] A. Wilson. M. Burnett, L. Beckwith, O. Granatir, L. Casburn, C. Cook, M. Durham, and G. 

Rothermel, “Harnessing curiosity to increase correctness in end-user programming,” Proceedings 

of the ACM CHI’2003 Human Factors in Computing Systems Conference, 2003, pp. 305-312. 

  

http://eusesconsortium.org/weuseii/proceedings.php


 

9 | CMU/SEI-2009-SR-015 

3 Extended Abstracts of Workshop Papers Published in 

ICSE Proceedings 

The workshop accepted three papers for presentation at the workshop and publication in the offi-

cial workshop proceedings. These proceedings are available in the ACM Portal at 

http://portal.acm.org/toc.cfm?id=1569137&coll=portal&dl=ACM&type=proceeding&idx=SERIE

S402&part=series&WantType=Proceedings&title=ICSE&CFID=48200530&CFTOKEN=641639

28. 

Authors of accepted papers were asked to submit extended abstracts for publication in these post-

proceedings. The first paper by Burnett et. al. was part of the introduction and conceptual founda-

tions for the workshop. These authors submitted an enhanced version of the paper based on input 

from the workshop. The second paper by Yu et. al and the third paper by Vigder are examples of 

the developer view of end-user programming. These are extended abstracts of the papers that ap-

pear in the official workshop proceedings. 

3.1 End-User Software Engineering: A Distributed Cognition Perspective 

Margaret Burnett, Christopher Bogart, Jill Cao, Valentina Grigoreanu, Todd Kulesza, Jo-

seph Lawrance (Oregon State University, USA) 

End-user programmers may not be aware of many software engineering practices that would add 

greater discipline to their efforts, and even if they are aware of them, these practices may seem too 

costly (in terms of time) to use. Without taking advantage of at least some of these practices, the 

software these end users create seems likely to continue to be less reliable than it could be. We are 

working on several ways of lowering both the perceived and actual costs of systematic software 

engineering practices, and on making their benefits more visible and immediate. Our approach is 

to leverage the user‟s cognitive effort through the use of distributed cognition, in which the sys-

tem and user together reason systematically about the program the end user is creating or modify-

ing. This paper demonstrates this concept with a few of our past efforts, and then presents three of 

our current efforts in this direction. 

Introduction 

A recent workshop on end-user software engineering focused on how to encourage end-user pro-

grammers to engage in the software engineering that is required to make end-user programming a 

more disciplined process, while still shielding the end user from the complexities of greater dis-

cipline (http://www.sei.cmu.edu/interoperability/research/approaches/seeup2009.cfm). This is an 

interesting issue from the perspective of the user‟s time and priorities. What might cause end-user 

programmers to become “more disciplined,” and how would this impact their cost-benefit trade-

offs of investing the time to do so versus the time/trouble they might save by doing so?  

Our position is that we do not expect end-user programmers to voluntarily elect to become more 

disciplined unless doing so either is perceived by users to have obvious pay-offs given their own 

priorities or is so low in cost, they can afford to become more disciplined without worrying about 

the time cost. 

http://portal.acm.org/toc.cfm?id=1569137&coll=portal&dl=ACM&type=proceeding&idx=SERIES402&part=series&WantType=Proceedings&title=ICSE&CFID=4820
http://portal.acm.org/toc.cfm?id=1569137&coll=portal&dl=ACM&type=proceeding&idx=SERIES402&part=series&WantType=Proceedings&title=ICSE&CFID=4820
http://portal.acm.org/toc.cfm?id=1569137&coll=portal&dl=ACM&type=proceeding&idx=SERIES402&part=series&WantType=Proceedings&title=ICSE&CFID=4820
http://portal.acm.org/toc.cfm?id=1569137&coll=portal&dl=ACM&type=proceeding&idx=SERIES402&part=series&WantType=Proceedings&title=ICSE&CFID=4820
http://www.sei.cmu.edu/interoperability/research/approaches/seeup2009.cfm


 

10 | CMU/SEI-2009-SR-015 

To keep the cost of discipline low, we believe end-user software engineering must be a collabora-

tion between the system and the user
1
. The system has two roles: (1) to pay some of the cost of 

adding discipline and (2) to make clear low-cost steps the user can perform to take advantage of 

that discipline and the benefits of doing so. We hypothesize that, if the user perceives reasonably 

low costs and useful benefits, the disciplined approaches suggested by the system will often seem 

more attractive than ad-hoc approaches, and users will follow them. Our previous work along 

these lines empirically supports this hypothesis. 

Distributed cognition “extends the reach of what is considered cognitive beyond the individual to 

encompass interactions between people and with resources and materials in the environment [8].” 

In system-user collaborations to support the direction we have just described, by definition, the 

user does some of the reasoning and the system does some of the reasoning. The system‟s contri-

bution to this reasoning may be simple, such as helping users remember judgments they have 

made so far; mid-level, such as reasoning about priorities as to which issues the user should con-

sider next; or complex, such as performing static or dynamic analysis of source code to deduce 

possible errors. 

Thus, instead of trying to build systems that solve this type of problem: “What can the system fig-

ure out automatically so that users need not think too hard?”, our distributed cognition perspec-

tive is that the problem statement becomes: “How can end-user software engineering tools help 

end users think?” 

The rest of this paper provides examples as to how reasoning by end-user programmers can be-

come more disciplined with the addition of distributed cognition support to end-user software de-

velopment environments. 

Examples from our Previous Work in End-User Software Engineering 

Our What You See Is What You Test (WYSIWYT) methodology for testing spreadsheets [3, 16] 

demonstrates how distributed cognition can augment end users‟ abilities to use more disciplined 

approaches. In the case of WYSIWYT, the increased discipline is in testing and debugging. 

With WYSIWYT, as a user incrementally develops a spreadsheet, he or she can also test that 

spreadsheet incrementally yet systematically. The basic idea is that, at any point in the process of 

developing the spreadsheet, the user can validate any value that he or she notices is correct. Be-

hind the scenes, these validations are used to measure the quality of testing in terms of a test ade-

quacy criterion. These measurements are communicated by visual decorations to reflect the new 

“testedness” state of the spreadsheet, to encourage users to direct their testing effort to the cells 

the system has systematically identified as needing the most attention. 

For example, suppose that a teacher is creating a student grades spreadsheet, as in Figure 1. Dur-

ing this process, whenever the teacher notices that a value in a cell is correct, she can check it off 

(“validate” it). The result of the teacher‟s validation action is that the colors of the validated cell‟s 

borders become more blue, indicating that data dependencies between the validated cell and cells 

it references have been exercised in producing the validated values. 

 
1
  Unless there are professional software developers involved to provide the discipline, as in the work of Fischer 

and Giaccardi [6] and Costabile et al. [5]. 



 

11 | CMU/SEI-2009-SR-015 

 

Figure 3-1:  WYSIWYT supports systematic testing for end users, to help the user test and debug 

spreadsheet formulas [16]. 

A red border means untested, a blue border means tested, and shades of purple (i.e., between red 

and blue) mean partially tested. From these border colors, the teacher is kept informed of which 

areas of the spreadsheet are tested and to what extent. Thus, in the figure, row 4‟s Letter cell‟s 

border is partially blue (purple), because some of the dependencies ending at that cell have now 

been tested. Testing results also flow upstream against dataflow to other cells whose formulas 

have been used in producing a validated value. In our example, all dependencies ending in row 4‟s 

Course cell have now been exercised, so that cell‟s border is now blue. 

The border colors support distributed cognition by remembering (and figuring out and updating) a 

“things to test” list for the teacher. This distributed cognition allows the teacher to test in a more 

disciplined way than she might otherwise do, because it constructs its things-to-test statuses using 

a formal test adequacy criterion (du-adequacy) that the user is not likely to know about. 

The checkboxes further support distributed cognition by remembering for the user the specifics of 

testing that was done. Here the checkmark reminds the teacher that a cell‟s value has been vali-

dated under current inputs. As with the border colors, the distributed cognition goes further than 

just remembering things done directly—it also manages the “things tested” set by changing the 

contents of the checkboxes when circumstances change. For example, an empty checkbox indi-

cates that the cell‟s value was validated, but the value was different than the one currently on dis-

play. Finally, the system helps the teacher manage her testing strategy by showing a question mark 

where validating the cell would increase testedness. 

Checkmarks and border colors assist cognition about things to test and things tested successfully. 

There is also a fault localization functionality for things tested unsuccessfully. For example, sup-

pose our teacher notices that row 5‟s Letter grade is erroneous, which she indicates by X‟ing it out 

instead of checking it off. Row 5‟s Course average is obviously also erroneous, so she X‟s that 

one too. As Figure 1 shows, both cells now contain pink interiors, but Course is darker than Letter 

because Course contributed to two incorrect values (its own and Letter‟s) whereas Letter contri-

buted to only its own. These colorings are another example of distributed cognition. They make 

precise the teacher‟s reasoning/recollection about cell formulas that could have contributed to the 

bad value and direct her attention to the most implicated of these, thereby encouraging her to sys-

tematically consider all the possible culprits in priority order to find the ones that need fixing. 

Recall our hypothesis from Section 1 that it is necessary to keep the cost of discipline low. 

WYSIWYT gives us a vehicle for considering the cost of discipline: Just why would a user whose 



 

12 | CMU/SEI-2009-SR-015 

interests are simply to get their spreadsheet results as efficiently as possible choose to spend extra 

time learning about these unusual new checkmarks, let alone think carefully about values and 

whether they should be checked off? 

To succeed at enticing the user to use discipline, we require a strategy that can motivate these us-

ers to make use of software engineering devices, can provide the just-in-time support they need to 

effectively follow up on this interest, and will not require the user to spend undue time on these 

devices. 

We call our strategy for enticing the user down this path Surprise-Explain-Reward [21]. The strat-

egy attempts to first arouse users‟ curiosity about the software engineering devices through sur-

prise, and to then encourage them, through explanations and rewards, to follow through with ap-

propriate actions. This strategy has its roots in three areas of research: research about curiosity 

[13], Blackwell‟s model of attention investment [2], and minimalist learning theory [4]. 

The red borders and the checkboxes in each cell, both of which are unusual for spreadsheets, are 

therefore intended to surprise the user, to arouse curiosity [13]. These surprises are non-intrusive: 

users are not forced to attend to them if they view other matters to be more worthy of their time. 

However, if they become curious about these features, users can ask the colors or checkboxes to 

explain themselves at a very low cost, simply by hovering over them with their mouse. Thus, the 

surprise component delivers the user to the explain component. 

The explain component is also very low in cost. In its simplest form, it explains the object in a 

tool tip. For example, if the user hovers over a checkbox that has not yet been checked off, the 

tool tip says: “If this value is right, √ it; if it’s wrong, X it. This testing helps you find errors.” 

Thus, it explains the semantics very briefly, gives just enough information for the user to succeed 

at going down this path, and gives a hint of the reward to the task at hand, as per the implications 

of attention investment and minimalist learning theory [2], [4]. 

The main reward is finding errors, which is achieved by checking values off and X‟ing them out 

to narrow down the most likely locations of formula errors. A secondary reward is a “well tested” 

(high coverage) spreadsheet, which at least shows evidence of having fairly thoroughly looked for 

errors. To help achieve testing coverage, question marks point out where more decisions about 

values will make progress (cause more coverage under the hood, cause more color changes on the 

surface), and the progress bar at the top shows overall coverage/testedness so far. Our empirical 

work has shown that these devices are both motivating and that they lead to more effectiveness 

[3], [17]. 

Current Research Directions 

More disciplined debugging of machine-learned programs 

The recent increase in machine learning‟s presence in a variety of desktop applications has led to 

a new kind of program that needs debugging by the end user: programs written (learned) by ma-

chines. Since these learned programs are created by observing the user‟s data and reside on the 

user‟s machine, the only person present to fix them if they go wrong is the user. 

Traditional methods for end users to improve the logic of machine-learned programs have been 

restricted to relabeling the output of these programs. For example, imagine a movie recommenda-



 

13 | CMU/SEI-2009-SR-015 

tion system that uses machine learning techniques to make intelligent recommendations based on 

a user‟s previously viewed movies. This system allows the user to label the suggestions by mark-

ing each as something they are either interested in or not interested in. Such debugging, however, 

is ad hoc. The user can neither know how many recommendations to label before the system will 

improve nor know how far-reaching an observed improvement is, and therefore, cannot plan or be 

strategic: the entire process is based solely on the luck of just the right inputs arriving in a timely 

way. 

We are working on a more disciplined approach to debugging machine-learned programs to re-

move this complete reliance on fortuitous inputs arriving. In our approach, end users directly fix 

the logic of a learned program that has gone wrong, and the machine keeps them apprised of the 

greater impacts of their fixes. Two keys to our approach are (a) an interactive explanation of the 

learned program‟s logic and (b) a machine-learning algorithm that is capable of accepting and 

integrating user-provided feedback. The approach is more disciplined than traditional approaches 

in that it removes much of the element of luck in the arrival of suitable inputs, and also employs 

distributed cognition devices to enable users to predict the impacts of their logic changes. 

We have designed and implemented our first prototype [10] aimed at meeting these goals. The 

domain we used for this prototype was automatically filing the user‟s incoming email messages to 

the correct folder. Our approach was inspired by the Whyline [9]. In our variant of why-oriented 

debugging, users debug through viewing and changing answers to “why will” and “why won‟t” 

questions. Examples of the questions and manipulable answers in our prototype are shown in Fig-

ure 2. As soon as the user manipulates these answers, the system not only updates the result of the 

input they are working with (in this case, the particular email message), but also apprises them of 

how other messages in their email system would be categorized differently given these changes, 

in essence running a full regression test. 

 

Figure 3-2: An interactive visualization for showing end users the relative importance of different 

words to a machine-learned program’s decision-making. For example, the word “email” is 

fairly neutral in classifying messages to folder1 (pink), but is forbidden for folder2 messag-

es (blue). Users are able to drag any bar up or down to explicitly change the logic of the 

learned program [10]. 

Using this prototype, we analyzed barriers end users faced when attempting to debug using such 

an approach [10]. The most common obstacle for users was determining which sections of the 

learned program‟s logic they should modify to achieve the desired behavior changes on an ongo-



 

14 | CMU/SEI-2009-SR-015 

ing basis. The complete set of barriers uncovered is being used to inform the design of our contin-

uing work in enabling end users to debug programs that are learned from that particular user‟s 

data. 

Strategies as agents of discipline for males and females 

Given their lack of formal training in software engineering, end-user programmers who attempt to 

reason about their programs‟ correctness are likely to do so in an ad-hoc way rather than using a 

systematic strategy. Strategy refers to a reasoned plan or method for achieving a specific goal. It 

involves intent, but the intent may change during the task. Until recently, little has been known 

about the strategies end-user programmers employ in reasoning about and debugging their pro-

grams. We have been working to help close this gap, and to devise ways to better support end-user 

programmers‟ strategic efforts to reason about program correctness. 

The WYSIWYT approach described in Section 2 promotes debugging strategies based on testing. 

One problem with testing-based strategies is that they do not seem to be equally attractive to male 

and female end-user programmers. In a recent study, we found males both preferred testing-based 

strategies more, and were more effective with them, than females [18]. This was also the case for 

dataflow strategies (Figure 3). On the other hand, the same study showed that code (formula) in-

spection strategies were more effective for females than for males. 

Gender differences in approaches to end-user software development have also been reported in 

debugging feature usage [1] and in end-user web programming [15]. 

 

Figure 3-3: Correlation between total bugs fixed and number of dataflow following instances. Left: 

male (significant), right: female (not significant) [18]. 

Gender differences in approaches to end-user software development have also been reported in 

debugging feature usage [1] and in end-user web programming [15]. 

In fact, of the eight debugging strategies we learned about in our study of spreadsheet work—

Testing, Code Inspection, Specification Following, Dataflow, To-Do Listing, Color Following, 

Formula Fixing, and Spatial—seven (all but Spatial) had gender differences in ties to success at 

fixing spreadsheet formula errors [18]. In a follow-up study on strategies employed by a different 

population at the border between end-user programmers and professional developers, namely IT 

professionals debugging system administration scripts, the results on what debugging strategies 

were used were nearly the same, with a few additions due to differences in resources and para-

digm [7]. The resulting list of ten end-user debugging strategies is shown in Table 1 [7]. 

  



 

15 | CMU/SEI-2009-SR-015 

Table 3-1:  Strategies in Finding and Fixing Bugs 

 

We are now beginning to explore how to explicitly support strategies that seem particularly attrac-

tive to one or the other gender, but are not yet well supported in end-user software development 

environments. For example, females‟ most effective strategies, namely Code Inspection, To-Do 

Listing, and Specification Checking, are not supported in spreadsheet software [18]. One example 

of an approach to supporting code inspection would be adding an “inspectedness” state to cell 

formulas, similar to the “testedness” state supported by WYSIWYT. This way, distributed cogni-

tion in the system environment could help users track which formulas have been inspected and 

judged correct or incorrect (the spreadsheet auditing product described in [19] shows one possible 

approach for this). 

In the study of IT professionals‟ debugging, one interesting way in which females used Code In-

spection effectively was by looking up examples of similar formulas to fix errors in the spread-

sheet, after already having found the error [7]. This is a repurposing of code inspection for debug-

ging purposes that has little support in debugging tools for end-user programmers. An idea along 

these lines that we are exploring is that part of the cognitive effort of searching for and memoriz-

ing related formulas could be reduced by offloading to the software the task of finding related 

formulas and displaying them (external memory). 

Thus, the goal of this work is to encourage the use of disciplined, strategy-based problem solving 

by end-user programmers through distributed cognition approaches that support a variety of strat-

egies. We hypothesize that such support will increase the discipline used in end-user program-

mers‟ problem-solving and, as a result, will increase male and female end-user developers‟ prod-

uctivity and success at debugging their programs. 

How Information Foraging Theory can Inform Tools to Promote Discipline 

The theme of this paper is that distributed cognition can help promote discipline for end-user pro-

grammers, but beyond this basic point, it would be helpful to developers of tools for end-user 

programmers to have guidance that is more concrete and prescriptive. We believe information 

foraging theory can provide such guidance. 



 

16 | CMU/SEI-2009-SR-015 

Information foraging theory models a person‟s search for information as a hunt for prey, guided 

by scent. The prey is the information they are seeking. The scent is the user‟s estimate of relev-

ance, which the user derives from cues in the environment. The hunt for relevant information then 

proceeds from location to location within that environment, each time following the most salient 

cue. Thus the topology of that information space and the scent of the cues predict how well the 

user will be able to navigate to the most needed information. Information foraging theory was 

proposed as a general model of information seeking [14], but has primarily been applied to web 

browsing. We have been researching the applicability of this theory to people‟s information-

seeking behavior in software maintenance. In our studies to date on professional programmers 

working in Java, information foraging theory predicted people‟s navigation behavior when de-

bugging as well as the aggregate human wisdom of a dozen programmers, and it was also effec-

tive at picking the right locations to focus on when debugging [11, 12]. 

Because cues are externalizations of scent (relevance), following cues is a strategic way to elimi-

nate large portions of the code that must be considered in tracking down a bug. Cues can be found 

in both the GUI and in the software artifacts themselves. For example, variable names, component 

names, pictorial icons that seem to represent the relevant functionalities, are all cues. Tool feed-

back, such as the highlighted cells of WYSIWYT‟s fault localization, is the system‟s way of en-

hancing distributed cognition about where to navigate. The user can also enhance this distributed 

cognition through what Pirolli and Card term enrichment. 

Pirolli defines enrichment as the extra work an information seeker does to enhance the informa-

tion density or topology of the space they are working in. Pirolli [14] studied an analyst flipping 

through a pile of magazines, cutting out articles to examine more closely later. The information 

density of this smaller pile of articles would make later information seeking go more quickly. 

Many software engineering tools and practices are about enrichment. Professional developers 

comment code, draw UML diagrams, write specifications, document changes, and link these all 

together to create an information topology that allows developers to more quickly get to useful 

information about the program. Some enrichment is informal as well, such as maintaining “to do” 

lists and sketching diagrams. These little notes and diagrams users create in a working space are 

in essence a new user-defined patch whose purpose is to help the user process information quick-

ly. In these ways, enrichment adds to distributed cognition. 

These constructs of information foraging theory—scent, cues, topology, and enrichment—thus 

suggest a design strategy for tools aimed at encouraging discipline in end-user programmers. 

First, identify what questions the tool is trying to support. Then, given these questions, choose the 

scent (form of relevance) that the tool will support in order to answer them. Then choose a topol-

ogy and cues to allow following that scent. 

For example, if the question being supported is “Why did…”, the relevant scent could be the trail 

of dynamic state, the cues could be “invoked” edges between each called function/component as 

well as their names, and the topology could connect these cues to the function‟s states at the time 

they were called so that the user can step along the call sequence with each function‟s details (as 

in the Whyline [9]). 

Topology and choice of cues are interdependent. The topology needs to allow a user to navigate to 

the relevant information called out by the cues, and the cues (and thus distributed cognition) need 

to emanate scent to attract the user down appropriate paths in the topology. Finally, the system 



 

17 | CMU/SEI-2009-SR-015 

should allow the user to easily enrich the cues and topology to further enhance their working envi-

ronment‟s distributed cognition. 

Tools based on information foraging theory could also promote program maintainability. For ex-

ample, tools based on information foraging theory could evaluate and suggest improvements to 

words, labels, pictures, and explicit connections in programs and their associated artifacts, so that 

cues in these artifacts would emanate stronger and more precise scent. 

In the service of reuse, tools based on information foraging theory could serve as distributed cog-

nition elements connected to cues, topology, or enrichment, to help people get answers to reuse 

questions [20] such as: (1) I know generally what I want; which components are relevant? (2) 

There is a component that I‟ve used before from this repository, but I forget the name and several 

other details of it; where is it? (3) This component is not quite what I need; which other compo-

nents are similar? 

As these examples show, information foraging theory provides a basic foundation from which 

design ideas can be derived on how to promote disciplined approaches to navigation-oriented 

needs in end-user software development. 

Conclusion 

As we have shown, tools based on distributed cognition can promote more disciplined behavior 

by end-user programmers. Distributed cognition works because it allows the system to contribute 

part of the reasoning and memory, so that users do not have to manipulate all the relevant infor-

mation in their own heads alone in order to follow disciplined approaches. That is, end-user soft-

ware engineering approaches based on distributed cognition do not aim to remove users‟ need to 

reason systematically about their software; rather, they aim to enhance users‟ ability to reason 

systematically about their software. 

Our empirical results over the years have provided encouraging evidence that this approach can 

not only encourage software engineering discipline, but can do so in a way that tears down some 

barriers that, in current tools, seem to disproportionately target female end-user programmers. 

One key to reaping these benefits is keeping the costs of using these tools low, and another is 

keeping the benefits to the targeted users high, so that users‟ perception of the costs/benefits/risks 

involved will make them want to use these devices. 

Acknowledgements 

This work was supported in part by an IBM Faculty Award, by the Air Force Office of Scientific 

Research, and by NSF ITR-0325273, IIS-0803487, and IIS-0917366. We are grateful to our col-

leagues in the EUSES Consortium for helpful discussions, feedback, and ideas, and to Laura 

Beckwith, Rachel Bellamy, Curt Cook, Paul ElRif, Xiaoli Fern, Mark Fisher, Cory Kissinger, 

Andrew Ko, Vaishnavi Narayanan, Ian Oberst, Kyle Rector, Stephen Perona, Gregg Rothermel, 

Joseph Ruthruff, Amber Shinsel, Simone Stumpf, Neeraja Subrahmaniyan, Susan Wiedenbeck, 

Weng-Keen Wong, and our other former students and colleagues who contributed to this work. 



 

18 | CMU/SEI-2009-SR-015 

References 

[1] L. Beckwith, M. Burnett, S. Wiedenbeck, C. Cook, S. Sorte, and M. Hastings, “Effectiveness 

of End-User Debugging Software Features: Are There Gender Issues?” Proceedings of the 

SIGCHI Conference on Human Factors in Computing Systems, 2005, pp. 869-878. 

[2] A. F. Blackwell, “First steps in programming: A rationale for attention investment models,” 

Proceedings of the IEEE 2002 Symposia on Human Centric Computing Languages and Environ-

ments (HCC'02), 2002, pp. 2-10. 

[3] M. Burnett, C. Cook., and G. Rothermel, “End-User Software Engineering,” Communications 

of the ACM, vol. 47, issue 9, pp. 53-58, Sept. 2004. 

[4] J. M. Carroll, and M. B. Rosson, “Paradox of the Active User,” in Interfacing Thought: Cogni-

tive Aspects of Human-Computer Interaction, J. M. Carroll, Ed., Cambridge, Massachusetts 

(USA): MIT Press, 1987, pp. 80-111. 

[5] M. F. Costabile, D. Fogli, P. Mussio, and A. Piccinno, “End-User Development: The Software 

Shaping Workshop Approach,” in End-User Development, Lieberman, H., Paterno, F., and Wulf, 

V., eds, Springer: Dordrecht, The Netherlands, 2006, pp. 183-205. 

[6] G. Fischer, and E. Giaccardi, “Meta-Design: A Framework for the Future of End-User Devel-

opment,” in End-User Development, Lieberman, H., Paterno, F., and Wulf, V., eds, Springer: Dor-

drecht, The Netherlands, 2006, pp. 427-457. 

[7] V. Grigoreanu, J. Brundage, E. Bahna, M. Burnett, P. ElRif, and J. Snover, “Males‟ and Fe-

males‟ Script Debugging Strategies,” International Symposium on End-User Development, Sie-

gen, Germany, published as Lecture Notes in Computer Science 5435,V. Pipek et al., eds., Sprin-

ger-Verlag, 2009, pp. 205-224. 

[8] J. Hollan, E. Hutchins, and D. Kirsh, “Distributed Cognition: Toward a New Foundation for 

Human-Computer Interaction Research,” ACM Transactions on Computer-Human Interaction, 

vol. 7, pp. 174-196, 2000. 

[9] A. Ko, and B. Myers, “Designing the Whyline: A Debugging Interface for Asking Questions 

about Program Behavior,” Proceedings of the 2004 ACM Conference on Human Factors in Com-

puting Systems (CHI’2004), 2004, pp. 151-158. 

[10] T. Kulesza, W.-K. Wong, S. Stumpf, S. Perona, R. White, M. Burnett, I. Oberst, and A. Ko, 

“Fixing the Program My Computer Learned: Barriers for End Users, Challenges for the Ma-

chine,” Proceedings of the 13
th

 International Conference on Intelligent User Interfaces, 2009, pp. 

187-196. 

[11] J. Lawrance, R. Bellamy, M. Burnett, and K. Rector, “Using Information Scent to Model the 

Dynamic Foraging Behavior of Programmers in Maintenance Tasks,” Proceedings of the 12th 

International Conference on Intelligent User Interfaces, 2008, pp. 1323-1332. 

[12] J. Lawrance, R. Bellamy, M. Burnett, and K. Rector, “Can Information Foraging Pick the 

Fix? A Field Study,” Proceedings of the 2008 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC’08), 2008, pp. 57-64. 



 

19 | CMU/SEI-2009-SR-015 

[13] G. Lowenstein, “The Psychology of Curiosity,” Psychological Bulletin, vol. 116, no. 1, pp. 

75-98,1994. 

[14] P. Pirolli and S. Card, “Information Foraging,” Psychological Review 106, pp. 643-675, 

1999. 

[15] M. B. Rosson, H. Sinha, M. Bhattacharya, and D. Zhao, “Design Planning in End-User Web 

Development,” Proceedings of the 2007 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC’07), 2007, pp. 189-196. 

[16] G. Rothermel, M. Burnett, L. Li, C. DuPuis, and A. Sheretov, “A Methodology for Testing 

Spreadsheets,” ACM Transactions on Software Engineering and Methodology, vol. 10, no. 1, pp. 

110-147, 2001. 

[17] J. Ruthruff, A. Phalgune, L. Beckwith, M. Burnett, and C. Cook, “Rewarding Good Beha-

vior: End-User Debugging and Rewards,” Proceedings of the 2004 IEEE Symposium on Visual 

Languages and Human-Centric Computing (VL/HCC’04), 2004, pp. 115-122. 

[18] N. Subrahmaniyan, L. Beckwith, V. Grigoreanu, M. Burnett, S. Wiedenbeck, V. Narayanan, 

K. Bucht, R. Drummond, and X. Fern, “Testing vs. Code Inspection vs. What Else? Male and Fe-

male End Users‟ Debugging Strategies,” Proceedings of the 2008 ACM Conference on Human 

Factors in Computing Systems (CHI’2008), 2008, pp. 617-626. 

[19] N. Subrahmaniyan, M. Burnett, and C. Bogart, “Software Visualization for End-User Pro-

grammers: Trial Period Obstacles,” Proceedings of the 4th ACM Symposium on Software Visuali-

zation, 2008, pp. 135-144. 

[20] R. Walpole and M. Burnett, “Supporting Reuse of Evolving Visual Code,” Proceedings of the 

1997 IEEE Symposium on Visual Languages (VL '97). 1997, pp. 68-75. 

[21] A. Wilson, M. Burnett, L. Beckwith, O. Granatir, L. Casburn, C. Cook, M. Durham, and G. 

Rothermel. “Harnessing Curiosity to Increase Correctness in End-User Programming,” Proceed-

ings of the SIGCHI Conference on Human Factors in Computing Systems, 2003, pp. 305-312. 

3.2 Extending the Boundary of Spreadsheet Programming: Lessons Learned from 

Chinese Governmental Projects 

Xingliang Yu, Jing Li, Hua Zhong (Chinese Academy of Sciences, China) 

Solving business problems through programming by end users themselves is not only a problem 

of great concern of academics, but also the dream of the end-user. Having the ability to write pro-

grams without professional developers will go a long way toward liberating the end-user. Our re-

search concerns the end-user development (EUD) issues in Chinese e-government projects, in-

cluding how to enable end users to create programs, how to expand the scope of problem-

resolving by end-user programming, and how to improve the quality of end user programming.  

The Chinese style table occupies an important position in e-government application in China. Its 

complexity exists in the management of data, presentation format, computing rules, process of 

analysis and so on. EUD is deemed a promising measure to resolve these problems. But it's heavi-

ly dependent on a language that the end users can accept.  



 

20 | CMU/SEI-2009-SR-015 

Spreadsheet language is considered to be a very successful EUD language, Excel and other prod-

ucts have demonstrated the success. But the limitation of a spreadsheet system is also very ob-

vious. For example, a user must be responsible for all the problems of analysis and modeling; Ex-

cel and the like can only handle a limited number of smaller tables; the analysis and the 

calculation in practice often need more complex process to complete, which are all very difficult 

to express and execute in Excel. To this end, we broke down the spreadsheet into templates, sheet 

and calculations, and in accordance with the principle of separating presentation layer, logic layer 

and data layer from each other, we model the issue of tabular data analysis. Based on the model, 

we designed the EUD-enabled tabular data analysis language, which is called ESL. A formula in 

ESL is no longer bound with a single cell of spreadsheet, and there are several enhancements in 

the expression of range reference; thus, end users can use simple formulae to complete large-scale 

and complex calculations. At the same time, the data of tables is organized into three-dimensional 

array by the dimension of table, row and column (T, R, C), and with the conjunction of the busi-

ness dimension, tabular data can also be organized into higher-dimensional data cube, so that the 

tabular data can be processed with a similar way of data warehouse. 

Due to the lack of professional software engineering processes and tools, the effectiveness of 

EUD is of continuing concern. However, typical EUD activities are usually sporadic and small-

scale, so experimental studies related to EUD effectiveness are difficult; in particular, it is very 

difficult to accumulate a certain amount of experimental data. This study selected the develop-

ment of Web-Plugins in the social networking site (SNS) as a typical EUD activity, and conducted 

research on how to carry out testing activities, standardize the development process. Experimental 

data and the analysis show that the testing process in EUD is very important, and based on appro-

priate tools and environment, many measures of the traditional software engineering, quality as-

surance methods and techniques can be used to improve the effectiveness of the EUD, such as 

configuration management, testing process, and test management.  

To date, research on EUD can be divided into theoretical studies, general studies and the domain-

oriented research on EUD. This study is a domain-oriented research on EUD in e-government 

research. As far as possible, we use all possible means to provide programming ability to end us-

ers. In addition to previously mentioned techniques and methods, the study summarizes expe-

rience and the lessons learned in Chinese e-government projects. 

3.3 End-User Software Development in a Scientific Organization 

Mark Vigder (National Research Council, Canada) 

Introduction 

Scientific and engineering research organizations are often required to develop and maintain com-

plex software systems. They use software for controlling experiments, analyzing data, and embo-

dying research results. Because of the complexity and nature of the domain, the software engi-

neering is often performed by scientists and engineers rather than by trained software 

professionals. Although the end-users have been able to produce and evolve sophisticated soft-

ware applications, the lack of software engineering discipline can result in a number of problems 

related to the software engineering process. 



 

21 | CMU/SEI-2009-SR-015 

In order to address these issues, we studied two different research institutes within our organiza-

tion (the National Research Council (NRC) of Canada), and studied how they use software to con-

trol experiments and analyze data. Based on this study, we developed a software framework to 

assist end-users in developing and configuring the software used for these activities. 

Background 

In order to understand the end-user software engineering issues within the scientific research do-

main, we worked with two research institutes of NRC Canada: the Institute for Aerospace re-

search (IAR); and the Institute for Ocean Technology (IOT). NRC-IOT performs experiments on 

scale models of marine structures (ship hulls, offshore oil platforms, etc.) Models are placed with-

in a tank with different conditions of waves, ice, etc. Sensors on the model are used during the 

experiment to determine the models characteristics under different conditions. 

The group within NRC-IAR with which we worked performed experiments on gas turbine en-

gines. Sensors attached to the engine measured its operating characteristics under different condi-

tions. 

In both organizations, custom software was frequently developed in order to analyze data during 

and after data acquisition. The software development process usually took the form of finding a 

piece of software within the organization that was similar to the requirements, and modifying it to 

meet the specific needs of the current experiment. Modifications took different forms and in-

cluded changing parameters within the source code or adding specialized functions for filtering 

data. Within NRC-IOT this work was sometimes performed by software engineers and sometimes 

by end-users; within NRC-IAR the software development was performed entirely by end-users. 

In studying the software development within these two organizations, the following issues were 

noted: 

 End-users were often spending significant amounts of time making changes to the software 

for each experiment. In many cases these changes were small and could be represented as a 

selection among parameters. 

 Many of the activities performed by users during the data acquisition and analysis could be 

easily automated. 

 End-users made use of complex domain knowledge when developing software. The end-

users with whom we were dealing were people involved in research science. They had de-

tailed knowledge of their domain that was often difficult to communicate to software profes-

sionals who were not trained within the domain [1]. 

 Tasks that were conceptually simple, such as re-running an analysis with different parameter 

settings, were often complex to do in practice. Much of the difficulty was due to the fact that 

the task required the end user to modify code. Even simple modifications were often difficult 

and error prone. 

 Software variants proliferate in an uncontrolled manner. End-users tend to find a piece of 

code that most closely meets their requirements, and then clone and modify it. This is usually 

done in an uncontrolled manner leading to many variants of each piece of software with no 

configuration management. 



 

22 | CMU/SEI-2009-SR-015 

 Reproducibility of results is important. When results are produced for publication and disse-

mination, it is important that it is known exactly how they were produced and any analyses 

can be re-performed at a later date and will give identical results. Note that although this is 

an important requirement, it is one that was not met by many organizations to which we 

talked. 

A Framework for End-User Programming 

The primary product of this work is a framework that allows end users to more easily tailor and 

control software. An application framework was developed with the following characteristics: 

 Different software tools, specific to the domain, could be integrated into the framework. The 

tools provided services such as data analysis, report generation, etc. A wrapper could be 

used, if necessary, to provide a consistent interface to the end-user, and to facilitate interope-

rability between the different tools. 

 Parameterized workflows of the organization are described using a simple textual template 

mechanism. The templates describe how the software tools are integrated to perform the or-

ganizational workflows. Although requiring some programming knowledge to create the 

templates, end-users with some programming capability were able to create the templates 

with minimal training. 

 Automatic GUI generation from the parameterized workflows allows end-users without any 

programming experience to instantiate and execute workflows. 

 The framework provided a set of basic services for research organizations. Plug-ins can be 

used to customize the framework for specific research domains. 

Software engineers, not the end users of our domain, performed the actual tool integration. How-

ever, once the integration was completed, end users were able to create the workflow templates. 

Through a GUI automatically generated from the templates end-users instantiate the workflows 

providing the actual parameters to be used. 

Conclusions 

After deployment, a formal interview-based evaluation of the software was performed [2]. The 

evaluation included both end-users and professional programmers who were using and maintain-

ing the system. The evaluation found that ease of use and reduced training time were major bene-

fits. There was also a reduction in the number of software variants produced that reduced, though 

did not solve, the configuration management issues. End-users could seamlessly use different 

software packages that had been integrated into the framework. 

References 

[1] J. Segal, “When Software Engineers Met Research Scientists: A Case Study,” Empirical Soft-

ware Engineering Journal, vol. 10, pp. 517-536, October 2005. 

[2] M. R. Vigder, N. G. Vinson, J. Singer, D. Stewart, K. Mews, “Supporting the Everyday Work 

of Scientists: Automating Scientific Workflows,” IEEE Software, vol. 25, pp. 52-58, July/August, 

2008. 



 

23 | CMU/SEI-2009-SR-015 

4 Invited Talk: Using Crystal Reports: Examples of Richly 

Formatted Report Creation by Non-Developers 
Harold Schellekens (SAP BusinessObjects, Canada) 

4.1 Context 

Crystal Reports is a very pervasive and popular reporting solution that provides a significant part 

of the BusinessObjects division of SAP‟s revenue. BusinessObjects is recognized as the top Busi-

ness Intelligence (BI) vendor, with 14.2% of the market share and over $1 billion in revenue; 

19.2% when combined with SAP BI
2
. 

BusinessObjects customers tell us (and show us) that they can do almost anything in Crystal Re-

ports. However, they wish Crystal Reports were easier to learn and use, especially for non-

developers. The rationale for this invited talk is to explore the synergy between making Crystal 

Reports easier for non-developers and the EUP theme of this workshop. 

4.2 Crystal Reports 

Crystal Reports is a software suite for designing interactive reports and connecting them to vir-

tually any data source. Reports created using Crystal Reports are  

 formatted 

 printable 

 structured 

 personalized 

 scalable and high-performing 

 interactive  

 standalone or embedded into applications 

Examples of reports created using Crystal Reports are shown in Figure 4-1. Reports are designed 

and created using Crystal Reports Designer and can viewed and navigated in a variety of viewers 

that are available for different platforms and technologies. Figure 4-2 shows a screenshot of the 

free desktop viewer. 

4.3 Crystal Reports and End-User Programming 

Crystal Reports provides for very rich formatting using an extensive, powerful formula language. 

A simple example of row banding is presented in Figure 4-3. In this example, the code on the bot-

tom says that if a record number is odd then its background should be green, otherwise it should 

have no color. There are also multiple helpers for less technical end users with less programming 

experience.  

 

 
2
  From IDC Market Analysis. 2007. 



 

24 | CMU/SEI-2009-SR-015 

 

 

 

Figure 4-1: Examples of Reports Created Using Crystal Reports 

One of Crystal Reports‟ goals as a product is to make the formula language easier and more ac-

cessible to people not trained formally as developers, without diminishing the power and flexibili-

ty of the product. As with any commercial product, it is difficult to have a product that satisfies 

every single user. What follows are some examples of decisions and tradeoffs regarding Crystal 

Reports features that are related to EUP.  

 



 

25 | CMU/SEI-2009-SR-015 

 

Figure 4-2: Screenshot of Crystal Reports Free Desktop Viewer 

4.3.1 Formula Language vs. Helpers 

As mentioned earlier, in addition to the formula language, Crystal Reports has multiple helpers for 

end users who are less technical. However, from a product development perspective, it would be 

an overwhelming task to create helpers for every formula language construct. This creates several 

dilemmas because the goal is to make the product easier to use without diminishing its power and 

flexibility. 

 Should the formula language be easier or should there be more helpers in the product? 

 Which features should have helpers? 

 Where is the formula language necessary? 

 What is the right balance? 

Research to find out the answers to these questions would be of great value. 



 

26 | CMU/SEI-2009-SR-015 

 

Figure 4-3: Example of Crystal Report’s Formula Language 

4.3.2 Data Abstraction 

Another aspect that contributes to the power of Crystal Reports is that end users have direct 

access to data with no abstraction between the data and the person creating the report. The com-

plexity of the source data (especially in application data) is a major problem. Semantic models 

could help with this problem, but someone still has to model the information.  

 How could semantic models be introduced as a feature into a tool such as Crystal Reports? 

 What is the learning curve on the end user?  

 How are data semantics entered into the tool? How are they represented? 

 What is the overhead for the data modeler? 

4.3.3 Programming Best Practices 

Crystal Reports has powerful features such as sub-reports, which means that there can be reports 

embedded inside other reports. If a sub-report is placed inside a report header, it executes once; if 

placed in the details, it executes once for each row. This simple explanation shows the effect that 

such decisions place on the performance of a report.  

 How can programming best practices be introduced into tools such as Crystal Reports? 

 How are users notified of potential problems? 

 When does notification become an annoyance for more experienced end users? 

 What is the right balance? 

4.3.4 Templates 

Templates are another example of a feature that could be useful for Crystal Reports users. Creat-

ing a set of templates of benefit for the greatest number of users would require studies to see 



 

27 | CMU/SEI-2009-SR-015 

which reports are the most created by users. A simple technique could be to discover reports pub-

lished on the web, find those that are the most common, and set up a template repository. This 

repository could be bundled with the product or be set up as an online repository. 

4.4 Final Thoughts 

As a commercial vendor, it is a challenge for SAP BusinessObjects to determine the features that 

go into each release of a product. There is always a tradeoff because more features create a bigger 

product that is harder to maintain and requires more resources to run.  

As a representative of the developer view in this workshop, we are a community that would great-

ly benefit from best practices for conducting user studies and usability testing in the domain of 

EUP that can help us build better products.  

 

  



 

28 | CMU/SEI-2009-SR-015 

5 Workshop Summary 

The SEEUP workshop was held at the 33rd International Conference on Software Engineering 

(ICSE) in Vancouver, British Columbia on May 23, 2009. Twenty-three participants from both the 

research and industry contributed to the discussions. 

The workshop was divided into five parts: 

 introduction to EUP state of practice 

 the developer perspective of EUP 

 the end-user perspective of EUP 

 discussion of selected topics 

 workshop review 

The following five subsections summarize the discussions on these topics. Copies of the presenta-

tions are available on the SEEUP website [14]. 

5.1 Introduction to EUP State of Practice 

The introduction consisted of three talks that outlined the current state of the practice and set the 

tone for the rest of the day. 

The first talk, by Brad Myers of Carnegie Mellon [14], described previous EUSE workshops and 

introduced the major themes of the SEEUP workshop. This talk defined the scope of EUP, traced 

its importance, and noted the previous work that has impacted it. Myers referred to two NSF 

workshops that determined the need for serious attention to the end user [2]. He cited research 

findings showing that while there are about 3 million professional programmers in the U. S., over 

12 million people say they do programming at work, and over 55 million people use spreadsheets 

and databases at work and thus may also be considered to be doing programming [12]. The NSF 

reports that there are about 6 million scientists and engineers in the U. S., most of whom do pro-

gramming as part of their jobs [10].  

A problem that needs serious attention, Myers noted, arises from the pervasiveness of errors in 

software created by end users. These errors result in serious consequences for the people whose 

retirement funds, credit histories, e-business revenues, and even health and safety rely on deci-

sions that are made based on that software. For example, a Texas oil firm lost millions of dollars 

in an acquisition deal because of spreadsheet errors [11]. These problems are symptoms of the 

increased use of shared code and shared data, the potentially poor quality of that data, the lack of 

appropriate discipline on in the EUP, the lack of testing, and the failure to properly address securi-

ty. 

EUSE is a multi-disciplinary problem needing software engineering research, programming lan-

guage research, education research, end-user programming research, and HCI research of all 

types. Two recent large collaborative efforts, one in the U. S. (the EUSES Consortium 

http://eusesconsortium.org/) and the other in Europe (the Network of Excellence on End-User 

Development, http://giove.cnuce.cnr.it/eud-net.htm), have produced promising results in this area 

http://eusesconsortium.org/
http://giove.cnuce.cnr.it/eud-net.htm


 

29 | CMU/SEI-2009-SR-015 

(see, e.g., End User Development [13]). Special Interest Group meetings at CHI‟2004 [5], 

CHI‟2005 [6], CHI‟2007 [8], CHI‟2008 [7], and CHI‟2009 [9], as well as the WEUSE series of 

workshops at ICSE‟2005 [4], CHI‟2006 [3], Dagstuhl 2007 (see www.dagstuhl.de/07081), and 

ICSE‟2008 [1] successfully brought together researchers and companies interested in this topic. 

The second talk, by Andrew Ko of the University of Washington, was on “The State of the Art in 

End-User Software Engineering.” This talk identified the pervasiveness and importance of EUP. It 

reviewed how EUP is beginning to be more disciplined across the software life cycle and identi-

fied areas of continued challenge. EUP, although more informal, does face requirements, reuse, 

specifications, testing, and debugging problems. One primary concern is to inculcate the need to 

focus systematically on quality and to build more automated tools to support life cycle activities. 

Discussion topics included 

 Requirements—End users write programs for their own use; they usually do not develop 

formal requirements. The drivers for changes to those programs come from the end users 

themselves, and often involve ways to achieve greater automation. 

 Design and specification—These elements tend to be emergent, because end users do not see 

value in making them explicit. Techniques that have been successful in focusing greater at-

tention on specification include designing DSLs to replace lower‐level languages (e.g., Ya-

hoo pipes), so that the specification becomes the language itself, and supporting design ex-

ploration (such as Newman„s Denim). 

 Reuse—End user programmers in general do not have the same cultural aversion to reuse 

that some professional programmers do. Reuse occurs by finding code on the web and in re-

positories and by customizing templates and changing APIs. There is a need to evaluate how 

inputs, APIs, and outputs are changed when code is reused. 

 Testing—End users tend to be overconfident about testing and verification because they do 

not have the experience that professional programmers have in seeing the variety of ways 

that programs can fail. Techniques that provide immediate feedback tend to be the most ef-

fective, such as visualizing test data and automated consistency checking. 

 Debugging—This function is difficult for end-user programmers. Effective techniques sup-

port automated reasoning backward from output and suggesting potential solutions. 

Margaret Burnett of Oregon State University gave the third talk on “End-User Software Engineer-

ing and External Cognition” [15]. Burnett‟s talk started with the premise that for EUP to become 

more disciplined, programmers need to see a perceived payoff at a low cost. One mechanism to 

accomplish this is distributed cognition, which is cognition beyond the individual to encompass 

interactions between people, resources, materials, and environment. This talk reviewed ways to 

help end users recognize the perceived cost and benefits across a greater set of such interactions. 

Some current research in this area includes 

 “What you see is what you test (WYSIWYT)”: This kind of tool tracks progress of “things-

to-test,” finds possible culprits for errors, prioritizes them, and provides information for a 

programmer to make value correctness judgments. 

 Debugging learned programs to allow users to ask questions of machine-learned programs 

(such as e-mail filters): The explanations provided by the system represent “code” that users 

can correct. 

http://www.dagstuhl.de/07081


 

30 | CMU/SEI-2009-SR-015 

 Debugging via information foraging: Empirical studies are showing that information forag-

ing is a significant activity in debugging. Current tools are providing clues on where to look 

for relevant information. 

5.2 The Developer Perspective of EUP 

Two papers were presented in this session. Xingliang Yu of the Chinese Academy of Sciences 

presented a paper entitled “Extending the Boundary of Spreadsheet Programming: Lessons 

Learned from Chinese Governmental Projects” [15]. Mark Vigder, NRC Canada, presented a pa-

per entitled “End-User Software Development in a Scientific Organization” [15]. 

Xingliang Yu provided a case study of how spreadsheets are used to enable information sharing in 

education across multiple levels of government. The project described was to integrate different 

types of data and different report formats into a coherent form that meets objectives at the local, 

province, and national levels. The primary lessons learned are that  

 Mature spreadsheet applications provide significant leverage. 

 Editing for specific needs provides additional impact. 

 Dictionaries of common terms enable greater interoperability. 

 Codifying a language (ESL EUD-enabled Spreadsheet Language) facilitates use by diverse 

end users. 

Vigder„s paper provided a case study of end-user scientists who develop scientific programs to 

support their own needs as well as the needs of their teams. These end users have limited software 

knowledge and there is very little software engineering support for such processes as testing, con-

figuration management, or versioning. NRC has developed a general model of the workflow for 

such applications that includes such activities as converting data, selecting relevant data, and fil-

tering and transforming data. Simple tools have been provided to support many of these tasks that 

involve selecting the appropriate workflow and inserting an appropriate set of parameters. This 

has led to the following preliminary results: 

 Because a GUI is automatically generated, many “programming” operations are now done at 

the GUI level. 

 A single version of a program is maintained and only parameters at invocation are different. 

This minimizes the error-prone practice of “cloning and modifying.” 

 The automation of tedious workflows has been simplified because of standard tool integra-

tion mechanisms and standard domain-relevant data structures. 

 Off-the-shelf tools have been integrated into workflows. 

5.3 The End-User Perspective of EUP 

Harold Schellekens of SAP BusinessObjects, presented an invited talk on “Using Crystal Reports: 

Examples of Richly-Formatted Report Creation by Non-Developers” [14]. The Crystal Reports 

tool enables business users to develop highly adaptive, customized reports from multiple data 

sources. Based on customer input, SAP is simplifying the Crystal Reports designer tool to make it 

more accessible for people who are not professional software developers. The simplifying is tak-

ing the form of more buttons for formulas, better context-sensitive help, analysis of usage data 

from web accesses to understand the types of reports that are most commonly used, and a greater 



 

31 | CMU/SEI-2009-SR-015 

number of templates for development. Other areas of research and improvement include develop-

ing more wizards to make the use of formulas more accessible, analysis of more advanced 

workflows, design based on experience of the report designer, and additional usability testing. 

5.4 Discussion of Selected Topics 

The talks on the state of EUO, the developer perspective, and the end-user perspective led to a 

significant amount of discussion. Because of the variety of interests, attendees were asked to 

brainstorm on topics they would like to discuss in more detail as part of the workshop. The full 

list of topics, in no particular order, is 

 critical steps for instilling software engineering discipline in the scientific community 

 experiences and examples of multi-user creation of end-user engineered software 

 how to effectively advocate for the “goodness” or “first-class citizenship” of EUSE as part of 

software engineering  

 implications of some end-user programmed software being part of a “human-mediated” ser-

vice versus other software being treated more as a product 

 prevalence and implications of “programming by example” in EUP 

 how to shape EUP frameworks to produce better software 

 automated software quality measurement 

 heuristics to improve user awareness 

 enabling and motivating better specification of end-user needs in EUP-created software 

products 

 inherent difficulty in EUP for different products 

 open research questions in EUSE 

 the joy of problem solving and its implications for EUSE 

 lessons learned from EUSE for professional software engineers 

 implications of distributed cognition for EUSE 

From this list, the participants selected two topics for more detailed discussion: (1) multi-user cre-

ation of end-user engineered software and (2) how to shape EUP frameworks to produce better 

software. These discussions are summarized in the following sections. 

5.4.1 Multi-User Creation of End-User Engineered Software 

Pervasive (or ubiquitous) computing has triggered the idea of multiple people contributing to an 

end-user program. EUP emerged with a single-user focus, but there is an increasing trend toward 

multi-user creation. For example, an assisted-living program may monitor a set of patients and 

prompt for follow-up with house calls in case of emergencies. Later, a different set of users might 

develop a number of variations to this program. As those changes make the program more com-

plex, challenges of configuration management, stakeholder conflict and control, social and legal 

concerns such as privacy, and quality attributes such as safety and security need to be considered. 

Multiple end-user creation can also be seen in collaborative prototyping, Wiki creation, coopera-

tive tailoring, and search tool tailoring. 

  



 

32 | CMU/SEI-2009-SR-015 

Challenges of multi-user EUP include 

 understanding the current state of a program 

 the nature of the relationship between end users 

 traceability of who made specific changes 

 training 

 greater need for validation 

 solving conflicts and clashes in multi-user creation environments 

 more languages for collaborative environments that could exploit computation 

Tools are needed to supporting these collaborative environments in the areas of 

 versioning, to indicate who made changes and why they were made 

 collaboration, for requirements management 

These tools need to be focused on intuitive functionality because end users do not have profes-

sional software engineering backgrounds. 

5.4.2 How to Shape EUP Frameworks to Produce Better Software 

The discussion on shaping the overall development framework revolved around the question of 

whether development frameworks can be controlled and constrained. 

EUP poses a significant challenge because it is very domain specific. For example, the needs of 

the scientific users reported by Vigder differ from those of the spreadsheet users reported by Xin-

gliang Yu and from those the business users that Crystal Reports targets. Empirical and descriptive 

studies, such as the ones reported by Margaret Burnett, help with understanding how end users 

develop software in specific domains. 

As a counter to the domain-specificity of EUP, workshop participants suggested the identification 

of principles within domains that can be generalized across domains through techniques such as 

parameterization. One tool mentioned for capturing common interactive behaviors that do not 

need to be re-coded by each programmer is Adobe Flash Catalyst to [16]. Another possible answer 

discussed is the customization of domain-specific methods and languages. 

An option discussed for shaping EUP frameworks to produce better software is to have gain more 

knowledge about what people need to do and to automate this behavior as much as possible. A 

problem noted is that most tools relying on automation make assumptions not often confirmed by 

reality.  

Discussion of automation led into the social side of EUP: If too much is automated, the joy of 

problem solving goes away. An ideal mix would be to let end users think about what really mat-

ters (where they can be creative) and use automation to relieve them of having to think about the 

obvious via automation. From a tool perspective, this notion translates into determining the ap-

propriate level of expressiveness in languages and tools. 



 

33 | CMU/SEI-2009-SR-015 

5.5 Workshop Review 

Grace Lewis from Software Engineering Institute led a discussion of the major workshop themes 

and conclusions [14]. An overall conclusion is that EUP accounts for a significant amount of ac-

tivity. Furthermore, because its impact is growing, the need for instilling software engineering 

discipline into EUP is reaching a critical stage. 

Common questions and themes that emerged throughout the day included 

 EUP targets: who are the right people to target as EUP adopters? When does it not make 

sense to introduce EUP? 

 Adoption: How to get end users to use tools? 

 Tool characteristics: What tool characteristics appeal to end users in a specific domain? Are 

there common aspects of tools in different domains that can be generalized? 

 Adaptation of tools: Tools are tailored for different levels of expertise—what is the delta be-

tween levels of expertise? How do we reduce the delta? How does the delta change by intro-

ducing EUP? 

 What are the points along the continuum from professional programming to EUP? 

 Will skills change when the prevalent demographic groups become “digital natives?” 

 How can work from other fields be better integrated with EUP? 

 How can we enable end users to more effectively do their activities without requiring a four-

year degree? 

 What are appropriate processes for different types of EUP situations? 

5.6 Next Steps 

The workshop concluded that EUSE is a multi-disciplinary problem needing software engineering 

research, programming language research, education research, end-user programming research, 

and HCI research. Based on the workshop discussions, there was a consensus that the next edition 

of WEUSE should be planned for 2010 at an appropriate venue. 

References 

[1] R. Abraham, M. Burnett, and M. Shaw, eds., Proceedings of the Fourth Workshop on End-

User Software Engineering (WEUSE IV). New York: ACM, 2008.  

[2] B. Boehm, and V. Basili, “Gaining intellectual control of software development,” Computer 

vol. 33, no. 5, pp. 27-33, 2000. 

[3] M. M. Burnett, et al., “The Next Step: From End-User Programming to End-User Software 

Engineering (WEUSE II),” CHI’2006 extended abstracts on Human factors in computing systems, 

Montreal, Canada, pp. 1699-1702, Apr. 2006.  

[4] S. Elbaum and G. Rothermel, eds. Proceedings of the First Workshop on End-User Software 

Engineering: WEUSE 2005. http://www.cse.unl.edu/~grother/weuse/weuse-proceedings.pdf (ac-

cessed November 15, 2009).  

http://www.cse.unl.edu/~grother/weuse/weuse-proceedings.pdf


 

34 | CMU/SEI-2009-SR-015 

[5] B. A. Myers, and M. Burnett, “End-Users Creating Effective Software (Special Interest Group 

Meeting Abstract),” Extended Abstracts of the 2004 Conference on Human Factors in Computing 

Systems, CHI’2004, Vienna, Austria, pp. 1592-1593, Apr. 2004. 

[6] B. A. Myers, M. Burnett, and M. B. Rosson, “End Users Creating Effective Software. (Special 

Interest Group),” Extended Abstracts Proceedings of the 2005 Conference on Human Factors in 

Computing Systems, CHI’2005, Portland, OR (USA), pp. 2047-2048, Apr. 2005. 

[7] B. A. Myers, et al., “End User Software Engineering: CHI‟2008 Special Interest Group Meet-

ing,” Extended Abstracts Proceedings of the 2008 Conference on Human Factors in Computing 

Systems, CHI’2008, Florence, Italy, pp. 2371-2374, Apr. 2008. 

[8] B. A. Myers, et al. “End User Software Engineering: CHI'2007 Special Interest Group Meet-

ing,” Extended Abstracts Proceedings of the 2007 Conference on Human Factors in Computing 

Systems, CHI’2007, San Jose, CA (USA), pp. 2125-2128, Apr. 2007. 

[9] B. A. Myers, et al., “End User Software Engineering: CHI'2009 Special Interest Group Meet-

ing,” Proceedings of the 27th International Conference on Human Factors in Computing Systems, 

CHI’2009, Extended Abstracts Volume, Boston, MA (USA), pp. 2731-2734, Apr. 2009. 

[10] National Science Board, Science and Engineering Indicators 2006. National Science Founda-

tion volume 1: NSB 06-01; volume 2: NSB 06-01A, 2006. Arlington, VA. 

http://www.nsf.gov/statistics/seind06/ (accessed November 15, 2009).  

[11] R. Panko, “Finding spreadsheet errors: Most spreadsheet models have design flaws that may 

lead to long-term miscalculation,” Information Week, pp. 100, May 29, 1995. 

[12] C. Scaffidi, M. Shaw, and B. Myers, “Estimating the Numbers of End Users and End User 

Programmers,” Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC'05), Dallas, TX (USA), pp. 207-214, Sept. 2005. 

[13] H. Lieberman, F. Paterno, and V. Wulf eds., End-User Development. 2006, Springer: Dor-

drecht, The Netherlands.  

[14] International Conference on Software Engineering. “Workshop on Software Engineering 

Foundations for End-User Programming (EUP),” International Conference on Software Engineer-

ing, 2009 [Online]. Available: 

http://www.sei.cmu.edu/interoperability/research/approaches/seeup2009.cfm ([accessed: October 

31, 2009). 

[15] Grace Lewis, Dennis Smith, Len Bass, and Brad Myers, “Report of the Workshop on Soft-

ware Engineering Foundations for End-User Programming,” ACM SIGSOFT Software Engineer-

ing Notes, vol. 34, pp. 51-54, Sept. 2009. 

[16] Adobe Labs, “Adobe Flash Catalyst,” Adobe Labs, 2009. [Online]. Available: 

http://labs.adobe.com/technologies/flashcatalyst/ [accessed. October 31, 2009]. 

 

 

http://labs.adobe.com/technologies/flashcatalyst/
http://www.nsf.gov/statistics/seind06/
http://www.sei.cmu.edu/interoperability/research/approaches/seeup2009.cfm


 

 

REPORT DOCUMENTATION PAGE Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters 
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of 
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY 

(Leave Blank) 

2. REPORT DATE 

November 2009 

3. REPORT TYPE AND DATES 

COVERED 

Final 

4. TITLE AND SUBTITLE 

Proceedings of the Workshop on Software Engineering Foundations for End-User 

Programming (SEEUP 2009) 

5. FUNDING NUMBERS 

FA8721-05-C-0003 

6. AUTHOR(S) 

Len Bass, Grace A. Lewis, Brad Myers, and Dennis B. Smith 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Software Engineering Institute 

Carnegie Mellon University 

Pittsburgh, PA 15213 

8. PERFORMING ORGANIZATION  
REPORT NUMBER 

CMU/SEI-2009-SR-015 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

HQ ESC/XPK 

5 Eglin Street 

Hanscom AFB, MA 01731-2116 

10. SPONSORING/MONITORING 

AGENCY REPORT NUMBER 

 

11. SUPPLEMENTARY NOTES 

 

12A DISTRIBUTION/AVAILABILITY STATEMENT 

Unclassified/Unlimited, DTIC, NTIS 

12B DISTRIBUTION CODE 

 

13. ABSTRACT (MAXIMUM 200 WORDS) 

The Workshop on Software Engineering Foundations for End-User Programming (SEEUP) was held at the 31st International Conference 

on Software Engineering (ICSE) in Vancouver, British Columbia on May 23, 2009.  

This workshop discussed end-user programming with a specific focus on the software engineering that is required to make it a more dis-

ciplined process, while still hiding the complexities of greater discipline from the end user. Speakers covered how to understand the 

problems and needs of the real end users of end-user programming. The discussion focused on the software engineering and supporting 

technology that would have to be in place to address these problems and needs. 

14. SUBJECT TERMS 

EUP, EUSE, end-user programming, end-user software engineering, SEEUP 

15. NUMBER OF PAGES 

46 

16. PRICE CODE 

 

17. SECURITY CLASSIFICATION OF 

REPORT 

Unclassified 

18. SECURITY CLASSIFICATION OF 

THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 

OF ABSTRACT 

Unclassified 

20. LIMITATION OF 

ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 
298-102 

 

 


	Proceedings of the Workshop on Software Engineering Foundations for End-User Programming (SEEUP 2009)
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Workshop Introduction
	2 Invited Talk: The State of the Art in End-User Software Engineering
	3 Extended Abstracts of Workshop Papers Published in ICSE Proceedings
	4 Invited Talk: Using Crystal Reports: Examples of Richly Formatted Report Creation by Non-Developers
	5 Workshop Summary


