6-2010

Flips in Graphs

Tom Bohman
Carnegie Mellon University, tbohman@math.cmu.edu

Andrzej Dudek
Carnegie Mellon University

Alan Frieze
Carnegie Mellon University, af1p@andrew.cmu.edu

Oleg Pikhurko
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/math
Part of the [Mathematics Commons](http://repository.cmu.edu/math)

Published In

Flips in Graphs

Tom Bohman∗† Andrzej Dudek∗ Alan Frieze∗† Oleg Pikhurko∗§

June 1, 2010

Abstract

We study a problem motivated by a question related to quantum-error-correcting codes. Combinatorially, it involves the following graph parameter:

\[f(G) = \min \{|A| + |\{x \in V \setminus A : d_A(x) \text{ is odd}\}| : A \neq \emptyset\}, \]

where \(V\) is the vertex set of \(G\) and \(d_A(x)\) is the number of neighbors of \(x\) in \(A\). We give asymptotically tight estimates of \(f\) for the random graph \(G_{n,p}\) when \(p\) is constant. Also, if

\[f(n) = \max \{f(G) : |V(G)| = n\} \]

then we show that \(f(n) \leq (0.382 + o(1))n\).

1 Introduction

In this paper we consider a problem which is motivated by a question from quantum-error-correcting codes. To see how to use graphs to construct quantum-error-correcting codes see, e.g., [2, 4, 5].

Given a graph \(G\) with \(\pm 1\) signs on vertices, each vertex can perform at most one of the following three operations: \(O_1\) (flip all of its neighbors, \(i.e.,\) change their signs), \(O_2\) (flip itself), and \(O_3\) (flip itself and all of its neighbors). We want to start with all +1’s, execute some non-zero number of operations and return to all +1’s. The diagonal distance \(f(G)\) is the minimum number of operations needed (with each vertex doing at most one operation).

∗Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, \{tbohman,adudek,af1p,pikhurko\}@andrew.cmu.edu
†Research partially supported by NSF grant DMS-0401147
‡Research partially supported by NSF grant DMS-0753472
§Research partially supported by NSF grant DMS-0758057
Trivially,

\[
f(G) \leq \delta(G) + 1
\]

holds, where \(\delta(G)\) denotes the minimum degree. Indeed, a vertex with the minimum degree applies \(O_1\) and then its neighbors fix themselves applying \(O_2\). Let

\[
f(n) = \max f(G),
\]

where the maximum is taken over all non-empty graphs of order \(n\). Shiang Yong Looi (personal communication) asked for a good approximation on \(f(n)\).

In this paper we asymptotically determine the diagonal distance of the random graph \(G_{n,p}\) for any \(p \in (0, 1)\).

We denote the symmetric difference of two sets \(A\) and \(B\) by \(A \triangle B\) and the logarithmic function with base \(e\) as \(\log\).

Theorem 1.1 There are absolute constants \(\lambda_0 \approx 0.189\) and \(p_0 \approx 0.894\), see (6) and (12), such that for \(G = G_{n,p}\) asymptotically almost surely:

(i) \(f(G) = \delta(G) + 1\) for \(0 < p < \lambda_0\) or \(p = o(1)\),

(ii) \(|f(G) - \lambda_0 n| = \tilde{O}(n^{1/2})\) for \(\lambda_0 \leq p \leq p_0\),

(iii) \(f(G) = 2 + \min_{x,y \in V(G)} |(N(x) \triangle N(y)) \setminus \{x, y\}| \) for \(p_0 < p < 1\) or \(p = 1 - o(1)\).

(Here \(\tilde{O}(n^{1/2})\) hides a polylog factor).

Figure 1 visualizes the behavior of the diagonal distance of \(G_{n,p}\). In addition to Theorem 1.1 we find the following upper bound on \(f(n)\).

Theorem 1.2 \(f(n) \leq (0.382 + o(1))n\).

In the remainder of the paper we will use a more convenient restatement of \(f(G)\). Observe that the order of execution of operations does not affect the final outcome. For any \(A \subset V = V(G)\), let \(B\) consist of those vertices in \(V \setminus A\) that have odd number of neighbors in \(A\). Let \(a = |A|\) and \(b = |B|\). Then \(f(G)\) is the minimum of \(a + b\) over all non-empty \(A \subset V(G)\). The vertices of \(A\) do an \(O_1/O_3\) operation, depending on the even/odd parity of their neighborhood in \(A\). The vertices in \(B\) then do an \(O_2\)-operation to change back to +1.
2 Random Graphs for $p = 1/2$

Here we prove a special case of Theorem 1.1 when $p = 1/2$. This case is somewhat easier to handle.

Let $G = G_{n,1/2}$ be a binomial random graph. First we find a lower bound on $f(G)$. If we choose a non-empty $A \subset V$ and then generate G, then the distribution of b is binomial with parameters $n - a$ and 1/2, which we denote here by $Bin(n-a,1/2)$. Hence, if l is such that

$$\sum_{a=1}^{l-1} \binom{n}{a} \Pr(Bin(n-a,1/2) \leq l-1-a) = o(1),$$

(2)

then asymptotically almost surely the diagonal distance of G is at least l.

Let $\lambda = l/n$ and $\alpha = a/n$. We can approximate the summand in (2) by

$$2^n (H(\alpha) + (1-\alpha)(H(\lambda) - 1)) + O(\log n/n),$$

(3)

where H is the binary entropy function defined as $H(p) = -p \log_2 p - (1-p) \log_2 (1-p)$. For more information about the entropy function and its properties see, e.g., [1]. Let

$$g_\lambda(\alpha) = H(\alpha) + (1-\alpha) \left(H \left(\frac{\lambda - \alpha}{1-\alpha} \right) - 1 \right).$$

(4)

The maximum of $g_\lambda(\alpha)$ is attained exactly for $\alpha = 2\lambda/3$, since

$$g'_\lambda(\alpha) = \log_2 \frac{2(\lambda - \alpha)}{\alpha}.$$

Now the function

$$h(\lambda) = g_\lambda(2\lambda/3)$$

(5)

is concave on $\lambda \in [0,1]$ since

$$h''(\lambda) = \frac{1}{(\lambda - 1)\lambda \log 2} < 0.$$

Moreover, observe that $h(0) = -1$ and $h(1) = H(2/3) - 1/3 > 0$. Thus the equation $h(\lambda) = 0$ has a unique solution λ_0 and one can compute that

$$\lambda_0 = 0.1892896249152306 \ldots$$

(6)

Therefore, if $\lambda = \lambda_0 - K \log n/n$ for large enough $K > 0$, then the left hand side of (2) goes to zero and similarly for $\lambda = \lambda_0 + K \log n/n$ it goes to infinity. In particular, $f(G) > (\lambda_0 - o(1))n$ asymptotically almost surely.
Let us show that this constant λ_0 is best possible, i.e., asymptotically almost surely $f(G) \leq (\lambda_0 + K \log n/n)n$. Let $\lambda = \lambda_0 + K \log n/n$, n be large, and $l = \lambda n$. Let $\alpha = 2\lambda/3$ and $a = \lceil \alpha n \rceil$. We pick a random a-set $A \subset V$ and compute b. Let X_A be an indicator random variable so that $X_A = 1$ if and only if $b = b(A) \leq l - a$. Let $X = \sum_{|A|=a} X_A$. We succeed if $X > 0$.

The expectation $E(X) = \binom{n}{a} \Pr(Bin(n - a, 1/2) \leq l - a)$ tends to infinity, by our choice of λ. We now show that $X > 0$ asymptotically almost surely by using the Chebyshev inequality. First note that for $A \cap C \neq \emptyset$ we have

$$Cov(X_A, X_C) = \Pr(X_A = X_C = 1) - \Pr(X_A = 1) \Pr(X_C = 1) = 0.$$

Indeed, if $x \in V \setminus (A \cup C)$, then $\Pr(x \in B(A)|X_C = 1) = 1/2$, since $A \setminus C \neq \emptyset$ and no adjacency between x and all vertices in $A \setminus C$ is exposed by the event $X_C = 1$. Similarly, if $x \in C \setminus A$, then $A \cap C \neq \emptyset$ and an adjacency between x and $A \cap C$ is independent of the occurrence of $X_C = 1$. This implies that $\Pr(x \in B(A) | X_C = 1) = 1/2$ as well. Thus $\Pr(X_A = 1|X_C = 1) = \Pr(Bin(n - a, 1/2) \leq l - a) = \Pr(X_A = 1)$, and consequently, $Cov(X_A, X_C) = 0$.

Now consider the case when $A \cap C = \emptyset$. Let s be a vertex in A. Define a new indicator random variable Y which takes the value 1 if and only if $|B(C) \setminus \{s\}| \leq l - a$. Observe that

$$\Pr(Y = 1) = \Pr(Bin(n - a - 1, 1/2) \leq l - a) \leq 2 \Pr(Bin(n - a, 1/2) \leq l - a) = 2 \Pr(X_A = 1).$$

Moreover,

$$\Pr(X_A = 1|Y = 1) = \Pr(Bin(n - a, 1/2) \leq l - a) = \Pr(X_A = 1),$$

since for every $x \in V \setminus A$ the adjacency between x and s is not influenced by $Y = 1$. Finally note that $X_C \leq Y$. Thus,

$$Cov(X_A, X_C) \leq \Pr(X_A = X_C = 1) \leq \Pr(X_A = Y = 1) = \Pr(Y = 1) \Pr(X_A = 1|Y = 1) \leq 2(\Pr(X_A = 1))^2.$$

Consequently,

$$Var(X) = E(X) + \sum_{A \cap C \neq \emptyset, A \neq C} Cov(X_A, X_C) + \sum_{A \cap C = \emptyset} Cov(X_A, X_C) \leq E(X) + 2 \sum_{A \cap C = \emptyset} (\Pr(X_A = 1))^2 = E(X) + 2 \binom{n}{a} \binom{n-a}{a} (\Pr(X_A = 1))^2 = o(E(X)^2),$$

as $E(X) = \binom{n}{a} \Pr(X_A = 1)$ tends to infinity and $\binom{n-a}{a} = o(\binom{n}{a})$. Hence, Chebyshev’s inequality yields that $X > 0$ asymptotically almost surely.
Remark 2.1 A version of the well-known Gilbert-Varshamov bound (see, e.g., [3]) states that if
\[2^{-n} \sum_{i=1}^{l-1} \binom{n}{i} 3^i < 1, \] (7)
then \(f(n) \geq l \). Observe that this is consistent with bound (2). Let \(\lambda = l/n \). We can approximate the left hand side of (7) by
\[2^n (H(\lambda) + \lambda \log_2 3 - 1 + o(1)). \]
One can check after some computation that
\[H(\lambda) + \lambda \log_2 3 - 1 = g_\lambda (2\lambda/3). \]
Therefore, (2) and (7) give asymptotically the same lower bound on \(f(n) \).

3 Random Graphs for Arbitrary \(p \)

Let \(G = G_{n,p} \) be a random graph with \(p \in (0, 1) \).

Observe that for a fixed set \(A \subset V, |A| = a \), the probability that a vertex from \(V \setminus A \) belongs to \(B(A) \) is
\[p(a) = \sum_{0 \leq i \leq \frac{a}{2}} \binom{a}{2i+1} p^{2i+1}(1-p)^{a-(2i+1)} = \frac{1 - (1 - 2p)^a}{2}. \]
(If this is unfamiliar, expand \((1 - 2p)^a\) as \((1 - p - p)^a\) and compare).

3.1 \(0 < p < \lambda_0 \)

For \(p < \lambda_0 \) we begin with the upper bound \(f(G) \leq \delta(G) + 1 \), see (1). For the lower bound it is enough to show that
\[\sum_{2 \leq a \leq pn} \binom{n}{a} \Pr(Bin(n-a, p(a)) \leq pn - a) = o(1), \] (8)
since \(\delta(G) + 1 \leq np \) asymptotically almost surely. (We may assume that \(p = \Omega \left(\frac{\log n}{n} \right) \); for otherwise \(\delta(G) = 0 \) with high probability and the theorem is trivially true.) This implies with high probability that if \(|A| + |B| \leq pn\), then \(|A| = 1\).
3.1.1 p Constant

We split this sum into two sums for $2 \leq a \leq \sqrt{n}$ and $\sqrt{n} < a \leq pn$, respectively. Let $X = Bin(n - a, p(a))$ and

$$
\varepsilon = 1 - \frac{pn - a}{(n - a)p(a)} \geq 1 - \frac{p}{p(2)} = 1 - \frac{1}{2 - 2p} > 0. \quad (9)
$$

Thus, by Chernoff’s bound,

$$
Pr(Bin(N, \rho) \leq (1 - \theta)N\rho) \leq e^{-\theta^2N\rho/2}. \quad (10)
$$

Hence, we see that

$$
Pr(Bin(n - a, p(a)) \leq pn - a) = Pr(X \leq (1 - \varepsilon)E(X)) \\
\leq \exp\{-\varepsilon^2E(X)/2\} \\
= \exp\{-\Theta(n)\},
$$

and consequently,

$$
\sum_{2 \leq a < \sqrt{n}} \binom{n}{a} Pr(Bin(n - a, p(a)) \leq pn - a) \leq \sqrt{n} \exp\{-\Theta(n)\} \\
\leq \exp\{O(\sqrt{n} \log n)\} \exp\{-\Theta(n)\} \\
= o(1).
$$

Now we bound the second sum corresponding to $\sqrt{n} < a \leq pn$. Note that

$$
\sum_{\sqrt{n} \leq a \leq pn} \binom{n}{a} Pr(Bin(n - a, p(a)) \leq pn - a) \\
= \sum_{\sqrt{n} \leq a \leq pn} \binom{n}{a} Pr\left(Bin\left(n - a, \frac{1}{2} + O(e^{-\Omega(n^{1/2})})\right) \leq pn - a\right) \\
\leq n^{2^{n(h(p) + o(1))}} = o(1).
$$

Here h is defined in (5) and the right hand limit is zero since $p < \lambda_0$.

3.1.2 $p = o(1)$

We follow basically the same strategy as above and show that (8) holds for large a and something similar when a is small. Suppose then that $p = \frac{1}{\omega}$ where $\omega = \omega(n) \to \infty$. First consider those a for which $ap \geq \frac{1}{\omega^{1/2}}$. In this
case \(p(a) \geq (1 - e^{-2ap})/2 \). Thus,

\[
\sum_{ap \geq 1/\omega^{1/2}} \sum_{a \leq np} \binom{n}{a} \Pr(Bin(n - a, p(a)) \leq pn - a) = \sum_{ap \geq 1/\omega^{1/2}} e^{O(n \log \omega/\omega)} e^{-\Omega(n/\omega^{1/2})} = o(1).
\]

If \(ap \leq 1/\omega^{1/2} \) then \(p(a) = ap(1 + O(ap)) \). Then

\[
\sum_{ap < 1/\omega^{1/2}} \sum_{2 \leq a \leq np} \binom{n}{a} \Pr(Bin(n - a, p(a)) \leq pn - a) \leq \sum_{ap < 1/\omega^{1/2}} \left(\frac{ne}{a} e^{-np/10} \right)^a = o(1) \tag{11}
\]

provided \(np \geq 11 \log n \).

If \(np \leq \log n - \log \log n \) then \(G = G_{n,p} \) has isolated vertices asymptotically almost surely and then \(f(G) = 1 \). So we are left with the case where \(\log n - \log \log n \leq np \leq 11 \log n \).

We next observe that if there is a set \(A \) for which \(2 \leq |A| \) and \(|A| + |B(A)| \leq np \) then there is a minimal size such set. Let \(H_A = (A, E_A) \) be a graph with vertex set \(A \) and an edge \((v, w) \in E_A \) if and only if \(v, w \) have a common neighbor in \(G \). \(H_A \) must be connected, else \(A \) is not minimal. So we can find \(t \leq a - 1 \) vertices \(T \) such that \(A \cup T \) spans at least \(t + a - 1 \) edges between \(A \) and \(T \). Thus we can replace the estimate (11) by

\[
\sum_{ap < 1/\omega^{1/2}} \sum_{2 \leq a \leq np} \binom{n}{a} \sum_{t=1}^{a-1} \binom{n}{t} \binom{n}{t+a-1} p^{t+a-1} \Pr(Bin(n - a - t, p(a)) \leq pn - a) \leq \sum_{ap < 1/\omega^{1/2}} \sum_{2 \leq a \leq np} \sum_{t=1}^{a-1} \left(\frac{ne}{a} \right)^a \left(\frac{ne}{t} \right)^t \left(\frac{taep}{t + a - 1} \right)^{t+a-1} e^{-ap/10} \\
\leq \frac{1}{e^{2np}} \sum_{ap < 1/\omega^{1/2}} \sum_{2 \leq a \leq np} a \left((e^2 np)^2 e^{-np/10} \right)^a = o(1).
\]

3.2 \(p_0 < p < 1 \)

First let us define the constant \(p_0 \). Let

\[
p_0 \approx 0.8941512242051071 \ldots \tag{12}
\]
be a root of $2p - 2p^2 = \lambda_0$. For the upper bound let $A = \{x, y\}$, where x and y satisfy $|N(x) \triangle N(y)| \leq |N(x') \triangle N(y')|$ for any $x', y' \in V(G)$. Then $B = B(A) = N(x) \triangle N(y)$, and thus, asymptotically almost surely $|B| \leq (2p - 2p^2)n$ plus a negligible error term $o(n)$. (We may assume that $1 - p = \Omega\left(\frac{\log n}{n}\right)$; for otherwise we have two vertices of degree $n - 1$ with high probability, and hence, $f(G) = 2$.)

To show the lower bound it is enough to prove that

$$\sum_{3 \leq a \leq (2p-2p^2)n} \binom{n}{a} \Pr\left(\text{Bin}(n-a, p(a)) \leq (2p-2p^2)n - a\right) = o(1).$$

Indeed, this implies that if $|A| + |B| \leq (2p - 2p^2)n$, then $|A| = 1$ or 2. But if $|A| = 1$, then in a typical graph $|B| = (p + o(1))n > (2p - 2p^2)n$ since $p > 1/2$.

3.2.1 p Constant

As in the previous section we split the sum into two sums for $3 \leq a \leq \sqrt{n}$ and $\sqrt{n} < a \leq pn$, respectively. Let

$$\epsilon = 1 - \frac{(2p - 2p^2)n - a}{(n-a)p(a)} \geq 1 - \frac{2p - 2p^2}{p(a)} > 0.$$

To confirm the second inequality we have to consider two cases. The first one is for a odd and at least 3. Here,

$$1 - \frac{2p - 2p^2}{p(a)} > 1 - \frac{2p - 2p^2}{1/2} = (2p - 1)^2 > 0.$$

The second case, for a even and at least 4, gives

$$1 - \frac{2p - 2p^2}{p(a)} > 1 - \frac{2p - 2p^2}{p(2)} = 0.$$

Now one can apply Chernoff bounds with the given ϵ to show that

$$\sum_{3 \leq a < \sqrt{n}} \binom{n}{a} \Pr\left(\text{Bin}(n-a, p(a)) \leq (2p-2p^2)n - a\right) = o(1).$$

Now we bound the second sum corresponding to $\sqrt{n} < a \leq (2p - 2p^2)n$. Note that

$$\sum_{\sqrt{n} \leq a \leq (2p-2p^2)n} \binom{n}{a} \Pr\left(\text{Bin}(n-a, p(a)) \leq (2p-2p^2)n - a\right)$$

$$= \sum_{\sqrt{n} \leq a \leq (2p-2p^2)n} \binom{n}{a} \Pr\left(\text{Bin}\left(n-a, \frac{1}{2} + O(\epsilon^{o(1)})\right) \leq (2p-2p^2)n - a\right)$$

$$\leq n^2 \epsilon^{o(2p-2p^2)+o(1)} = o(1)$$

since $p > p_0$ implies that $2p - 2p^2 < \lambda_0$.

8
3.2.2 \(p = 1 - o(1) \)

One can check it by following the same strategy as above and in Section 3.1.2.

3.3 \(\lambda_0 \leq p \leq p_0 \)

Let \(\alpha = 2\lambda_0/3 \), \(a = [\alpha n] \). Fix an \(a \)-set \(A \subset V \) and generate our random graph and determine \(B = B(A) \) with \(b = |B| \). Let \(\varepsilon = (\log n)^4/\sqrt{n} \) and let \(X_A \) be the indicator random variable for \(a + b \leq (\lambda_0 + \varepsilon)n \) and \(X = \sum_A X_A \). Then

\[
p(a) = \frac{1}{2} + e^{-\Omega(n)}
\]

and with \(g_\alpha(\alpha) \) as defined in (4),

\[
E(X) = \exp\{ (g_{\lambda_0 + \varepsilon} (2\lambda_0/3) + o(1))n \log 2 \}. \tag{13}
\]

Now

\[
g_{\lambda + \varepsilon}(\alpha) = g_\alpha(\alpha) + (1 - \alpha) \left(H \left(\frac{\lambda + \varepsilon - \alpha}{1 - \alpha} \right) - H \left(\frac{\lambda - \alpha}{1 - \alpha} \right) \right)
\]

\[
= g_\alpha(\alpha) + \varepsilon \log_2 \left(\frac{1 - \lambda}{\lambda - \alpha} \right) + O(\varepsilon^2).
\]

Plugging this into (13) with \(\lambda = \lambda_0 \) and \(\alpha = 2\lambda_0/3 \) we see that

\[
E(X) = \exp \left\{ \left(\varepsilon \log_2 \left(\frac{1 - \lambda_0}{\lambda_0/3} \right) + O(\varepsilon^2) \right) n \log 2 \right\} = e^{\Omega((\log n)^4 n^{1/2})}. \tag{14}
\]

Next, we estimate the variance of \(X \). We will argue that for \(A, C \in \binom{V}{a} \) either \(|A \triangle C| \) is small (but the number of such pairs is small) or \(|A \triangle C| \) is large (but then the covariance \(\text{Cov}(X_A, X_C) \) is very small since if we fix the adjacency of some vertex \(x \) to \(C \), then the parity of \(|N(x) \cap (A \setminus C)| \) is almost a fair coin flip). Formally,

\[
\text{Var}(X) = E(X) + \sum_{A \neq C} \text{Cov}(X_A, X_C)
\]

\[
\leq E(X) + \sum_{|A \triangle C| < 2\sqrt{n}} \Pr(X_A = X_C = 1) + \sum_{|A \triangle C| \geq 2\sqrt{n}, |A \cap C| \geq \sqrt{n}} \text{Cov}(X_A, X_C) + \sum_{|A \cap C| < \sqrt{n}} \Pr(X_A = X_C = 1).
\]

Since \(E(X) \) goes to infinity, clearly \(E(X) = o(E(X)^2) \). We show in Claims 3.1, 3.2 and 3.3 that the remaining part is also bounded by \(o(E(X)^2) \). Then Chebyshev’s inequality will imply that \(X > 0 \) asymptotically almost surely.

Claim 3.1 \[
\sum_{|A \triangle C| < 2\sqrt{n}} \Pr(X_A = X_C = 1) = o(E(X)^2)
\]
Proof. We estimate trivially \(\Pr(X_A = X_C = 1) \leq \Pr(X_A = 1) \). Then,

\[
\sum_{|A \triangle C| < 2\sqrt{n}} \Pr(X_A = 1) = \binom{n}{a} \sum_{0 \leq i < \sqrt{n}} \binom{n-a}{i} \binom{a}{a-i} \Pr(X_A = 1)
\]

\[
= E(X) \sum_{0 \leq i < \sqrt{n}} \binom{n-a}{i} \binom{a}{a-i} \leq E(X) 2^{O(\sqrt{n} \log n)}.
\]

Thus, (14) yields that \(\sum_{|A \triangle C| < 2\sqrt{n}} \Pr(X_A = X_C = 1) = o(E(X)^2) \). □

Claim 3.2 \(\sum_{|A \triangle C| \geq 2\sqrt{n}, |A \cap C| \geq \sqrt{n}} \text{Cov}(X_A, X_C) = o(E(X)^2) \)

Proof. If \(x \in V \setminus (A \cup C) \), then \(\Pr(x \in B(A) | X_C = 1) = 2^{-1+o(1/n)} \), since we can always find at least \(\sqrt{n} \) vertices in \(A \setminus C \) with no adjacency with \(x \) determined by the event \(X_C = 1 \). Similarly, if \(x \in C \setminus A \), then there are at least \(\sqrt{n} - 1 \) vertices in \(A \cap C \) such that their adjacency with \(x \) is independent of the occurrence of \(X_C = 1 \). This implies that

\[
\Pr(X_A = 1 | X_C = 1) = \sum_{0 \leq i \leq l-a} \binom{n-a}{i} 2^{-(n-a)+o(1)} = 2^{o(1)} \Pr(X_A = 1),
\]

and consequently, \(\text{Cov}(X_A, X_C) = o(\Pr(X_A = 1)^2) \). Hence,

\[
\sum_{|A \triangle C| \geq 2\sqrt{n}, |A \cap C| \geq \sqrt{n}} \text{Cov}(X_A, X_C) \leq \binom{n}{a}^2 o(\Pr(X_A = 1)^2) = o(E(X)^2).
\]

□

Claim 3.3 \(\sum_{|A \cap C| < \sqrt{n}} \Pr(X_A = X_C = 1) = o(E(X)^2) \)

Proof. First let us estimate the number of ordered pairs \((A, C)\) for which \(|A \cap C| < \sqrt{n} \). Note,

\[
\sum_{|A \cap C| < \sqrt{n}} 1 = \binom{n}{a} \sum_{0 \leq i < \sqrt{n}} \binom{n-a}{i} \binom{a}{a-i} \leq \sqrt{n} \left(\frac{n}{a} \right) \left(\frac{n-a}{a} \right) \left(\frac{a}{\sqrt{n}} \right) = 2^n(\text{H}(\alpha)+\text{H}(\frac{\alpha}{1-\alpha})(1-\alpha)+o(1)).
\]

Now we will bound \(\Pr(X_A = X_C = 1) \) for fixed \(a \)-sets \(A \) and \(C \). Let \(S \subset A \setminus C \) be a set of size \(s = |S| = \lceil \sqrt{n} \rceil \). Define a new indicator random variable \(Y \)
which takes the value 1 if and only if \(|B(C) \setminus S| \leq (\lambda_0 + \varepsilon)n - a\). Clearly, \(X_C \leq Y\) and

\[
\Pr(Y = 1) = \Pr(Bin(n - a - s, p(a)) \leq (\lambda_0 + \varepsilon)n - a) \\
\leq 2^{s + o(1)} \sum_{0 \leq i \leq (\lambda_0 + \varepsilon)n - a} \binom{n - a}{i} 2^{-(n-a)} \\
= 2^{s + o(1)} \Pr(X_A = 1).
\]

Now if we condition on the existence or otherwise of all edges \(F'\) between \(C\) and \(V \setminus S\) then if \(x \in V \setminus A\)

\[
\Pr(x \in B(A) | F' \text{ and } F'') \in \left[\frac{1 - (1 - 2p)^s}{2}, \frac{1 + (1 - 2p)^s}{2}\right],
\]

where \(F''\) is the set of edges between \(x\) and \(A \setminus S\). This implies that

\[
\Pr(X_A = 1|Y = 1) = \sum_{0 \leq i \leq (\lambda_0 + \varepsilon)n - a} \binom{n - a}{i} 2^{-(n-a) + O(\sqrt{n})} \\
= 2^{O(\sqrt{n})} \Pr(X_A = 1),
\]

Consequently,

\[
\Pr(X_A = X_C = 1) \leq \Pr(X_A = Y = 1) \leq 2^{O(\sqrt{n})} \Pr(X_A = 1)^2.
\]

Hence, (15) implies

\[
\sum_{|A \cap C| < \sqrt{n}} \Pr(X_A = X_C = 1) \leq 2^{n(H(\alpha) + H(\frac{\alpha}{1-\alpha})(1-\alpha) + o(1))} \Pr(X_A = 1)^2.
\]

To complete the proof it is enough to note that

\[
E(X)^2 = 2^{n(2H(\alpha) + o(1))} \Pr(X_A = 1)^2
\]

and

\[
2H(\alpha) > H(\alpha) + H \left(\frac{\alpha}{1-\alpha} \right) (1 - \alpha).
\]

Indeed, the last inequality follows from the strict concavity of the entropy function, since then \((1 - \alpha)H \left(\frac{\alpha}{1-\alpha} \right) + \alpha H(0) \leq H(\alpha)\) with the equality for \(\alpha = 0\) only. \(\Box\)

Now we show that \(f(G_{n,p}) \geq (\lambda_0 - \varepsilon)n\). We show that

\[
\sum_{1 \leq a \leq (\lambda_0 - \varepsilon)n} \binom{n}{a} \Pr(Bin(n - a, p(a)) \leq (\lambda_0 - \varepsilon)n - a) = o(1).
\]
As in previous sections we split this sum into two sums but this time we make the break into $1 \leq a \leq (\log n)^2$ and $(\log n)^2 < a \leq (\lambda_0 - \epsilon)n$, respectively. In order to estimate the first sum we use the Chernoff bounds with deviation $1 - \theta$ from the mean where

$$\theta = 1 - \frac{(\lambda_0 - \epsilon)n - a}{(n-a)p(a)} \geq 1 - \frac{(\lambda_0 - \epsilon)}{p(a)} \geq 1 - \frac{(\lambda_0 - \epsilon)}{\lambda_0} = \frac{\epsilon}{\lambda_0}. $$

Consequently,

$$\sum_{2 \leq a < (\log n)^2} \binom{n}{a} \Pr(Bin(n-a, p(a)) \leq (\lambda_0 - \epsilon)n - a) \leq (\log n)^2 \binom{n}{(\log n)^2} \exp \{-\Omega((\log n)^4)\} \leq \exp \{-\Omega((\log n)^4)\} = o(1).$$

Now we bound the second sum corresponding to $(\log n)^2 < a \leq (\lambda_0 - \epsilon)n$.

$$\sum_{(\log n)^2 \leq a \leq (\lambda_0 - \epsilon)n} \binom{n}{a} \Pr(Bin(n-a, p(a)) \leq (\lambda_0 - \epsilon)n - a) = 2^n \left(h(\lambda_0 - \epsilon) + O(1/n)\right) = o(1).$$

4 General Graphs

Here we present the proof of Theorem 1.2. First, we prove a weaker result $f(n) \leq (0.440\ldots + o(1))n$.

Suppose we aim at showing that $f(n) \leq \lambda n$. We fix some α and ρ and let $a = \alpha n$ and $r = \rho n$. For each α-set A let $R(A)$ consist of all sets that have Hamming distance at most r from $B(A)$. If

$$\binom{n}{a} \sum_{i=0}^{r} \binom{n}{i} = 2^n (H(\alpha) + H(\rho) + o(1)) > 2^n,$$

then there are A, A' such that $R(A) \cap R(A') \ni C$ is non-empty. This means that C is within Hamming distance r from both $B = B(A)$ and $B' = B(A')$. Thus $|B \triangle B'| \leq 2r$.

Let all vertices in $A'' = A \triangle A'$ flip their neighbors, i.e., execute operation O_1. The only vertices outside of A'' that can have an odd number of neighbors in A'' are restricted to $(B \triangle B') \cup (A \cap A')$. Thus

$$f(G) \leq |A \triangle A'| + |(B \triangle B') \cup (A \cap A')| \leq 2a + 2r = 2n(\alpha + \rho).$$
Consequently, we try to minimise \(\alpha + \rho \) subject to \(H(\alpha) + H(\rho) > 1 \). Since the entropy function is strictly concave, the optimum satisfies \(\alpha = \rho \), otherwise replacing each of \(\alpha, \rho \) by \((\alpha + \rho) / 2 \) we strictly increase \(H(\alpha) + H(\rho) \) without changing the sum. Hence, the optimum choice is

\[
\alpha = \rho \approx 0.11002786443835959 \ldots
\]

the smaller root of \(H(x) = 1/2 \), proving that \(f(n) \leq (0.440 \ldots + o(1))n \).

In order to obtain a better constant we modify the approach taken in (16). Let us take \(\delta = 0.275 \), \(\alpha = 0.0535 \), \(a = \lfloor an \rfloor \), \(d = \lfloor \delta n \rfloor \). Look at the collection of sets \(B(A), A \in \binom{[n]}{a} \). This gives \(\binom{n}{a} = 2^n (H(\alpha) + o(1)) \) binary \(n \)-vectors.

We claim that some two of these vectors are at distance at most \(d \). If not, then inequality (5.4.1) in [3] says that

\[
H(\alpha) + o(1) \leq \min\{1 + g(u^2) - g(u^2 + 2\delta u + 2\delta) : 0 \leq u \leq 1 - 2\delta\},
\]

where \(g(x) = H((1 - \sqrt{1 - x})/2) \). In particular, if we take \(u = 1 - 2\delta = 0.45 \), we get \(0.30108 + o(1) \leq 0.30103 \), a contradiction.

Thus, we can find two different \(a \)-sets \(A \) and \(A' \) such that \(|B(A) \triangle B(A')| \leq d \). As in (17), we can conclude that \(f(G) \leq 2a + d \leq (0.382 + o(1))n \).

5 Acknowledgment

The authors would like to thank Shiang Yong Looi for suggesting this problem.

References

