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Fig. 5. Mean NLL of forecasting and smoothing performance

Proposed Travel time MDP Motion model

Fig. 6. Comparing forecasting distributions. The travel time only MDP ignores physical
attributes of the scene. The Markov motion model degenerates to a random walk when
train data is limited

trajectories. We run our experiments with a state-of-the-art super-pixel tracker
(SPT) [23] and an in-house template-based tracker to show how the smoothing
distribution improves the quality of estimated pedestrian trajectories. Again,
we fix the start and goal states to isolate the performance of smoothing. Our
in-house tracker is conservative and only keeps strong detections of pedestrians,
which results in many missing detections. Many gaps in detection causes the
MHD between the observed trajectory and true trajectory to be large without
smoothing. In contrast, the trajectories of the SPT have no missing observations
due to temporal filtering but have a tendency to drift away from the pedestrian.
As such, the SPT has much better performance compared to our in-house tracker
before smoothing. Figure 7 shows a significant improvement for both trackers
after smoothing. Despite that fact that our in-house tracker is not as robust as

Table 1. Average NLL per activity category and dataset (A and B) for (a) forecasting
and (b) smoothing performance

(a) Forecasting Proposed MEMM MarkovMot
approach (A) 1.657 1.962 2.157
depart (A) 1.618 1.940 2.103
walk (A) 1.544 2.027 2.174
approach (B) 1.519 1.780 2.180
depart (B) 1.519 1.903 2.115
walk (B) 1.707 1.997 2.182

(b) Smoothing Proposed MEMM
approach (A) 1.602 1.942
depart (A) 1.594 1.923
walk (A) 1.483 2.022
approach (B) 1.465 1.792
depart (B) 1.513 1.882
walk (B) 1.695 2.001
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Fig. 7. Improvement in tracking accuracy with the smoothing distribution
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Fig. 8. Destination forecasting and path smoothing. Our proposed approach infers a
pedestrians likely destinations as more noisy observations become available. Concur-
rently, the smoothing distribution (likely paths up to the current time step t) and the
forecasting distribution (likely paths from t until the future) are modified as observa-
tions are updated

SPT, the MHD after smoothing is actually better than the SPT post-smoothing.
This is due to the fact that our tracker only generates confident, albeit sparse,
detections. The distributions generated by our approach also outperforms the
MEMM, as shown in Table 1b.

4.4 Destination forecasting evaluation

In the most general case, the final destination of a pedestrian is not know in
advance so we must reason about probable destinations as tracker observations
become available. In this experiment we hold the start state and allow the des-
tination state to be inferred by Equation (6). Figure 8 shows a visualization of
destination forecasting, and consequentially, the successive updates of the fore-
casting and smoothing distributions. As noisy pedestrian tracker observations
are acquired, the posterior distribution over destinations, the forecasting and
smoothing distributions are updated. Quantitative results shown in Figure 9
show that the MHD quickly approaches a minimum for most activity categories,
after about 30% of the noisy tracker trajectory has been observed. This indicates
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Fig. 9. Destination forecasting performance. Modified Hausdorff distance is the aver-
age distance between the ground truth trajectory and sampled trajectories from the
inferred distribution. (a) per activity category performance over datasets, (b) average
performance over the entire dataset

that we can forecast a person’s likely path to a final destination after observing
only a third of the trajectory.

4.5 Knowledge transfer

Since our proposed method encapsulates activities in terms of physical scene
features and not physical location, we are also able to generalize to novel scenes.
This is a major advantage of our approach over other methods that use scene-
specific motion dynamics. In this experiment we use two locations: scene A and
scene B, and show that learned parameters can be transferred in both directions
with similar performance. Table 2 shows that the transferred parameters perform
on par with scene specific parameters. With respect to forecasting performance,
the average MHD between a point of the ground truth and a point of a trajectory
sampled from the forecasting distribution, is degraded by 0.584 pixels. It is
interesting to note that in the case of training on scene A and transferring
to scene B, the transferred model actually performs slightly better. We believe
that this is caused by the fact that we have more training trajectories from scene
A. In Figure 10 we also show several qualitative results of trajectory forecasting
and destination forecasting on novel scenes. Even without observing a single
trajectory from the scene, our approach is able to generate plausible forecasting
distributions for activities such as walking through the scene or departing from
a car.

5 Conclusion

We have demonstrated that tools from inverse optimal control can be used for
computer vision tasks in activity understanding and forecasting. Specifically, we
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Table 2. MHD for knowledge transfer performance. (a) forecasting and (b) smoothing.
Proposed approach can be applied to novel scenes with comparable performance

(a) Forecasting TEST
TRAIN Scene A Scene B
Scene A 9.8520 7.4925
Scene B 10.4358 8.9774

|∆| 0.584 1.485

(b) Smoothing TEST
TRAIN Scene A Scene B
Scene A 3.2582 6.4705
Scene B 4.9194 7.2837

|∆| 1.661 0.813

Fig. 10. Knowledge transfer examples of forecasting in novel scenes

have modeled the interaction between moving agents and semantic perception of
the environment. We have also made proper modifications to accommodate the
uncertainty inherent to tracking and detection algorithms. Further, the result-
ing formulation, based on a hidden variable MDP, provides a unified framework
to support a range of operations in activity analysis: smoothing, path and des-
tination forecasting, and transfer, which we validated both qualitatively and
quantitatively. Our initial work focused on paths in order to generate an ini-
tial validation of the approach for computer vision. Moving forward, however,
our proposed framework is general enough to handle non-motion representations
such as sequences of discrete action-states. Similarly, we limited our evaluation to
physical attributes of the environments, but an exciting possibility would be to
extend the approach to activity features, similar to those used in crowd analysis,
or other semantic attributes of the environment.
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