








Pa
ri
s

H
aw
ai
i

K
an
sa
s

6-9 hours 14-30 days

1
.75
.5
.4
.3
.25
.2

.15

.1

.05
.01
.005
.001

Figure 4. Spatially-variant travel statistics
“
Nijτ/

P
j Nijτ

”
for three starting points and two time intervals, plotted in the log scale.

Statistics come from 6 million georeferenced Flickr photographs. Note that there is significant dependence on start and end location, not
captured by previous travel models based on Lévy flights. The same log-scale colorbar is used for all distribution plots in this paper.

Figure 5. Empirical distribution of image location (Ni/
P

Ni) in
the Flickr database. The bin with the largest number of photos is
London, representing 5% of the photos.

5. Image Likelihood

We now define an image likelihood term that, given a lo-
cation bin, describes a distribution over possible images for
this location. Schemes based on generative models for im-
age features [8] or geometric feature-matching [17, 19] are
presently very limited in geographic scope. Instead, we use
a non-parametric likelihood based on matching our database
of Flickr images, inspired by the method of Hays and Efros
[12]. However, unlike in that work, we must compute a
probability distribution, rather directly returning a single lo-
cation estimate.
For a test image Ik, we first obtain the M most-similar

training images Im. Each image is represented by a descrip-
tor comprising the Gist descriptor [14], a color histogram,
a texton histogram, and straight line statistics [12]. A sim-

ilarity score D(Ik, Im) is computed as the L2-distance be-
tween image descriptors. We then define the likelihood that
the correct bin is i based on all matchesMik in that bin as:

P (Lk = i|Ik) ∝
( ∑

m∈Mik

wkm

)
+ λC (6)

based on a normalized matching score

wkm = e−λwD(Ik,Im)/
M∑

�=1

e−λwD(Ik,I�) (7)

where λC is a regularization constant that allows unmatched
bins to have nonzero probability.
The image likelihood is then defined by applying Bayes

Rule in reverse of its normal application, and substituting in
Equations 5 and 6:

p(Ik|L = i) =
P (Lk = i|Ik)p(Ik)

P (Lk = i)
(8)

∝ (
∑

m wkm) + λC

Ni + λL
(9)

since p(Ik) is constant for a given image Ik. The numerator
normalizes the likelihood, so that more popular locations
(which will naturally have more matches) do not have high
likelihood solely due to their popularity.
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Figure 6. Toy dataset consisting of three photos of Hawaii, illustrating geolocation without landmarks. The ground truth location is denoted
with a cross. The raw matches are very noisy, assigning 3-5% probability to the correct bin; none of the images are located correctly on
their own. We compute the posterior probability over location (requiring that all three images come from the same bin), and a clear peak
emerges in the correct location with posterior probability 70%: this is the bin that best matches all three images. (Note that all distributions
are plotted on a log scale.) Adding more images improves the result further.

While these distributions can be very ambiguous for in-
dividual images, combining them can yield meaningful esti-
mates. For example, Figure 6 shows the individual posteri-
ors for three images of the same location, together with the
joint posterior for all three images. While none of the im-
ages can be geolocated based on their individual matches,
considering them together yields the correct estimate.

6. Geolocating a New Sequence

Given a new image sequence I1:N with timestamps T1:N ,
our goal is to geolocate each image as accurately as possi-
ble. The time intervals ΔT2:N are first computed by sub-
traction. The marginal distributions over image locations

γki ≡ P (Lk = i|I1:N ,ΔT2:N ) (10)

are then computed with the Forward-Backward algorithm
[1].
There are a few important implementation details. First,

unlike the basic HMM model, the transition probabilities
vary at each k. However, it is trivial to modify the Forward-
Backward algorithm to handle this. Second, the image like-
lihood is not normalized, since we cannot directly com-
pute p(Ik). However, the output of Forward-Backward can
be normalized by summing γ over locations i for each k.
Finally, since the transition probabilities are matrices of
size 3186×3186, direct application of Forward-Backward
would be very slow. However, the transition matrices are
also very sparse (since, for short-duration trips, most des-
tinations have zero probability). Hence, the inner loops
of Forward-Backward can be implemented efficiently using

sparse matrix multiplication. Figure 7 shows a toy example
of computing γ for a two-image sequence, illustrating the
value of the travel model.

User-Specific Learning. It often occurs that a test photo
does not have any good matches in the training database,
but is similar to another test photo from the same location
that does have good matches. We can exploit this obser-
vation by learning a user-specific image likelihood model
for a test sequence. Our algorithm is based on Expectation-
Maximization. Conceptually, the algorithm alternates be-
tween computing the location distribution γ for each im-
age, and then inserting (or replacing) these images in the
training set, location-weighted by γ. In practice, we can
fold these steps together into multiple iterations of Forward-
Backward. The first Forward-Backward iteration is run nor-
mally, as above. Then, for subsequent passes, the image
conditional (Equation 6) is replaced with:

P (Lk = i|Ik) ∝
∑

m∈Mik

wkm +
N∑

n=1

γniwkn + λC (11)

where wkn is the image matching score between test im-
ages k and n, and γni is the result of the previous Forward-
Backward pass. The output of this algorithm is the final γ
distribution. This algorithm is not guaranteed to converge;
nonetheless, we find that running 3 iterations of Forward-
Backward significantly improves prediction performance.
(It is possible to define a convergent version of this algo-
rithm, which we leave for future work.)
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Figure 7. Toy dataset consisting of two images separated by two hours and several hundred kilometers, illustrating the benefit of a travel
model. The first image is from the Acropolis at Athens, and is easily geolocated based on single-image matches. The second image, taken
in an adjacent bin at Santorini, cannot be geolocated based on single-image matches: the probability at the correct bin is 9%. However,
the posterior distribution γ (bottom row) corrects this, assigning probability 60% at the correct location in the second image. While other
nearby bins in the Mediterranean would also be reasonable interpretations for the second image, using the entire sequence from which
these two images were taken yields very high-confidence predictions at the correct locations.

Location estimation. For many applications, we must
output a single latitude and longitude estimate for each im-
age. To do so, we first convert the posterior γ for image k
into a continuous PDF:

pk(x) =
∑

i

γkiui(x) (12)

where x denotes a location on the Earth, and ui is a uni-
form distribution over bin i. The MAP estimate would be
to pick any point within the bin with the largest value of
γ. However, it may be preferable to pick a high-probability
region where two neighboring bins have high probability
(e.g., when a city straddles two bins).
Instead, we use a location estimator that maximizes the

probability of being near the correct answer. We specify a
distance threshold R. The posterior probability that a loca-
tion estimate y is within R of the actual location x is:

P (||y − x|| ≤ R) =
∫
||x−y||≤R

pk(x)dx (13)

The optimal estimate y∗ maximizes this probability and
represents the location with the most probability mass
within radius R. This estimator converges to MAP as
R → 0. We compute this estimate by a numerical approx-
imation. Specifically, we represent pk(x) as an image, and
compute the posterior probability by convolution of pk with
a disc of radiusR (ignoring error due to boundaries and dis-
tortion). The estimate y∗ is then the pixel location with the
largest value.

Cross Validation. We estimate the parameters λC , λL,
λw, λq, and M by cross-validation [1]. Cross-validation
searches for parameter settings that maximize an estimation
score on a validation set of geotagged images. For each set
of parameters, location estimates y∗ are computed for all
validation images. The score is the percentage of images for
which the estimates are within distance R of their true lo-
cations. Cross validation returns the set of parameters with
the best score.

7. Experiments

We used the IM2GPS data [12] as our training database,
which includes about 6 million geotagged images from
Flickr.com, posted up to November 2007, and filtered to
remove some images inappropriate for matching. For learn-
ing the travel priors, we used additional heuristics to re-
move users with implausible travel, such as users that ap-
pear to travel 100 km in under 45 minutes. For testing, we
downloaded images from Flickr.com posted after Novem-
ber 2007. We filtered out inappropriate images by the same
criteria as above, as well as removing users that had more
than 300 pictures in a single location, users that visited at
least 3 locations with less than 3 pictures each, users that
had more the 1300 pictures total, and users with obviously
incorrect geotags. We split the remaining images into a val-
idation set of 6 users (comprising 2005 photos), and a test
set of 20 users (4117 photos). These two sets are visual-
ized in Figure 8. All results reported are scores for the test
set. As a baseline, we compare our method (SEQ) to single-



Figure 8. Trajectories of the users in the validation set (top) and
test set (bottom).

image geolocation (SIG), in which Equation 6 is applied for
each image independently (using adapation based on EM
for both methods). We performed cross-validation to obtain
the best parameters for each algorithm.1 We report results
as the percentage of images for which the location estimate
is within R = 400 km of the ground-truth location.
We find that SEQ performs dramatically better than SIG,

obtaining near-perfect results for some users. For exam-
ple, SEQ geolocates the images from three of the users with
more than 95% accuracy (two of which are shown in Figure
10), whereas single-image geolocation achieves 29% accu-
racy across the same users.
Across all 4117 images from all test users, the average

performance of SEQ is 58%, as compared to 15% for SIG.
Note that this the data many images with no obvious geo-
graphic cues whatsoever. A baseline algorithm that always
returns London (the most common bin in the training set)
yields 3% accuracy, and nearest-neighbors [12] yields 10%.
It is possible that SEQ’s results amount to matching only

images with unique imagery (such as landmarks) and then
smoothing locations for the remaining images. We tested
this hypothesis as follows. We defined the distinctive im-
ages to be those correctly geolocated by SIG, according to
ground truth. We then replaced the image likelihoods with
delta-functions at the correct locations for distinctive im-
ages, and with uniform distributions for non-distinctive im-
ages. We then re-ran SEQ using these modified likelihoods.
The average score dropped from 58% to 41%, thus contra-
dicting the hypothesis. We also measured the content of the
non-distinctive images by replacing the likelihoods of only
the distinctive images with uniform distributions, yielding a
score of 19%, which is well above the 0% that SIG would
achieve with these likelihoods. These tests show that the al-
gorithm uses information from all of the images—landmark
matching alone appears to be suboptimal for sequence ge-
olocation.

1The estimated values for the full algorithm were: λq =
9.9729(10)−4, λC = 0.0244, λL = 0.0521, λw = 7.5, andM = 60.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SIG

SE
Q

Figure 9. Per-user results. Each dot corresponds to one of the test
users, with the single-image (SIG) score on the horizontal axis and
sequence (SEQ) score on the vertical axis. SEQ performs about
four times better than SIG for any given user. SEQ often performs
above 80%, whereas SIG never performs above 40%.

The quality of sequence geolocation depends on the
single-image cues. This relationship is illustrated in Figure
9. For example, there were two users that travelled to loca-
tions poorly represented in the training database (including
Siberia, Kazakhstan, and Zimbabwe), and their images had
almost no good matches. However, when there are correct
matches, SEQ dramatically improves performance. For any
given user, SEQ performs about four times better than SIG,
suggesting that our method can be thought as a way to boost
the performance of any single-image cue.
We found that user-specific learning improved both SIG

and SEQ by an average of 6% over not learning. We also
found that predictions using only the distance distribution
prior were worse than the spatially-variant prior, evidenced
by the very small values of λq selected by cross-validation.

8. Discussion

Our results show that incorporating temporal informa-
tion into geolocation can dramatically improve accuracy.
Even images with no apparent geographic cues can be ge-
olocated, so long as they occur alongside more informative
images. We show how careful choice of movement priors
can yield more realistic models.
Our work represents a first attempt at sequence geoloca-

tion, and there are many opportunities for future research.
Our geolocation is fairly coarse due to the binning we chose,
but the data supports much finer discretization in many ar-
eas. Exploiting other geographic cues ought to improve per-
formance, such as geometirc models of specific landmarks
[17, 19], and other meta-data associated with the imagery
[7]. We obtain a 4-fold improvement over single-image
matching, and better geographic cues can be directly incor-
porated into the model. We anticipate the use of geolocation
for obtaining valuable data for the study of human behavior
in multiple disciplines [2, 6, 9, 10, 11, 13, 15].
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Figure 10. Sample images from three of our test users, and their routes. Ground-truth routes are shown in red, and routes estimated with
SEQ in blue. The number of images in each location is shown, with blue numbers indicating correctly-tagged regions, and red indicating
errors. Top: A user with 137 photos of San Francisco, Washington DC, Budapest, Macau, and Sydney. SEQ geolocates this sequence
with 97.8% accuracy, as compared to 37.7% with SIG. The only errors are in Sydney, which is shown in only three aerial views. Middle:
A user with 259 photos from Switzerland, Singapore, Hawaii, and San Francisco. SEQ geolocates this sequence with 99.6% accuracy, as
compared to 18.5% with SIG. The only error is in Switzerland, which is only shown in a single blurry night-time photo. Bottom: A user
with 146 photos from South America. SEQ geolocates this sequence with 79% accuracy, as compared to 10% with SIG. The algorithm
incorrectly labels the last leg of the trip as in the United Kingdom.
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