














Figure 6: Qualitative performance of our approach on images with low calibration errors. The images in the first row are the input to our algorithm. The
second row shows our estimated 3D scene geometry. The third row shows the possible pelvic joint and back support locations in blue and cyan respectively
for the “sitting reclined” pose. The fourth row shows the possible pelvic joint locations in blue for the “sitting upright” pose. The fifth row shows the
locations where a human’s back can rest when “laying down.” The last row shows the vertical surfaces a person’s hand can touch from a standing position
for the “reaching” pose, color coded to indicate the corresponding pose. Each scene also includes a representative stick figure for each pose.

ting. Specifically, we use the image features and multiple
segmentations classifier of [13]. We use 50 training images
for each classifier.

Baseline Our Approach
Reaching 0.3733 0.5431

Laying Down 0.4189 0.4786
Sitting Upright 0.0451 0.2081
Sitting Reclined 0.0056 0.1222

Table 1: Quantitative comparison of our approach with an appearance-
based classifier.

Table 1 shows the performance of our approach com-
pared to the baseline appearance classifier on each of the
four classes. To evaluate the quality of a result, we use the
pixel-wise overlap score metric. Our approach outperforms
the appearance-based classifier in all categories. While the
appearance-based classifier does a decent job in predicting
valid locations for “laying down” and “reaching,” it com-
pletely fails for both “sitting upright” and “sitting reclined.”
This is because predicting actions such as sitting require
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Figure 8: Comparison of valid poses for adults and children.

global reasoning which appearance-based approaches fail
to capture.

7.3. Subjective Affordances
People come in all shapes and sizes. This natural vari-

ation dictates how we interact with our environment. To
illustrate how the same objects in a scene can afford differ-
ent actions for different people, we conducted a proof-of-
concept experiment using a 6ft tall adult and a 3ft tall child
on scene with annotated geometry.

Figure 8 shows valid “sitting reclined” and “reaching”
poses for an adult and a child found automatically by our
human-scene interaction algorithm. Note that a child would
be capable of sitting with its legs up on the couch; however,
for an adult to have the same pose, they would have to rest
their legs on a second surface of support (the coffee table).
Similarly, the child is able to stand on the narrow base of
support (the back of the couch), in order to reach the same
height the adult can by standing on the ground.

8. Using the Joint Human/Scene Space
The big question is: “What can we do, once we have

a joint space of human pose and scene geometry?” We be-
lieve that our approach not only provides a fresh perspective
on scene understanding that looks at predicting potential ac-
tions; but, it can be a vital link for solving several traditional
vision problems. Three of these possible applications are:
1) Priors for Actions Recognition: Predicting the set of
potential interactions and possible poses given an environ-
ment provides strong priors for action recognition.
2) Priors for Object Recognition: Valid pose positions
could be used as a prior on the locations of objects in a
scene. For example, one can compute the set of possible
hand locations for all reaching poses, which provides a prior
as to where manipulable objects are likely to be found.
3) Improving 3D Geometry Estimation: Indoor environ-
ments are designed to afford our daily activities. Knowl-
edge of what tasks a human performs in an environment de-
fines a set of poses which are known to be possible in that
location. Thus, we can close the loop and use these poses
to improve 3D geometry estimates.

Evaluating these possible applications in a comprehen-
sive manner is beyond the scope of this paper. But, our
preliminary experiments on pose prediction suggest that
our approach could be useful for the vision tasks described
above. We hope that this work opens the door for future

exploration into how humans physically interact with their
environment.
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