Evaluating Pose Estimation Methods for Stereo Visual Odometry on Robots

Hatem Alismail
Carnegie Mellon University

Brett Browning
Carnegie Mellon University

M. Bernardine Dias
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/robotics

Part of the Robotics Commons

Published In
Evaluating Pose Estimation Methods for Stereo Visual Odometry on Robots

Hatem ALISMAIL a, Brett BROWNING a and M. Bernardine DIAS a

Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213, USA. E-mail: {halismai, brettb, mbdias}@cs.cmu.edu

B. Browning and M.B. Dias have split appointments with Carnegie Mellon Qatar, Education City, Qatar;

Abstract. Structure-From-Motion (SFM) methods, using stereo data, are among the best performing algorithms for motion estimation from video imagery, or visual odometry. Critical to the success of SFM methods is the quality of the initial pose estimation algorithm from feature correspondences. In this work, we evaluate the performance of pose estimation algorithms commonly used in SFM visual odometry. We consider two classes of techniques to develop the initial pose estimate: Absolute Orientation (AO) methods, and Perspective-n-Point (PnP) methods. To date, there has not been a comparative study of their performance on robot visual odometry tasks. We undertake such a study to measure the accuracy, repeatability, and robustness of these techniques for vehicles moving in indoor environments and in outdoor suburban roadways. Our results show that PnP methods outperform AO methods, with P3P being the best performing algorithm. This is particularly true when stereo triangulation uncertainty is high due to a wide Field of View lens and small stereo-rig baseline.

Keywords. Pose estimation, Visual odometry, PnP, Absolute orientation

Introduction

Visual Odometry (VO) is the problem of estimating camera motion using video imagery. This problem must be solved if we are to create easily deployable mechanisms that are not dependent on GPS coverage for positioning and do not need expensive Inertial Navigation Systems (INSs). The low cost, small size, lower power needs, and high information content of modern cameras make them attractive sensors to address this problem. There is a rich variety of approaches to VO including state estimation methods such as Kalman filters [9,1] and particle filters [2], as well as Structure-From-Motion (SFM) [12,17]. SFM methods are generally more scalable and more robust, especially when using stereo as it resolves scale ambiguity. In this work, we are interested in evaluating the performance of initial pose estimation algorithms that could be used in the SFM stereo VO, as they are crucial to the success of the algorithm.

1The work for this paper was funded by the Qatar Foundation for Education, Science and Community Development. The statements made herein are solely the responsibility of the authors and do not reflect any official position by the Qatar Foundation or Carnegie Mellon University.
In the SFM approach to stereo VO [17,12], there are a number of design choices that impact overall system performance. A core subset of these choices include how to: detect local features, establish feature correspondences between frames, estimate an initial pose, and refine that pose to reduce error accumulation. Empirical studies [20, 14] on refinement strategies and feature detection have provided a wealth of practical knowledge for informing these choices. However, there have been few comparisons on methods to initially estimate the pose prior to refinement.

Given that refinement is only guaranteed to find a local optima, the accuracy and reliability of pose estimation is crucial to the overall VO result. We undertake an empirical study across the two major classes of techniques: Absolute Orientation methods (AO) and Perspective-n-points methods (PnP). AO methods estimate the pose of the camera from 3D3D correspondences [8], while PnP methods use 2D3D correspondences [3,11,18]. Our results show that PnP methods outperform AO methods in indoor and outdoor environments with P3P being the best performing algorithm.

1. Stereo-based Visual Odometry Pipeline

To understand the role of initial pose estimation, we first describe the larger VO pipeline in the theme of [17,12]. We start with the assumption of rigid 3D points X in the world that are imaged by a calibrated stereo camera moving through a sequence of poses. Each point, represented as a homogeneous 4-vector, is observed in the left image of an ideal pinhole stereo camera on the n^{th} frame as: $x_L^n = K [R^n T^n] X$. The goal of stereo VO is to use these observed points, tracked over multiple frames, to estimate each 6 DOF stereo pair camera pose: with rotation R^n and translation T^n in the n^{th} frame.

For a calibrated stereo-rig, we can then determine the 3D location relative to the camera (Y^n) of these detected features by matching features between the left (x_L^n) and right images (x_R^n) and performing stereo triangulation. By tracking features across frames, say in the left image, we can use the sequence of correspondences to form an initial estimate of the camera poses. The choice of whether to use the 2D information measured directly in each frame, or the 3D information inferred through triangulation determines the class of the pose estimation technique.

Due to errors in triangulation, or errors in data association when matching features, the initial pose estimation process must be made robust to gross outliers. The RANSAC algorithm [3] and its variants have become very popular as an outlier detection scheme for vision problems. RANSAC repeatedly samples k points to estimates the model and outliers according to that model. The smaller the k is, the less iterations of RANSAC are required to reach a desired confidence level. Refinement via techniques such as Sparse Bundle Adjustment (SBA) [14,22], can then be used to polish the solution (e.g. [12]).

In the next section, we describe a range of algorithms, which we then empirically compare in the remainder of the paper.

2. Pose Estimation Algorithms

We group initial pose estimation methods into AO and PnP techniques. AO techniques register estimated 3D world points to estimated 3D points in the camera frame, while
PnP techniques estimate pose from 3D world points and their 2D image projections. Next, we briefly review the AO and PnP algorithms that we will evaluate.

2.1. Absolute Orientation

Given \(N \) 3D points \(X \) in Euclidean coordinate frame \(A \) and their corresponding 3D locations \(Y \) in transformed frame \(B \) where \(X = RY + T + \epsilon \), \(\epsilon \) is a noise term, the AO problem is to estimate the unknown rotation and translation. Typically, noise is assumed to be isotropic Gaussian, leading to a MLE formulation.

\[
R^*, T^* = \arg\min_{R,T} \sum_{i} ||X_i - (RY_i + T)||^2.
\]

(1)

A common step in many algorithm is decoupling the parameters by centering each of the point sets about their centroids. This allows us to first focus on the Procrustes alignment problem, where one needs to solve for the rotation that best aligns the point sets. A comparison of four major AO methods have demonstrated that SVD and quaternion techniques produce the best results [13]. Here we use the SVD technique [23]. Define \(H = \frac{1}{N} \sum_{i} (Y_i - \bar{Y})(X_i - \bar{X})^T \), where \(\bar{X} \) and \(\bar{Y} \) are the centroids of each point set. Write the SVD of \(H \) as \(H = USV^T \), then the optimal least squares rotation is given by \(R^* = V^T GU \), where \(G = \text{diag}(1, 1, \det(U) \det(V)) \). The translation is then recovered as: \(T^* = \bar{X} - R^* \bar{Y} \).

This technique requires at least three non-colinear points to produce a solution. Thus, a RANSAC version must sample at least 3 points per iteration. When data is not equally accurate, a weighted version of this rule can also be derived:\(^3\)

\[
H = \frac{1}{\sum_{i} w_i} \sum_{i} w_i (Y_i - \bar{Y})(X_i - \bar{X})^T \text{ where } \bar{X} = \frac{1}{\sum_{i} w_i} \sum_{i} w_i X_i \text{ is the weighed centroid of the point set.}
\]

2.2. Perspective-N-Points

Given \(N \) 3D points \(X \) in coordinate frame \(A \), and their 2D projections \(x \) in a calibrated camera \(K \), the PnP problem is to estimate the camera’s pose \(R \) and \(T \) relative to \(A \). We start with considering the case where \(N = 3 \) (shown in Figure 1). The solution to this problem is to first solve for the depths along each ray and then perform an absolute orientation step to solve for the camera pose. Following [5], we note that \(S_i = ||X_i - C|| \)

\(^2\)Absolute orientation is usually derived for a similarity transform involving an isotropic scaling by \(s \). Here, we are primarily interested in Euclidean transforms where \(s = 1 \).

\(^3\)Each point is weighted inversely proportional to its depth. If weights are normalized \(\sum_{i} w_i = 1 \), then \(H = \frac{1}{\sum_{i} w_i} \sum_{i} w_i (Y_i - \bar{Y})(X_i - \bar{X})^T \text{ where } \bar{X} = \frac{1}{\sum_{i} w_i} \sum_{i} w_i X_i \text{ is the weighed centroid of the point set.} \)
is the unknown depth of point \(i\) from the camera center in the camera frame, while
\[d_{ij} = ||X_i - X_j||\]
is the known inter-point distance obtained from stereo in the world frame. The viewing ray for each points is \(r_i = K^{-1}x_i\) which is known and can be used to calculate the angle between each pair of rays: \(\cos \theta_{ij} = r_i^T r_j / (||r_i|| ||r_j||)\). Taken together, we can form a series of polynomials in \(S_i\) using the cosine rule:

\[d_{ij}^2 = S_i^2 + S_j^2 - 2S_iS_j(\cos \theta_{ij}), \text{ for } i,j \in \{(1, 2), (1, 3), (2, 3)\}. \hspace{1cm} (2)\]

This polynomial system of equations can then be solved in a variety of ways to find the unknown depths. In the original P3P, we solve for one of the unknown depths, say \(S_i\), by eliminating each of the other depths from Eqn. (2), leading to an 8th degree polynomial consisting of all even powers of \(S_i\). Substituting \(u = S_i^2\), as the depth must be strictly positive, leads to a quartic polynomial that has up to four solutions.

\[G(u) = \alpha_4 u^4 + \alpha_3 u^3 + \alpha_2 u^2 + \alpha_1 u + \alpha_0.\hspace{1cm} (3)\]

Haralick et al. [5] provides an excellent review of a wealth of nonlinear algorithms that have been developed to address this problem. We call this approach the original P3P.

Linear variations on PnP algorithms have been also proposed [11,18] as well as more efficient nonlinear methods (for \(n \geq 4\)) [4]. Linear approaches to the PnP problem rely on well established linear algebra techniques and can be solved very efficiently. The main advantage, however, is that for \(n > 3\) linear methods guarantee a unique solution. Next, we briefly describe other PnP algorithms (see [18,11] for details).

L-P3P: is a linear solution by [11] that uses the Bzeout-Cayley-Dixon method. A \(5 \times 5\) matrix \(B\) can be constructed from the set of polynomials in Eqn. (2) whose entries are linear in \(S_i^2\), which can be written as: \(B(S_i^2) = B_0 + S_i^2 B_2\) where \(B_2\) is invertible. The null vector of \(Bv = 0\) contains a solution if one exists. From this system we obtain \((B_2^{-1}B_0 + q_i^{-2}I)v = 0\), which is solved by the Eigen value decomposition.

L-P4P: An additional point resolves some of the ambiguity in the P3P solution. It is possible, however, to obtain multiple solutions using four points in some degenerate configurations [10,21]. However, a linear algorithm can be designed to guarantee a unique solution [19,18,11].

P5P and Beyond: Linear solutions have been also developed for the case of five points [18] and even six points. For more than six points we can obtain a solution using a direct linear transform method (DLT) [7]. However, a model of \(n > 4\) points might not be feasible for real-time applications due to the large number of RANSAC iterations required to achieve a desired confidence level and the greater number of sample points required to achieve a solution at all.

EPnP: An alternative non-linear solution with a linear running time, called EPnP, was proposed by [4]. The authors compared their results to an iterative motion estimation algorithm developed by [15] and showed that the algorithm is comparable and more efficient suggesting its use in real-time systems.

2.3. Summary

Table 1 summarizes the list of algorithms used in this work. In the next section we describe our visual odometry testbed that we use to evaluate the relative performance of these algorithms on mobile robot visual odometry tasks.
Table 1. Table of motion estimation algorithms used in this work

<table>
<thead>
<tr>
<th>Abbrev</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO</td>
<td>Absolute Orientation [23]</td>
</tr>
<tr>
<td>o-P3P</td>
<td>The original P3P [3]</td>
</tr>
<tr>
<td>l-P3P</td>
<td>Linear 3 points [11]</td>
</tr>
<tr>
<td>l-P4P</td>
<td>Linear 4 points [11]</td>
</tr>
<tr>
<td>EPnP</td>
<td>Efficient PnP [4] (we use $n = 5$)</td>
</tr>
</tbody>
</table>

3. Visual Odometry Testbed

We have developed a full VO system to act as a testbed for evaluating the performance of each initial pose estimation technique. In selecting an algorithm consideration must be given to speed, accuracy, resolution (i.e. sub-pixel or not), and robustness to blur, lighting and viewpoint changes. We follow [17] and extract many Harris corners [6] and rely on RANSAC to remove outliers. Unlike [17], we first employ Laplacian of Gaussian (LoG) filtering ($\sigma = 3$), which empirically increases the number of useful features, and sub-pixel refinement to improve the stereo triangulation accuracy.

For feature matching we use Zero-mean Normalized Cross Correlation (ZNCC) between the grayscale 121×121 feature descriptors extracted at sub-pixel positions via bi-linear interpolation from the 11×11 patch around each keypoint. If $I_i, I_j \in \mathbb{R}^n$ are the two $n = 121$ feature descriptors to be compared, then we pre-calculate the normalization parameters for each descriptor [17]. That is, we calculate $a_i = \sum I_i, b_i = \sum I_i^2$, and $c_i = (nb_i - a_i^2)^{-1/2}$. The score then becomes:

$$\text{ZNCC}(I_i, I_j) = c_i c_j (a_i a_j - a_i a_j),$$ (4)

so that only the dot product $I_i^T I_j$ needs to be re-calculated for each paired comparison. We use ZNCC for both stereo matching and for frame-to-frame tracking and use a window constraint to limit the number of candidates. For stereo matching the window is a narrow patch around the epipolar line. We allow some vertical disparity (± 1 pixel), and a horizontal disparity of $\delta_x \in [0, 64]$. For successive frame pairs we use a symmetric search window with $\delta_x, \delta_y \in [-64, 64]$.

To estimate the pose, we use one of the algorithms in Table 1 wrapped within a RANSAC routine for robustness. For this work, we use the vanilla formulation of RANSAC [3] and test for outliers using the reprojection error in Eqn. (5).

To refine the pose estimates we use SBA [22] as implemented by [14]. For computational efficiency, we use a sliding window approach similar to [12]. In order to ensure a fair comparison between pose estimation algorithms and reduce any window size effects, we use a sufficiently large window consisting of 20 frames. Motion parameters are optimized at every frame, while a simultaneous structure and motion refinement is performed every 5^{th} frame to ensure a sufficient baseline to constrain structure. SBA is used to minimize the reprojection error E in each image in the sequence:

$$E = \min_{M_i, X_i} \sum_{ij} D(M_i X_j, x_{ij})^2,$$ (5)

where $M_i = K [R, T_i]$ is a projection matrix at frame i composed of a fixed and known intrinsic matrix K, R_i and T_i are outputs of the pose estimation step, x_{ij} is the observed projection of the 3D point j at camera i and $D(\cdot)$ denotes the Euclidean distance.
4. Experiments and Results

To provide a thorough evaluation of the motion estimation algorithms (shown in Table 1) we use a range of indoor and outdoor datasets; an example is shown in Figure 2. Due to space restrictions, we only show the results from some of these datasets and provide summary statistics as appropriate.\(^4\)

![Example of images from indoor and outdoor datasets](image)

4.1. Indoor Datasets

We evaluated each of the pose estimation algorithms on a set of indoor datasets. These datasets consist of a series of loops around an indoor environment with a Bumblebee2 stereo camera with a relatively wide FOV lens at 60° \((f = 3.8\, mm)\). The camera was mounted looking forward and tilted towards the ground by \(\approx 10°\) on a modified LAGR robot that was manually operated. The robot was equipped with a high precision fiber optic gyro, a lower quality IMU, and wheel encoders.

To evaluate the performance of each algorithm, we record statistics such as percentage of inliers, SBA errors, along with the estimated pose and structure. We evaluate the performance of the algorithms by using these statistics or by performing direct comparisons to the ground truth estimates. The metrics we evaluated are:

- **Repeatability** We run the algorithm multiple times and evaluate the covariance of the pose estimates at each time step. This gives a measure of how repeatable the results are for the same dataset and feature correspondences. We compute repeatability over multiple runs and record the average deviation from the mean.
- **Loop Closure** Measures the error between the start position and the end position at the end of loops. We also express it as a percentage of distance travelled.
- **SBA Reprojection Error** We measure the reprojection error for the inliers both prior to refinement (initial SBA err) and after refinement (final SBA err). This indicates how good the initial pose estimate is and how much work SBA needs to do to correct it. Error per run is in pixels and computed according to Eqn. (5). Numbers shown in our results are averaged over multiple runs.
- **Number of RANSAC iterations** An indirect measure of computational performance, it also indicates how easily RANSAC was able to find a solution.
- **Percentage of inliers** An indirect measure of the robustness of the technique.

\(^4\)See http://www.cs.cmu.edu/~halismai for downloadable datasets and additional results.
Figure 3 shows graphically the repeatability results for the PnP algorithms, and Table 2 summarizes the results obtained for each of the algorithms. Metrics for the weighted and unweighted AO methods are not included because these techniques completely broke down on the indoor data sets. Although these methods performed well on the outdoor datasets, they failed to produce good path estimates on the indoor datasets. A possible explanation is that the indoor datasets were collected with a shorter focal length, wider FOV camera (60° instead of 43° used outdoors). The shorter focal length reduces the range resolution for stereo triangulation which leads to greater deviation from the Gaussian error model that AO implicitly relies on. Another possibility is that the distribution of features in the images along with the range estimates is quite different for the indoor and outdoor datasets. In either case, PnP techniques and P3P in particular appear to be much more immune to these changes.

![Graph showing algorithm repeatability results](image1)

FIGURE 3. Algorithm repeatability results: Figures 3(a), 3(b) and 3(c) show standard deviation from the mean of 10 runs for each of EP5P, o-P3P and l-P3P. Figure 3(d) shows the mean trajectory for the loop. Results are shown in the camera coordinate system, where the Z-axis is aligned with the left camera principle axis.

Overall, the PnP algorithms do well on these datasets with the P3P algorithm clearly dominating the performance. Based on these results, we further investigated the accuracy of the P3P algorithm. On a more complex path, we compared the heading of the robot as determined by VO and the heading as reported by the gyro. Figure 4 shows an overhead
Table 2. Performance metrics for each algorithms in the indoor dataset. See text for units.

<table>
<thead>
<tr>
<th>Alg</th>
<th>Repeatability</th>
<th>Loop Closure</th>
<th>Initial SBA err</th>
<th>Final SBA err</th>
<th>Nr. Ransac</th>
<th>% inliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>l-P3P</td>
<td>148.46</td>
<td>6.86 (1.50%)</td>
<td>16.45</td>
<td>13.41</td>
<td>29.10</td>
<td>0.58</td>
</tr>
<tr>
<td>o-P3P</td>
<td>179.50</td>
<td>6.29 (1.36%)</td>
<td>16.48</td>
<td>13.44</td>
<td>29.09</td>
<td>0.58</td>
</tr>
<tr>
<td>EP5P</td>
<td>199.00</td>
<td>7.87 (1.72%)</td>
<td>16.91</td>
<td>13.49</td>
<td>174.85</td>
<td>0.56</td>
</tr>
<tr>
<td>l-P4P</td>
<td>5.7×10^5</td>
<td>2.2×10^3 (46.03%)</td>
<td>25.92</td>
<td>19.97</td>
<td>509.47</td>
<td>0.42</td>
</tr>
</tbody>
</table>

view of the robot trajectory using gyro heading estimates and wheel encoders versus pose obtained from visual odometry.

Figure 4. Gyro/Robot distance 430.73m loop closure 0.3%, VO distance 424.3m loop closure 0.4%. Results are shown in right-handed world coordinate system, +Z-axis point up.

4.2. Outdoor Datasets

We collected data on a range of outdoor datasets in two very different environments: a flat desert environment with sparse vegetation and in a hilly temperate region with dense vegetation. We report on the results for a 6.34km dataset in the desert region, with vehicle speeds reaching 60km/h. The outdoor datasets were captured by mounting the stereo head inside a car looking forward through the windscreen. A Garmin 18x-5Hz GPS unit was used to capture WAAS corrected GPS at 5Hz, which was used for ground truth. Although GPS with WAAS does not provide high resolution ground truth, for sufficiently long vehicle paths the bounded error of the GPS is sufficient to bound the odometry estimate error.

Table 3 shows some of the summary statistics. We do not show the repeatability, and instead show the average error compared to the GPS pose interpolated to match the time of the image capture. Overall, AO proved to be much more effective on the outdoor datasets, but P3P still dominates the performance. While we do not show the detailed results for the other algorithms, the qualitative results remain comparable.

Table 3. Performance metrics for the outdoor dataset. See text for units.

<table>
<thead>
<tr>
<th>Alg</th>
<th>Loop Closure</th>
<th>Initial SBA err</th>
<th>Final SBA err</th>
<th>Nr. Ransac</th>
<th>% inliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3P</td>
<td>61 (1.1%)</td>
<td>69.29</td>
<td>59.49</td>
<td>96.70</td>
<td>0.41</td>
</tr>
<tr>
<td>AO</td>
<td>500 (8.1%)</td>
<td>88.74</td>
<td>61.73</td>
<td>2.55×10^3</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Taken together, the results show that although AO approaches do reasonably well on the outdoor datasets, they fail miserably on the indoor datasets even with a weighted version of AO. PnP algorithms perform more reliably and accurately. In particular, P3P dominates the other algorithms and should be the method of choice for stereo VO.
5. Discussion

In this work, we have chosen to compare and evaluate the effect of initial pose estimation algorithms on VO systems as this step is crucial to the reliability of the overall algorithm. Closely related is the correctness and accuracy of feature matching across frames. While we have used only a single feature type and a simple correlation window of fixed size to search for correspondences, other approaches are possible.

Feature matching accuracy is very important and depends on feature types. Choice of algorithms to extract features and descriptors depends on the environment. Konolige et. al. [12] have shown that VO using CenSurE features and Harris corners have outperformed SIFT for certain outdoor environments. Ultimately, however, the selection of feature types depends on the environment and the amount of computation vs. quality of features is a classic trade off. In this work, as we focused on the initial pose estimate, we used Harris corners feature to hold constant the effect of the feature detector. Harris corners are by far the most commonly used technique for feature detection due to its speed and relatively good performance.

Inaccurate results from AO could intuitively be explained in light of the heteroscedastic nature of stereo triangulation error, especially for distal points relative to FOV and baseline. The case of P3P being the most accurate is more interesting.

We believe that the superior performance of P3P relative to the rest of the algorithms is attributed to the following reasons: (1) P3P, being a minimal solution, is more capable of exploiting the projective constraints of the problem. (2) The PnP problem is nonlinear at its core, linear PnP solutions for $n > 3$, while efficient and easy to implement, their formulation does not account for the nonlinear nature of the problem. (3) While the intent of adding more points is to resolve ambiguity and to add redundancy, this is not necessarily what happens in real time VO, especially in unstructured environments. Limited computational power and the need for real time performance imposes two paradigms for feature extraction for the same CPU cycles. One, is extracting a large number of low quality features (e.g. corners). The other, is extracting a smaller number of features but of higher quality (e.g. SIFT). The former approach will necessarily have a number of incorrect feature matches, but the aim is to have a large enough number to estimate motion. The latter approach might generate a very low number of features that are not enough for reliable motion estimation (e.g. when image is saturated). In either case, the algorithm with the lowest number of parameters has a higher chance of success. In a RANSAC framework, the overall sample size required to obtain a solution in the worst case is smaller for a model with a low number of parameters. Further, a model with a low number of parameters has a higher probability of selecting a good subset of samples to fit the model. This explains the reason that P3P performed better than EP5P.

6. Conclusions and Future Work

We have explored the use of Perspective-n-Points (PnP) techniques and Absolute Orientation (AO) techniques for initially estimating the pose within a stereo visual odometry system targeted towards mobile robot applications. We evaluated the performance of a range of PnP and AO techniques for indoor and outdoor datasets and compared their performance across a range of metrics. Overall, the P3P algorithm dominates the metrics
for both indoor and outdoor operation even when dealing with wider field of view cameras and narrower stereo baselines. Our future work will include Maximum Likelihood methods [9,16] and explore a broader range of datasets and environmental conditions.

Acknowledgments

The authors would like to thank members of the rCommerce group at the Robotics Institute, Balajee Kannan, Freddie Dias, Jimmy Bourne, Victor Marmol and Dominic Jonak for their help with the robot hardware and data collection.

References