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Abstract

Let G = Gn,n,p be the random bipartite graph on n+n vertices, where each e ∈ [n]2 appears
as an edge independently with probability p. Suppose that each edge e is given an independent
uniform exponential rate one cost. Let C(G) denote the expected length of the minimum cost

perfect matching. We show that w.h.p. if d = np � (log n)2 then E [C(G)] = (1 + o(1))π
2

6p .
This generalises the well-known result for the case G = Kn,n.

1 Introduction

There are many results concerning the optimal value of combinatorial optimization problems with
random costs. Sometimes the costs are associated with n points generated uniformly at random
in the unit square [0, 1]2. In which case the most celebrated result is due to Beardwood, Halton
and Hattersley [3] who showed that the minimum length of a tour through the points a.s. grew as
βn1/2 for some still unknown β. For more on this and related topics see Steele [18].

The optimisation problem in [3] is defined by the distances between the points. So, it is defined
by a random matrix where the entries are highly correlated. There have been many examples
considered where the matrix of costs contains independent entries. Aside from the Travelling
Salesperson Problem, the most studied problems in combinatorial optimization are perhaps, the
shortest path problem; the minimum spanning tree problem and the matching problem. As a first
example, consider the shortest path problem in the complete graph Kn where the edge lengths
are independent exponential random variables with rate 1. We denote the exponential random
variable with rate λ by E(λ). Thus Pr(E(λ) ≥ x) = e−λx for x ∈ R. Janson [9] proved (among
other things) that if Xi,j denotes the shortest distance between vertices i, j in this model then
E [X1,2] = Hn

n where Hn =
∑n

i=1
1
i .
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As far as the spanning tree problem is concerned, the first relevant result is due to Frieze [6]. He
showed that if the edges of the complete graph are given independent uniform [0, 1] edge weights,
then the (random) minimum length of a spanning tree Ln satisfies E [Ln] → ζ(3) =

∑∞
i=1

1
i3

as n → ∞. Further results on this question can be found in Janson [8], Beveridge, Frieze and
McDiarmid [4], Frieze, Ruszinko and Thoma [7] and Cooper, Frieze, Ince, Janson and Spencer [5].

In the case of matchings, the nicest results concern the the minimum cost of a matching in a
randomly edge-weighted copy of the complete bipartite graph Kn,n. If Cn denotes the (random)
minimum cost of a perfect matching when edges are given independent exponential E(1) random
variables then the story begins with Walkup [19] who proved that E [Cn] ≤ 3. Later Karp [10]
proved that E [Cn] ≤ 2. Aldous [1], [2] proved that limn→∞E [Cn] = ζ(2) =

∑∞
k=1

1
k2

. Parisi
[13] conjectured that in fact E [Cn] =

∑n
k=1

1
k2

. This was proved independently by Linusson and
Wästlund [11] and by Nair, Prabhakar and Sharma [12]. A short elegant proof was given by
Wästlund [16], [17].

In the paper [4] on the minimum spanning tree problem, the complete graph was replaced by a
d-regular graph G. Under some mild expansion assumptions, it was shown that if d→∞ then ζ(3)
can be replaced asymptotically by n

d ζ(3).

Consider a d-regular bipartite graph G on 2N vertices. Here d = d(N) → ∞ as N → ∞. Each
edge e is assigned a cost W (e), each independently chosen according to the exponential distribution
E(1). Denote the total cost of the minimum-cost perfect matching by C(G).

We conjecture the following (under some possibly mild restrictions):

Conjecture 1. Suppose d = d(N)→∞ as N →∞. For any d-regular bipartite G,

E [C(G)] = (1 + o(1))
N

d

π2

6
.

Here the o(1) term goes to zero as N →∞.

In this paper we prove the conjecture for random bipartite graphs. Let G = Gn,n,p be the random
bipartite graph on n + n vertices, where each e ∈ [n]2 appears as an edge independently with
probability p. Suppose that each edge e is given an independent uniform exponential rate one cost.

Theorem 1. If d = np = ω(log n)2 where ω →∞ then w.h.p. E [C(G)] ≈ π2

6p .

Here An ≈ Bn iff An = (1 + o(1))Bn as n → ∞ and the event En occurs with high probability
(w.h.p.) if Pr(En) = 1− o(1) as n→∞.

Applying results of Talagrand [14] we can prove the following concentration result.

Theorem 2. Let ε > 0 be fixed, then

Pr

(∣∣∣∣C(G)− π2

6p

∣∣∣∣ ≥ ε

p

)
≤ n−K ,

for any constant K > 0.
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2 Proof of Theorem 1

We find that the proofs in [16], [17] can be adapted to our current situation. Suppose that the
vertices of G consist of A = {ai, i ∈ [n]} and B = {bj , j ∈ [n]}. Let C(n, r) denote the expected
cost of the minimum cost matching

Mr = {(ai, φr(ai)) : i = 1, 2, . . . , r} of Ar = {a1, a2, . . . , ar} into B.

We will prove that w.h.p.

C(n, r)− C(n, r − 1) ≈ 1

p

r−1∑
i=0

1

r(n− i)
. (1)

for r = 1, 2, . . . , n−m where

m =

(
n

ω1/2 log n

)
.

Using this we argue that

E [C(G)] = C(n, n) = (C(n, n)− C(n, n−m+ 1)) +
1 + o(1)

p

n−m∑
r=1

r−1∑
i=0

1

r(n− i)
. (2)

We will then show that

n−m∑
r=1

r−1∑
i=0

1

r(n− i)
≈
∞∑
k=1

1

k2
=
π2

6
. (3)

C(n, n)− C(n, n−m+ 1) = o(p−1). (4)

Theorem 1 follows from these two statements.

Let Br = {φr(ai) : i = 1, 2, . . . , r}.

Lemma 1. Br is a random r-subset of B.

Proof. Let L denote the n × n matrix of edge costs, where L(i, j) = W (ai, bj) and L(i, j) = ∞ if
edge (ai, bj) does not exist in G. For a permutation π of B let Lπ be defined by Lπ(i, j) = L(i, π(j)).
Let X,Y be two distinct r-subsets of B and let π be any permutation of B that takes X into Y .
Then we have

Pr(Br(L) = X) = Pr(Br(Lπ) = π(X)) = Pr(Br(Lπ) = Y ) = Pr(Br(L) = Y ),

where the last equality follows from the fact that L and Lπ have the same distribution.

We use the above lemma to bound degrees. For v ∈ A let dr(v) = | {w ∈ B \Br : (v, w) ∈ E(G)} |.
Then we have the following lemma:

Lemma 2.

|dr(v)− (n− r)p| ≤ ω−1/5(n− r)p w.h.p. for v ∈ A, 0 ≤ r ≤ n−m.
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Proof. This follows from Lemma 1 i.e. B \Br is a random set and the Chernoff bounds viz.

Pr(|dr(v)− (n− r)p| ≥ ω−1/5(n− r)p) ≤ 2e−ω
−2/5(n−r)p/3 ≤ 2n−ω

1/10
.

We can now use the ideas of [16], [17]. We add a special vertex bn+1 to B, with edges to all n
vertices of A. Each edge adjacent to bn+1 is assigned an E(λ) cost independently, λ > 0. We now
consider Mr to be a minimum cost matching of Ar into B∗ = B∪{bn+1}. We denote this matching
by M∗r and we let B∗r denote the corresponding set of vertices of B∗ that are covered by M∗r .

Lemma 3. Suppose r < n−m. Then

Pr(bn+1 ∈ B∗r | bn+1 /∈ B∗r−1) =
λ

p(n− r + 1)(1 + εr) + λ
(5)

where |εr| ≤ ω−1/5.

Proof. Assume that bn+1 /∈ B∗r−1. M∗r is obtained from M∗r−1 by finding an augmenting path
P = (ar, . . . , aσ, bτ ) from ar to B∗ \ B∗r−1 of minimum additional cost. Let α = W (σ, τ). We
condition on (i) σ, (ii) the lengths of all edges other than (aσ, bj), bj ∈ B∗ \ B∗r−1 and (iii)
min

{
A(σ, j) : bj ∈ B∗ \B∗r−1

}
= α. With this conditioning Mr−1 = M∗r−1 will be fixed and so

will P ′ = (ar, . . . , aσ). We can now use the following fact: Let X1, X2, . . . , XM be independent
exponential random variables of rates α1, α2, . . . , αM . Then the probability that Xi is the smallest
of them is αi/(α1 + α2 + · · · + αM ). Furthermore, the probability stays the same if we condition
on the value of min {X1, X2, . . . , XM}. Thus

Pr(bn+1 ∈ B∗r | bn+1 /∈ B∗r−1) =
λ

dr−1(aσ) + λ
.

Corollary 1.

Pr(bn+1 ∈ B∗r ) =
1

p

(
1

n
+

1

n− 1
+ · · ·+ 1

n− r + 1

)
(1 + εk)λ+O(λ2) (6)

as λ→ 0, where |εr| ≤ ω−1/5.

Proof. Let ν(j) = p−1(n− j)(1 + εj), |εj | ≤ ω−1/5. Then the probability is given by

1− ν(0)

ν(0) + λ
· ν(1)

ν(1) + λ
· · · ν(r − 1)

ν(r − 1) + λ

= 1−
(

1 +
λ

ν(0)

)−1
· · ·
(

1 +
λ

ν(r − 1)

)−1
=

(
1

ν(0)
+

1

ν(1)
+ · · ·+ 1

ν(r − 1)

)
λ+O(λ2)

=
1

p

(
1

n(1 + ε0)
+

1

(n− 1)(1 + ε1)
+ · · ·+ 1

(n− r + 1)(1 + εr−1)

)
λ+O(λ2)

and each error factor satisfies |1− 1/(1 + εj)| ≤ ω−1/5.
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Lemma 4. If r ≤ n−m then

E [C(n, r)− C(n, r − 1)] =
1

rp

r−1∑
i=0

1 + εk
n− i

(7)

where |εk| ≤ ω−1/5.

Proof. Let X be the cost of Mr and let Y be the cost of Mr−1. Let w denote the cost of the
edge (ar, bn+1), and let I denote the indicator variable for the event that the cost of the cheapest
Ar-assignment that contains this edge is smaller than the cost of the cheapest Ar-assignment that
does not use bn+1. In other words, I is the indicator variable for the event {Y + w < X}.

It follows from Corollary 1 and symmetry (to obtain the factor 1/r) that the probability that
(ar, bn+1) ∈M∗r is given by

1

rp

(
1

n
+

1

n− 1
+ · · ·+ 1

n− r + 1

)
(1 + εk)λ+O(λ2) (8)

as λ→ 0, since each edge adjacent to bn+1 is equally likely to participate inMr−1. If (ar, bn+1) ∈M∗r
then w < X − Y . Conversely, if w < X − Y and no other edge from bn+1 has cost smaller than
X − Y , then (ar, bn+1) ∈ M∗r , and when λ → 0, the probability that there are two distinct edges
from bn+1 of cost smaller than X − Y is of order O(λ2).

On the other hand, w is E(λ) distributed, so

E [I] = Pr {w < X − Y } = E
[
1− e−λ(X−Y )

]
= 1−E

[
e−λ(X−Y )

]
. (9)

Hence E [I], regarded as a function of λ, is essentially the Laplace transform of X−Y . In particular
E [X − Y ] is the derivative of E [I] evaluated at λ = 0, so

E [X − Y ] =
d

dλ
E [I]

∣∣∣∣
λ=0

=
1

rp

(
1

n
+

1

n− 1
+ · · ·+ 1

n− r + 1

)
(1 + εk) (10)

where |εk| ≤ ω−1/5. Now clearly, as λ→ 0, E [X]→ C(n, r) and E [Y ] = C(n, r−1) and the lemma
follows.

This confirms (2) and we turn to (3). We use the following expression from Young [20].

n∑
i=1

1

i
= log n+ γ +

1

2n
+O(n−2), where γ is Euler’s constant. (11)

Let m1 = ω1/4m. Observe first that

m1∑
i=0

1

n− i

n−m∑
r=i+1

1

r
≤ o(1) +

m1∑
i=n3/4

1

n− i

n−m∑
r=i+1

1

r
≤

o(1) +
2

n

m1∑
i=n3/4

(
log
(n
i

)
+

1

2(n−m)
+O(n−3/2)

)
≤ o(1) +

2

n
log

(
nm1

m1!

)

≤ o(1) +
2m1

n
log

(
ne

m1

)
= o(1). (12)
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Then,

n−m∑
r=1

r−1∑
i=0

1

r(n− i)
=

n−m−1∑
i=0

1

n− i

n−m∑
r=i+1

1

r
,

=
n−m−1∑
i=m1

1

n− i

n−m∑
r=i+1

1

r
+ o(1),

=

n−m−1∑
i=m1

1

n− i

(
log

(
n−m
i

)
+

1

2(n−m)
− 1

2i
+O(i−2)

)
+ o(1),

=
n−m−1∑
i=m1

1

n− i
log

(
n−m
i

)
+ o(1),

=

n−m1∑
j=m+1

1

j
log

(
n−m
n− j

)
+ o(1), (13)

=

∫ n−m1

x=m+1

1

x
log

(
n−m
n− x

)
dx+ o(1).

We can replace the sum in (1) by an integral because the terms are all o(1) and the sequence of
summands is unimodal.

Continuing, we have ∫ n−m1

x=m+1

1

x
log

(
n−m
n− x

)
dx

= −
∫ n−m1

x=m+1

1

x
log

(
1− x−m

n−m

)
dx

=
∞∑
k=1

∫ n−m1

x=m+1

1

x

(x−m)k

k(n−m)k
dx

=

∫ n−m−m1

y=1

1

y +m

yk

k(n−m)k
dy. (14)

Observe next that∫ n−m−m1

y=1

1

y +m

yk

k(n−m)k
dy ≤

∫ n−m−m1

y=0

yk−1

k(n−m)k
dy ≤ 1

k2
.

So,

0 ≤
∞∑

k=logn

∫ n−m1

x=m+1

1

x

(x−m)k

k(n−m)k
dx ≤

∞∑
k=logn

1

k2
= o(1). (15)

If 1 ≤ k ≤ log n then we write∫ n−m−m1

y=1

1

y +m

yk

k(n−m)k
dy =

∫ n−m−m1

y=1

(y +m)k−1

k(n−m)k
dy +

∫ n−m−m1

y=1

yk − (y +m)k

(y +m)k(n−m)k
dy.

Now ∫ n−m−m1

y=1

(y +m)k−1

k(n−m)k
dy =

1

k2
(n−m1)

k − (m+ 1)k

(n−m)k
=

1

k2
+O

(
1

kω1/4 log n

)
. (16)
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If k = 1 then ∫ n−m−m1

y=1

(y +m)k − yk

(y +m)k(n−m)k
dy =

m log(n−m1)

n−m
= o(1).

And if 2 ≤ k ≤ log n then∫ n−m−m1

y=1

(y +m)k − yk

(y +m)k(n−m)k
dy =

k∑
l=1

∫ n−m−m1

y=1

(
k

l

)
yk−lml

(y +m)k(n−m)k
dy

≤
k∑
l=1

∫ n−m−m1

y=0

(
k

l

)
yk−l−1ml

k(n−m)k
dy

=
k∑
l=1

(
k

l

)
ml(n−m−m1)

k−l

k(k − l)(n−m)k

= O

(
km

k(k − 1)n

)
= O

(
1

kω1/2 log n

)
It follows that

0 ≤
logn∑
k=1

∫ n−m−m1

y=1

(y +m)k − yk

(y +m)k(n−m)k
dy = o(1) +O

(
logn∑
k=2

1

kω1/2 log n

)
= o(1). (17)

equation (3) now follows from (14), (15), (16) and (17).

Turning to (4) we prove the following lemma:

Lemma 5. If r ≥ n−m then 0 ≤ C(n, r + 1)− C(n, r) = O
(
logn
np

)
.

This will prove that

0 ≤ C(n, n)− C(n−m+ 1) = O

(
m log n

np

)
= O

(
n

ω1/2np

)
= o

(
1

p

)
and complete the proof of (4) and hence Theorem 1.

2.1 Proof of Lemma 5

Let w(e) denote the weight of edge e in G. Let Vr = Ar+1 ∪ B and let Gr be the subgraph
of G induced by Vr. For a vertex v ∈ Vr order the neighbors u1, u2, . . . , of v in Gr so that
w(v, ui) ≤ w(v, ui+1). Define the k-neighborhood Nk(v) = {u1, u2, . . . , uk}.

Let the k-neighborhood of a set be the union of the k-neighborhoods of its vertices. In particular,
for S ⊆ Ar+1, T ⊆ B,

Nk(S) = {b ∈ B : ∃a ∈ S : y ∈ Nk(a)}, (18)

Nk(T ) = {a ∈ Ar+1 : ∃b ∈ T : a ∈ Nk(b)}. (19)

Given a function φ defining a matching M of Ar into B, we define the following digraph: let
~Γr = (Vr, ~X) where ~X is an orientation of

X =

{{a, b} ∈ G : a ∈ Ar+1, b ∈ N40(a)}∪{{a, b} ∈ G : b ∈ B, a ∈ N40(b)}∪{(φ(ai), ai) : i = 1, 2, . . . , r} .
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An edge e ∈ M is oriented from B to A and has weight wr(e) = −w(e). The remaining edges are
oriented from A to B and have weight equal to their weight in G.

The arcs of directed paths in ~Γr are alternately forwards A → B and backwards B → A and so
they correspond to alternating paths with respect to the matching M . It helps to know (Lemma 6,
next) that given a ∈ Ar+1, b ∈ B we can find an alternating path from a to b with O(log n) edges.
The ab-diameter will be the maximum over a ∈ Ar+1, b ∈ B of the length of a shortest path from
a to b.

Lemma 6. W.h.p., for every φ, the (unweighted) ab-diameter of ~Γr is at most k0 = d3 log4 ne.

Proof. For S ⊆ Ar+1, T ⊆ B, let

N(S) = {b ∈ B : ∃a ∈ S such that (a, b) ∈ ~X},
N(T ) = {a ∈ Ar+1 : ∃b ∈ T such that (a, b) ∈ ~X}.

We first prove an expansion property: that whp, for all S ⊆ Ar+1 with |S| ≤ dn/5e, |N(S)| ≥ 4|S|.
(Note that N(S), N(T ) involve edges oriented from A to B and so do not depend on φ.)

Pr(∃S : |S| ≤ dn/5e, |N(S)| < 4|S|) ≤ o(1) +

dn/5e∑
s=1

(
r + 1

s

)(
n

4s

)((4s
40

)(
n
40

))s

≤
dn/5e∑
s=1

(ne
s

)s (ne
4s

)4s(4s

n

)40s

=

dn/5e∑
s=1

(
e5436s35

n35

)s
= o(1). (20)

Explanation: The o(1) term accounts for the probability that each vertex has at least 40 neighbors
in ~Γr. Condition on this. Over all possible ways of choosing s vertices and 4s “targets”, we take the
probability that for each of the s vertices, all 40 out-edges fall among the 4s out of the n possibilities.

Similarly, w.h.p., for all T ⊆ B with |T | ≤ dn/5e, |N(T )| ≥ 4|T |. Thus by the union bound, w.h.p.
both these events hold. In the remainder of this proof we assume that we are in this “good” case,
in which all small sets S and T have large vertex expansion.

Now, choose an arbitrary a ∈ Ar+1, and define S0, S1, S2, . . . as the endpoints of all alternating
paths starting from a and of lengths 0, 2, 4, . . . . That is,

S0 = {a} and Si = φ−1(N(Si−1)).

Since we are in the good case, |Si| ≥ 4|Si−1| provided |Si−1| ≤ n/5, and so there exists a smallest
index iS such that |SiS−1| > n/5, and iS − 1 ≤ log4(n/5) ≤ log4 n − 1. Arbitrarily discard
vertices from SiS−1 to create a smaller set S′iS−1 with |S′iS−1| = dn/5e, so that S′iS = N(S′iS−1) has
cardinality |S′iS | ≥ 4|S′iS−1| ≥ 4n/5.

Similarly, for an arbitrary b ∈ B, define T0, T1, . . . , by

T0 = {b} and Ti = φ(N(Ti−1)).
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Again, we will find an index iT ≤ log4 n whose modified set has cardinality |T ′iT | ≥ 4n/5.

With both |S′iS | and |T ′iT | larger than n/2, there must be some a′ ∈ S′iS for which b′ = φ(a′) ∈ T ′iT .
This establishes the existence of an alternating walk and hence (removing any cycles) an alternating
path of length at most 2(iS + iT ) ≤ 2 log4 n from a to b in ~Γr.

We will need the following lemma,

Lemma 7. Suppose that k1+k2+ · · ·+kM ≤ a logN , and X1, X2, . . . , XM are independent random
variables with Yi distributed as the kith minimum of N independent exponential rate one random
variables. If µ > 1 then

Pr

(
X1 + · · ·+XM ≥

µa logN

N − a logN

)
≤ Na(1+log µ−µ).

Proof. Let Y(k) denote the kth smallest of Y1, Y2, . . . , YN , where we assume that k = O(logN).
Then the density function fk(x) of Y(k) is

fk(x) =

(
N

k

)
k(1− e−x)k−1e−x(N−k+1)dx

and hence the ith moment of Y(k) is given by

E
[
Y i
(k)

]
=

∫ ∞
0

(
N

k

)
kxi(1− e−x)k−1e−x(N−k+1)dx

≤
∫ ∞
0

(
N

k

)
kxi+k−1e−x(N−k+1)dx

=

(
N

k

)
k

(i+ k − 1)!

(N − k + 1)i+k

≤
(

1 +O

(
k2

N

))
k(k + 1) · · · (i+ k − 1)

(N − k + 1)i
.

Thus, if 0 ≤ t < N − k + 1,

E
[
etY(k)

]
≤
(

1 +O

(
k2

N

)) ∞∑
i=0

(
−t

N − k + 1

)i(−k
i

)
=

(
1 +O

(
k2

N

))(
1− t

N − k + 1

)−k
.

If Z = X1 +X2 + · · ·+XM then if 0 ≤ t < N − a logN ,

E
[
etZ
]

=
M∏
i=1

E
[
etXi

]
≤
(

1− t

N − a logN

)−a logN
.

It follows that

Pr

(
Z ≥ µa logN

N − a logN

)
≤
(

1− t

N − a logN

)−a logN
exp

{
− tµa logN

N − a logN

}
.

We put t = (N − a logN)(1− 1/µ) to minimise the above expression, giving

Pr

(
Z ≥ µa logN

N − a logN

)
≤ (µe1−µ)a logN .
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Lemma 8. W.h.p., for all φ, the weighted ab-diameter of ~Γr is at most c1
logn
np for some absolute

contant c1 > 0.

Proof. Let

Z1 = max

{
k∑
i=0

w(ai, bi)−
k−1∑
i=0

w(bi, ai+1)

}
, (21)

where the maximum is over sequences a0, b0, a1, . . . , ak, bk where (ai, bi) is one of the 40 shortest
arcs leaving ai for i = 0, 1, . . . , k ≤ k0 = d3 log4 ne, and (bi, ai+1) is a backwards matching edge.

We compute an upper bound on the probability that Z1 is large. For any ζ > 0 we have

Pr

(
Z1 ≥ ζ

lnn

np

)
≤ o(1) +

k0∑
k=0

((r + 1)n)k+1

(
1 + o(1)

np

)k+1

×

∫ ∞
y=0

 1

(k − 1)!

(
y lnn

np

)k−1 ∑
ρ0+ρ1+···+ρk≤40(k+1)

q(ρ0, ρ1, . . . , ρk; ζ + y)

 dy
where

q(ρ0, ρ1, . . . , ρk; η) = Pr

(
X0 +X1 + · · ·+Xk ≥ η

log n

np

)
,

X0, X1, . . . , Xk are independent and Xj is distributed as the ρjth minimum of r independent ex-

ponential random variables. (When k = 0 there is no term 1
(k−1)!

(
y logn
n

)k−1
).

Explanation: The o(1) term is for the probability that there is a vertex in Vr that has fewer
than (1 − o(1))np neighbors in Vr. We have at most ((r + 1)n)k+1 choices for the sequence

a0, b0, a1, . . . , ak, bk. The term 1
(k−1)!

(
y lnn
np

)k−1
dy bounds the probability that the sum of k in-

dependent exponentials, w(b0, a1) + · · ·+w(bk−1, ak), is in lnn
np [y, y+ dy]. (The density function for

the sum of k independent exponentials is xk−1e−x

(k−1)! .) We integrate over y.
1+o(1)
np is the probability that (ai, bi) is the ρith shortest edge leaving ai, and these events are inde-

pendent for 0 ≤ i ≤ k. The final summation bounds the probability that the associated edge lengths
sum to at least (ζ+y) lnn

np .

It follows from Lemma 7 that if ζ is sufficiently large then, for all y ≥ 0,

q(ρ1, . . . , ρk; ζ + y) ≤ (np)−(ζ+y) logn/(2 lognp) = n−(ζ+y)/2.

Since the number of choices for ρ0, ρ1, . . . , ρk is at most
(
41k+40
k+1

)
(the number of positive integral

solutions to a0 + a1 + . . .+ ak+1 ≤ 40(k + 1)) we have

Pr

(
Z1 ≥ ζ

lnn

np

)
≤ 2n2−ζ/2

k0∑
k=0

(lnn)k−1

(k − 1)!

(
41k + 40

k + 1

)∫ ∞
y=0

yk−1n−y/2dy

≤ 2n2−ζ/2
k0∑
k=0

(lnn)k−1

(k − 1)!

(
84e

lnn

)k
Γ(k)

≤ 2n2−ζ/2(k0 + 1)(84e)k0+2

= o(n−4).
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Lemma 8 shows that with probability 1 − o(n−2) in going from Mr to Mr+1 we can find an
augmenting path of weight at most c1 logn

np . This completes the proof of Lemma 5 and Theorem 1.
(Note that to go from w.h.p. to expectation we use the fact that w.h.p. w(e) = O(log n) for all
e ∈ A×B,) 2

Notice that in the proof of Lemmas 6 and 8 we can certainly make the failure probability less than
n−anyconstant.

3 Proof of Theorem 2

The proof of Lemma 8 allows us to claim that with probability 1−O(n−anyconstant) the maximum
length of an edge in the minimum cost perfect matching of G is at most µ = c2

logn
np for some

constant c2 > 0. We can now proceed as in Talagrand’s proof of concentration for the assignment
problem. We let ŵ(e) = min {w(e), µ} and let Ĉ(G) be the assignment cost using ŵ in place of w.
We observe that

Pr(Ĉ(G) 6= C(G)) = O(n−anyconstant) (22)

and so it is enough to prove concentration of Ĉ(G).

For this we use the following result of Talagrand [14]: consider a family F of N -tuples α = (αi)i≤N
of non-negative real numbers. Let

Z = min
α∈F

∑
i≤N

αiXi

where X1, X2, . . . , XN are an independent sequence of random variables taking values in [0, 1].

Let σ = maxα∈F ||α||2. Then if M is the median of Z and u > 0, we have

Pr(|Z −M | ≥ u) ≤ 4 exp

{
− u2

4σ2

}
. (23)

We apply (23) with N = n2 and Xe = ŵ(e)/µ. For F we take the n! {0, 1} vectors corresponding
to perfect matchings and scale them by µ. In this way,

∑
e αeXe will be the weight of a perfect

matching. In this case we have σ2 ≤ nµ2. Applying (23) we obtain

Pr

(
|Ĉ(G)− M̂ | ≥ ε

p

)
≤ 4 exp

{
− ε2

4p2
· 1

nµ2

}
= exp

{
− ε2n

(c2 log n)2

}
, (24)

where M̂ is the median of Ĉ(G). Theorem 2 follows easily from (22) and (24).

4 Final remarks

We have generalised the result of [2] to random bipartite graphs. It would seem that in the absence
of proving Conjecture 1 we should be able to replace ω(log n)2 in Theorem 1 by ω log n. It would be
of interest to prove the analogous result for Gn,p. Here we would expect to find that the expected

cost of a minimum matching was asymptotically π2

12p , given that Wästlund has proved this for p = 1
in [15].
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[16] J. Wästlund, A simple proof of the Parisi and Coppersmith-Sorkin formulas for the random
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