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Modeling Interaction via the Principle of Maximum Causal Entropy

Brian D. Ziebart Carnegie Mellon University
J. Andrew Bagnell Carnegie Mellon University
Anind K. Dey Carnegie Mellon University

Abstract

The principle of maximum entropy provides
a powerful framework for statistical models
of joint, conditional, and marginal distribu-
tions. However, there are many important
distributions with elements of interaction and
feedback where its applicability has not been
established. This work presents the prin-
ciple of maximum causal entropy – an ap-
proach based on causally conditioned prob-
abilities that can appropriately model the
availability and influence of sequentially re-
vealed side information. Using this principle,
we derive Maximum Causal Entropy Influ-
ence Diagrams, a new probabilistic graphi-
cal framework for modeling decision making
in settings with latent information, sequen-
tial interaction, and feedback. We describe
the theoretical advantages of this model and
demonstrate its applicability for statistically
framing inverse optimal control and decision
prediction tasks.

1. Introduction

The principle of maximum entropy (Jaynes, 1957)
serves a foundational role in the theory and practice
of constructing statistical models, with applicability
to statistical mechanics (Jaynes, 1957), natural lan-
guage processing, econometrics, and ecology (Dud́ık
& Schapire, 2006). Conditional extensions of the prin-
ciple that consider side information, and specifically
Conditional Random Fields (Lafferty et al., 2001),
have been applied with remarkable success in recog-
nition, segmentation, and classification tasks, and are
a preferred tool in natural language processing, ma-
chine vision, and activity recognition.

This work extends the maximum entropy approach
to conditional probability distributions in settings
characterized by interaction with stochastic processes

Preprint. To appear in the International Conference on
Machine Learning (ICML).

where side information from those processes is dy-
namic, i.e., revealed over time. Importantly, in these
settings, future side information is latent during ear-
lier points of interaction. Consequentially, the value
of side information should have no causal influence in
our statistical models of interaction until after it is re-
vealed, though the distribution from which it is drawn
can be influential. More formally this means that if a
future side information variable were secretly fixed to
some value by intervention (Pearl, 2000) rather than
sampled according to its conditional probability distri-
bution, the distribution over all earlier variables would
be unaffected by this change.

Conditional maximum entropy approaches are ill-
suited for this setting as they assume all side informa-
tion is available a priori. Building on the recent ad-
vance of the Marko-Massey theory of directed informa-
tion (Massey, 1990), we propose the use of the causally
conditioned entropy (Kramer, 1998) as this measure
matches the information availability of our setting and
has found applicability in the analysis of communica-
tion channels with feedback (Kramer, 1998), decen-
tralized control (Tatikonda & Mitter, 2004), sequential
investment and online compression with side informa-
tion (Permuter et al., 2008).

We present the principle of maximum causal entropy
(MaxCausalEnt), which prescribes a probability dis-
tribution by maximizing the entropy of a sequence of
variables causally conditioned on sequentially revealed
side information. This contribution extends the max-
imum entropy framework for statistical modeling to
processes with information revelation, feedback, and
interaction. We adopt the Influence Diagram, a pre-
scriptive decision-making framework, as a convenient
representation of the probability distribution of side
information, its dynamic availability, and its relation-
ships to other variables. Applying the MaxCausalEnt
principle yields the MaxCausalEnt Influence Diagram,
a novel predictive framework for estimating decision
probabilities. We demonstrate that our framework
provides a fully probabilistic approach to problems of
inverse stochastic control, multiple agent behavior pre-
diction in dynamic games, and modeling interaction
with partially observable systems.
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2. Maximum Causal Entropy

Motivated by the task of modeling behavior with ele-
ments of sequential interaction, we introduce the prin-
ciple of maximum causal entropy and describe its core
theoretical properties.

2.1. Preliminaries

When faced with an ill-posed problem, the principle
of maximum entropy (Jaynes, 1957) prescribes the use
of “the least committed” probability distribution that
is consistent with known problem constraints. This
criterion is formally measured by Shannon’s informa-
tion entropy, EX [− logP (X)], and many of the funda-
mental building blocks of statistics, including Gaussian
and Markov random field distributions, maximize this
entropy subject to moment constraints.

In the presence of side information, X, that we do not
desire to model, the standard prescription is to max-
imize the conditional entropy, EY,X[− logP (Y|X)],
yielding, for example, the Conditional Random Field
(CRF) (Lafferty et al., 2001). Though our intention
is to similarly model conditional probability distribu-
tions, CRFs assume a knowledge of future side in-
formation, Xt+1:T , for each Yt that does not match
settings with dynamically revealed information. At-
tempts to marginalize over the joint distribution using
a CRF are possible:

P (Yt|X1:t,Y1:t−1) ∝ (1)∑
Xt+1:T ,Yt+1:T

eθ
>F (X,Y)P (Xt+1:T |X1:t,Y1:t−1).

However, we argue that entropy-based approaches that
do not address the causal influence of side information
are inadequate for interactive settings.

2.2. Directed Information and Causal Entropy

The causally conditioned probability (Kramer, 1998)
from the Marko-Massey theory of directed informa-
tion (Massey, 1990) is a natural extension of the con-
ditional probability, P (Y|X), to the situation where
each Yt is conditioned on only a portion of the X vari-
ables, X1:t, rather than the entirety, X1:T . Following
the previously developed notation (Kramer, 1998), the
probability of Y causally conditioned on X is

P (YT ||XT ) ,
T∏
t=1

P (Yt|X1:t,Y1:t−1). (2)

The subtle, but significant difference from conditional
probability, P (Y|X) =

∏T
t=1 P (Yt|X1:T ,Y1:t−1),

serves as the underlying basis for our approach.

Causal entropy (Kramer, 1998; Permuter et al., 2008),

H(YT ||XT ) , EY,X[− logP (YT ||XT )] (3)

=
T∑
t=1

H(Yt|X1:t,Y1:t−1),

measures the uncertainty present in the causally con-
ditioned distribution. It is easy to verify that it up-
per bounds the conditional entropy; intuitively this
reflects the fact that conditioning on information from
the future (i.e., acausally) can only decrease uncer-
tainty. Using this notation, any joint distribution can
be expressed as P (Y,X) = P (YT ||XT )P (XT ||YT−1).
Our approach estimates P (YT ||XT ) based on a pro-
vided (explicitly or implicitly) distribution of side in-
formation P (XT ||YT−1) =

∏
t P (Xt|X1:t−1,Y1:t−1).

2.3. Maximum Causal Entropy Optimization

With the causal entropy (Equation 3) as our objec-
tive function, we now pose and solve the maximum
causal entropy optimization problem. We constrain
our distribution to match expected feature functions,
F(X,Y) with empirical expectations of those same
functions, ẼX,Y[F(X,Y)], yielding the following op-
timization problem:

argmax
{P (Yt|X1:t,Y1:t−1)}

H(YT ||XT ) (4)

such that: EX,Y[F(X,Y)] = ẼX,Y[F(X,Y)]

and ∀X1:t,Y1:t−1

∑
Yt

P (Yt|X1:t,Y1:t−1) = 1.

Theorem 1. The distribution satisfying the maximum
causal entropy constrained optimization (Equation 4)
has a form defined recursively as:

Pθ(Yt|X1:t,Y1:t−1) =
ZYt|X1:t,Y1:t−1,θ

ZX1:t,Y1:t−1,θ
(5)

logZX1:t,Y1:t−1,θ = log
X
Yt

ZYt|X1:t,Y1:t−1,θ

= softmax
Yt

“ X
Xt+1

P (Xt+1|X1:t,Y1:t) logZX1:t+1,Y1:t,θ

”
ZYt|X1:t,Y1:t−1,θ = e

P
Xt+1

P (Xt+1|X1:t,Y1:t) logZX1:t+1,Y1:t,θ

logZX1:T ,Y1:T−1,θ = θ>F(X,Y),

where softmaxx f(x) , log
∑
x e

f(x).

Proof (sketch).1We note that the (negated) primal ob-
jective function (Equation 4) is convex in the vari-
ables P (Y||X) and subject to linear constraints on
feature function expectation matching, valid proba-
bility distributions, and non-causal influence of future

1Complete proofs and additional algorithm and experi-
mental details are available in the supplement to this paper.
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side information. Differentiating the Lagrangian of the
causal maximum entropy optimization (Equation 4),
and equating to zero, we obtain the general form:

Pθ(Yt|X1:t,Y1:t−1) ∝ exp
n
θ>EX,Y[F(X,Y)|X1:t,Y1:t]

−
X
τ>t

EX,Y[logPθ(Yτ |X1:τ ,Y1:τ−1)|X1:t,Y1:t]
o
. (6)

Substituting the more operational recurrence of Equa-
tion 5 into Equation 6 verifies the theorem.

We note that Theorem 1 relies on strong duality to
identify the form of this probability distribution; the
sharp version of Slater’s condition (Boyd & Vanden-
berghe, 2004) using the existence of a feasible point
in the relative interior ensures this but requires that
(1) prescribed feature counts are achievable, and (2)
the distribution has full support. The first naturally
follows if both model and empirical expectations are
taken with respect to the provided model of side infor-
mation, P (XT ||YT−1). For technical simplicity in this
work, we will further assume full support for the mod-
eled distribution, although relatively simple modifica-
tions (e.g., constraints hold within a small deviation
ε) ensure the correctness of this form in all cases.

Theorem 2. The gradient of the dual with respect
to θ is

(
ẼX,Y[F(X,Y)] − EX,Y[F(X,Y)]

)
, which is

the difference between the expected feature vector under
the probabilistic model and the empirical feature vector
given the complete policy, {P (Yt|X1:t,Y1:t−1)}.

In many instances, the statistics of interest(
ẼX,Y[F(X,Y)]) are only known approximately

as they are obtained from small sample sets. We note
that this uncertainty can be rigorously addressed by
extending the duality analysis of Dud́ık & Schapire
(2006), leading to parameter regularization that may
be naturally adopted in the causal setting as well.

Theorem 3. The maximum causal entropy distribu-
tion minimizes the worst case prediction log-loss,

inf
P (Y||X)

sup
P̃ (YT ||XT )

∑
Y,X

P̃ (Y,X) logP (YT ||XT ),

given that P̃ (Y,X) = P̃ (YT ||XT )P (XT ||YT−1) and
feature expectations EP̃ (X,Y)[F(X,Y)] when X is se-
quentially revealed from a known distribution.

Theorem 3 follows naturally from Grünwald & Dawid
(2003) and extends their “robust Bayes” results to the
interactive setting as one justification for the maxi-
mum causal entropy approach. The theorem can be
understood by viewing maximum causal entropy as a
maximin game where nature chooses a distribution to
maximize a predictor’s perplexity while the predictor
tries to minimize it. By duality, the minimax view of
the theorem is equivalent. This strong result is not

shared when maximizing alternate entropy measures
(e.g., conditional or joint entropy) and marginalizing
out future side information (as in Equation 1).

3. MaxCausalEnt Influence Diagrams

We now apply MaxCausalEnt to the Influence Dia-
gram (Howard & Matheson, 1984), a graphical frame-
work that subsumes Bayesian Networks, augmenting
their capabilities to reason about latent variables with
decisions and utilities so that inference includes op-
timal decision making. MaxCausalEnt expands the
applicability of Influence Diagrams from the prescrip-
tion of optimal decisions to the prediction of decision-
making and the recovery of explanatory utility weights
from observed decision sequences. It also general-
izes the probability distribution derived in Theorem 1
to settings with partially observable side information,
and provides a convenient graphical representation for
the MaxCausalEnt variables and their relationships.

3.1. Variables, Dependencies, and Features

A Maximum Causal Entropy Influence Diagram (Max-
CausalEnt ID) is structurally characterized by square
decision nodes (Y), circular uncertainty nodes (X), di-
amond value nodes (V), and directed edges. The role
of an edge depends on the type of node to which it
is a parent. The parents of a decision node, par(Yi),
are known when the decision is made. An uncertainty
node’s parents, par(Xi), specify its conditional prob-
ability distribution, P (Xi|par(Xi)). The parents of
a value node, par(Vi), in a MaxCausalEnt ID indi-
cate the form of feature functions of the value node
FVi : par(Vi) → <k. We restrict our consideration in
this work to decision settings with perfect recall2.

3.2. Causal Decision Entropy Maximization

We define the causal decision probability of a Max-
CausalEnt ID as P (Y||par(Y)) ,

∏
t P (Yt|par(Yt))

and the causal decision entropy as H(Y||par(Y)) ,
EX,Y[− logP (Y||par(Y))]. We maximize this entropy
while matching the additive combination of expected
and empirical feature functions, EX,Y[

∑
V F(V )] =

ẼX,Y[
∑
V F(V )]. The key distinction between this

setting and the setting discussed in Section 2 is that
some variables in X may never be directly observed in
the MaxCausalEnt ID.

3.3. Inference and Learning Algorithms

Algorithm 1 illustrates the procedure for inferring de-
2Variables observed during previous decisions are either

observed in future decisions or irrelevant (i.e., value node
descendants of future decisions are conditionally indepen-
dent from that variable given other observed variables).
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Algorithm 1 MaxCausalEnt ID Inference Procedure
1: for all V ∈ V do
2: Associate V with argmaxYindex∈ancest(V ) index
3: end for
4: for i = |Y| to 1 do
5: for all values (Y ′i , par(Yi)

′) do
6: Zi(Y ′i |par(Yi)′)← 0
7: for all Vj associated with Yi do
8: for all values par(Vj)′ do
9: Compute P (par(Vj)′|par(Yi)′, Y ′i )

10: end for
11: Zi(Y ′i |par(Yi)′)← Zi(Y ′i |par(Yi)′) +

Epar(Vj)[θ
>FVj (par(Vj))|Y ′i , par(Yi)′]

12: end for
13: for all values par(Yi+1)′ do
14: Compute P (par(Yi+1)′|Y ′i , par(Yi)′)
15: end for
16: Zi(Y ′i |par(Yi)′)← Zi(Y ′i |par(Yi)′) +

Epar(Yi+1)′ [Zi+1(par(Yi+1)′)|Y ′i , par(Yi)′]
17: end for
18: for all par(Yi)′ do
19: Zi(par(Yi)′)← softmaxYi Zi(Yi|par(Yi)′)
20: end for
21: end for

cision probabilities in the MaxCausalEnt ID based on
Theorem 1. We assume as a subroutine an algorithm
for calculating the marginal probabilities of variables
conditioned on a set of fixed evidence variables in a
Bayesian Network (e.g., variable elimination or belief
propagation). Expectations over the unobserved un-
certainty nodes that are ancestors of value variables
are employed in line 11, replacing the exact evalua-
tions, θ>F(X,Y), of Equation 4. This added expec-
tation preserves the convexity of the optimization since
the feature matching constraint remains linear in the
causally conditioned probabilities. Standard gradient-
based optimization techniques can be employed using
the gradient calculated in Algorithm 2.

4. Applications

We now present a series of applications with increasing
complexity of interaction: (1) control with stochastic
dynamics; (2) multiple agent interaction; and (3) in-
teraction with a partially observable system.

4.1. Inverse Optimal Stochastic Control

Optimal control frameworks, such as the Markov De-
cision Process (MDP) and the Linear-Quadratic Reg-
ulator (LQR), provide rich representations of interac-
tions with stochastic systems. Inverse optimal control
(IOC) (Kalman, 1964; Boyd et al., 1994) is the prob-
lem of recovering a cost function that makes a partic-
ular controller or policy (near)-optimal. Recent work

Algorithm 2 MaxCausalEnt ID Gradient Calculation

1: Compute Ẽ[F ]← 1
T

∑
tEX,Y[

∑
V F(V )|x̃t, ỹt]

2: Compute Z(par(Y )), Z(Y |par(Y )) via Algorithm
1 for Parameters θ

3: for all decision nodes Yi do
4: Replace Yi with an uncertainty node with prob-

abilities P (yi|par(Yi)) = eZ(yi|par(Yi))−Z(par(Yi))

5: end for
6: E[F ]← Ok

7: for all V do
8: for all values par(V)’ do
9: Compute P (par(V )′) using {P (yi|par(Yi))}

10: end for
11: E[F ]← E[F ] + E[F (V )]
12: end for
13: ∇θ logP (y||par(y))← Ẽ[F ]− E[F ]

has demonstrated that IOC is a powerful technique
for modeling the decision-making behavior of intelli-
gent agents in problems as diverse as robotics (Ratliff
et al., 2009), personal navigation (Ziebart et al., 2008),
and cognitive science (Ullman et al., 2009). Many
recent IOC approaches (Abbeel & Ng, 2004; Ziebart
et al., 2008) consider cost functions linear in a set of
features, and attempt to find behaviors that induce
the same feature counts as the policy to be mimicked
(E[
∑
t FSt ] = Ẽ[

∑
t FSt ]); by linearity such behaviors

must achieve the same expected cost or value. Un-
fortunately, matching feature counts is fundamentally
ill-posed – usually no truly optimal policy will achieve
those feature counts, but many stochastic policies (and
policy mixtures) may satisfy this constraint.

Ziebart et al. (2008) resolve this ambiguity by us-
ing the classical maximum entropy criteria to select a
single distribution from all the distributions over de-
cisions that match feature counts. They provide an
exact solution for deterministic MDPs and propose an
approximate solution for the Inverse Optimal Stochas-
tic Control (IOSC) problem for MDPs with stochastic
dynamics that is equivalent to the conditional entropy
model with latent state variables (Equation 1).

The feature-matching concept is easily extended
to discrete-time, continuous-state, continuous-action
settings where quadratic properties of actions (a)
and states (s) can be matched in expectation:
E[
∑
t ata

>
t ] = Ẽ[

∑
t ata

>
t ] and E[

∑
t sts

>
t ] =

Ẽ[
∑
t sts

>
t ]. Cost functions are then linear in these

features, e.g.,
∑
t Tr[s s>Q].

4.1.1. MaxCausalEnt ID Formulation

In the IOSC problem, side information (states) and
decisions (actions) are inter-dependent with the dis-
tribution of side information provided by the known
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dynamics, P (ST ||AT−1) =
∏
t P (St|St−1, At−1). We

employ the MaxCausalEnt ID framework, as shown in
Figure 1, to solve this problem exactly.

Figure 1. The MaxCausalEnt ID inverse optimal control
representation for MDPs with state-based features.

Using the action-based cost-to-go (Q) and state-based
value (V ) notation, the inference procedure for MDP
MaxCausalEnt IOC reduces to

Qsoft
θ (at, st) =

∑
st+1

P (st+1|st, at)V soft
θ (st+1) (7)

V soft
θ (st) = softmax

at
Qsoft
θ (at, st) + θ>Fst ,

and for the continuous, quadratic-reward setting to

Qsoft
θ (at, st)=

∫
st+1

P (st+1|st, at)V soft
θ (st+1)dst+1 + a

>
t Rat

V soft
θ (st) = softmax

at
Qsoft
θ (at, st) + s>t Qst. (8)

Note that by replacing the softmax 3 function with the
maximum, this algorithm becomes equivalent to the
(stochastic) value iteration algorithm (Bellman, 1957)
for finding the optimal control policy. The softened
version yields a stochastic policy, πθ(a|s) ∝ eQ

soft
θ (a,s).

For the special case where dynamics are linear func-
tions with Gaussian noise, many continuous optimal
control problems permit closed-form solutions. The
same is true of inference for Inverse MaxCausalEnt
LQR. Assuming the dynamics are st+1 ∼ N(Ast +
Bat,Σ), Equation 8 reduces to:

Qsoft
θ (at, st) =

[
at
st

]> [
B>DB + R A>DB

B>DA A>DA

] [
at
st

]
V soft
θ (st) = s>t (Cs,s +Q−C>a,sC

−1
a,aCa,s)st + const,

where C and D are recursively computed as:
Ca,a = B>DB; Cs,a = C>a,s = B>DA; Cs,s =
A>DA; and D = Cs,s + Q−C>C−1

a,aCa,s.

4.1.2. Inverse Helicopter Control

We demonstrate the MaxCausalEnt approach to in-
verse stochastic optimal control on the problem of

3The continuous version of the softened maximum is
defined as: softmaxx f(x) , log

R
x
ef(x) dx.

building a controller for a learned helicopter model
(Abbeel et al., 2007) with linearized stochastic dynam-
ics. Most existing approaches to IOSC (Ratliff et al.,
2006; Abbeel & Ng, 2004) have both practical and the-
oretical difficulties in the presence of imperfect demon-
strated behavior, leading to unstable controllers due to
large changes in cost weights (Abbeel et al., 2007) or
poor predictive accuracy (Ratliff et al., 2006). To test
the robustness of our approach, we generated five 100
time-step sub-optimal training trajectories by noisily
sampling actions from an optimal LQR controlled de-
signed for hovering using the linearized stochastic sim-
ulator of Abbeel et al. (2007).

Figure 2. Left: An example sub-optimal helicopter trajec-
tory attempting to hover around the origin point. Right:
The average cost under the original cost function of: (1)
demonstrated trajectories; (2) the optimal controller us-
ing the inverse optimal control model; and (3) the optimal
controller using the maximum causal entropy model.

We contrast performance between maximum margin
planning (Ratliff et al., 2006) (labeled IOSC in Fig-
ure 2) and MaxCausalEnt trained using demonstrated
trajectories. Performance was evaluated by generating
trajectories from the optimal controller of each model
and measuring their cost under the true cost function
used to generate the original sub-optimal demonstra-
tion trajectories. The InvOpt model performs poorly
because there is no optimal trajectory for any cost
function that matches demonstrated features. On the
other hand, the function learned by MaxCausalEnt
IOC not only induces the same feature counts– and
hence equal cost on the unknown cost function– un-
der the learned probabilistic policy, but because of the
quadratic cost function its learned controller’s optimal
policy is always at least as good as the demonstrated
behavior on the original, unknown cost function. Fig-
ure 2 demonstrates this; the resulting learned optimal
policy outperforms the demonstrated behavior on the
original, unknown cost function. In this sense, Max-
CausalEnt provides a rigorous approach to learning a
cost function for such stochastic optimal control prob-
lems: it is both predictive and can guarantee good
performance of the learned controller.
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4.2. Inverse Dynamic Games

Modeling the interactions of multiple agents is an im-
portant task for uncovering the motives of negotiat-
ing parties, planning a robot’s movement in a crowded
environment, and assessing the perceived roles of in-
teracting agents (Ullman et al., 2009). While game
and decision theory can prescribe the optimal action
policy when the utilities of agents are known, often
these utilities are not known and only observed behav-
ior is available. We investigate the setting where the
interleaved sequences of actions from R agents, A, and
state sequences, S, generated from stochastic dynam-
ics (P (St+1|St, At)), are observed. The learning task
is to recover each player’s reward function, w>j f(A,S).

4.2.1. MaxCausalEnt ID Formulation

In the multi-agent setting, side information (the se-
quence of states) is governed by other agents’ poli-
cies, πk(A|S). Given those other agents’ policies, the
conditional distribution of side information (states) is
known and the j-th agent’s maximum causal entropy
policy is obtained with the following optimization:

argmax
πj(A|S)

H(A||S) (9)

E[
∑
t

fj(St)|∀kπk(A|S)] = Ẽ[
∑
t

fj(St)].

For many learning setting, only state-action traces are
available and not full policies. Unfortunately when
trying to jointly learn the behavior of multiple agents,
the distribution of side information is no longer known
(it depends on the other agents’ unknown policies),
and the MaxCausalEnt approach cannot be applied
in a straight-forward manner. We instead employ a
cyclic coordinate descent approach, which iteratively
maximizes the causal entropy of one agent’s actions
while matching expected feature counts under the
other agents’ learned policies with the agent’s “em-
pirical” feature counts (i.e., expected feature counts
of the agents demonstrated actions under the other
agents’ learned policies), and settle for local optima.

4.2.2. Pursuit-Evasion Modeling

We consider a generalization of the pursuit-evasion
multi-agent setting (Parsons, 1976) with three agents
operating in a four-by-four grid world. Each agent
has a mobility, mi ∈ [0, 1], which corresponds to the
probability of success when attempting to move in one
of the four cardinal directions, and a utility for being
co-located with each of the other agents. In the predic-
tion task, we are provided with the mobilities of each
agent and a time sequence of their actions and loca-
tions, and hope to recover the underlying co-location
utility matrix.

Figure 3. The pursuit-evasion grid with three agents and
their co-location utilities. Agent X has a mobility of mX

and a utility of wX,Y when co-located with agent Y .

We generate data for this setting using the follow-
ing procedure. First, for each agent, mobilities
(U [0.2, 1.0]) and co-location utilities (U [−1.0, 1.0]) are
sampled. Next, a potentially sub-optimal policy for
each agent is generated by solving the optimal sequen-
tial decision problem (maximizing expected utility) for
ten different limited time horizons, and mixing these
policies by switching between them uniformly at ran-
dom. Lastly, the agents take random initial locations
and from the stochastic policy and state dynamics, a
trajectory of 40 time-steps is sampled. Five training
trajectories and one testing trajectory are generated
for six different parameter samples. Despite its sim-
plicity, this setting produces suprising rich behavior.
For example, a first evader may help its pursuer cor-
ner a more desirable second evader so that the first
evader will be spared. Due to the sensitivity of the
optimal policy to time horizon and symmetries in the
state space (broken at random), the resulting policies
are often stochastic.

Figure 4. The average per-action perplexities of the latent
CRF model and the MaxCausalEnt model plotted against
each other for three agents from six different pursuit-
evasion settings. The MaxCausalEnt model outperforms
the latent CRF model in the region below the dotted line.

A comparison between the latent CRF model (Equa-
tion 1) trained to maximize data likelihood and the
maximum causal entropy model is shown in Figure 4
using perplexity, 1

T

∑
at,st

logP (at|st), as the evalua-
tion metric. In addition to this empirical demonstra-
tion of the benefit of the MaxCausalEnt approach on
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this problem, a conceptual understanding of the dis-
tinction between the two approaches can be obtained
by realizing that the latent CRF approach is equiva-
lent to employing Q(at, st) = softmaxst+1(V (st+1) +
logP (st+1|st, at)) within Equation 7. This has a
disconcerting interpretation that the agent some-
how chooses the next state by “paying” an extra
logP (st+1|st, at) penalty to ignore the actual provided
stochasticity of the problem dynamics.

4.3. Inverse Diagnostics

Many important problems can be framed as interac-
tion with a partially observable stochastic system. In
medical diagnosis, for example, tests are conducted,
the results of which may lead to additional tests to
narrow down probable conditions or diseases and to
prescribe treatments, which are adjusted based on pa-
tient response. Motivated by the objective of learning
good diagnosis policies from experts, we investigate
the Inverse Diagnostics problem of modeling interac-
tion with partially observed systems.

4.3.1. MaxCausalEnt ID Formulation

In this setting, the partially observed set of variables
(related by a Bayesian Network in this application)
serves as side information. Inference over the latent
variables from this set is required to infer decision
probabilities. Additionally, decisions can influence the
variables, causally changing their values, and the im-
plications of these interventions must also be assessed.
Vectors of features are associated with observing or
manipulating each variable and we employ our Max-
CausalEnt ID model with these features as value nodes
as shown in Figure 54.

Figure 5. The MaxCausalEnt ID representation of the di-
agnostic problem.

4.3.2. Fault Diagnosis Experiments

We apply our inverse diagnostics approach to the ve-
hicle fault detection Bayesian Network (Heckerman

4An objective function over the Bayesian Network vari-
ables can also be incorporated into a value node at each
time-step and/or at the end of the sequence, as shown.

et al., 1994) shown in Figure 6. Apart from the re-

Figure 6. The vehicle fault detection Bayesian Network.

lationship between Battery Age and Battery (expo-
nentially increasing probability of failure with battery
age), the remaining conditional probability distribu-
tions are deterministic-or’s (i.e., failure in any parent
causes a failure in the child).

Each variable in the network can be tested, revealing
whether it is operational (or the battery’s age), and
the Battery, Fuel, Fuel Line, Fuel Pump, Spark Plugs,
and Starter can each be replaced (making it and po-
tentially its descendants operational). Replacements
and tests are both characterized action features: a cost
to the vehicle owner, a profit for the mechanic, and a
time requirement. Ideally a sequence of tests and re-
placements would minimize the expected cost to the
vehicle owner, but an over-booked mechanic might in-
stead choose to minimize the total repair time so that
other vehicles can be serviced, and a less ethical me-
chanic might seek to optimize personal profit.

To generate a dataset of observations and replace-
ments, a stochastic policy is obtained by adding Gaus-
sian noise, εs,a, to each action’s future expected value,
Q∗(s, a), under the optimal policy for a fixed set of
weights and selecting the highest noisy-valued action,
Q∗(s, a) + εs,a, to execute at each time-step. Different
vehicle failure samples are generated from the Bayesian
Network conditioned on the vehicle’s engine failing to
start, and the stochastic policy is sampled until the
vehicle is operational.

We evaluate the prediction error rate and perplexity of
our model in Figure 7. We compare against a Markov
Model that ignores the underlying mechanisms for de-
cision making and simply predicts behavior in propor-
tion to the frequency it has previously been observed
(with small pseudo-count priors). Our approach con-
sistently outperforms the Markov Model even with an
order of magnitude less training data. The classifica-
tion error rate quickly reaches the limit implied by the
inherent stochasticity of the data generation process.
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Figure 7. Error rate and perplexity of the MaxCausalEnt
ID model and Markov Model for diagnosis action predic-
tion as training set size (log-scale) increases.

5. Conclusion and Future Work

We have extended the principle of maximum entropy
to settings with sequentially revealed information in
this work. We demonstrated the applicability of the
resulting principle of maximum causal entropy for esti-
mating causally conditioned probability distributions
in stochastic control, multi-agent interaction, and par-
tially observable settings. In addition to further in-
vestigating modeling applications of maximum causal
entropy, our future work will investigate its applicabil-
ity on non-modeling tasks in dynamics settings. For
instance, we note that the proposed principle provides
a natural criteria for efficiently identifying a correlated
equilibrium in dynamic Markov games, generalizing
the approach to static games of Ortiz et al. (2007).
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