8-2015

Bounds on equiangular lines and on related spherical codes

Boris Bukh
Carnegie Mellon University, bbukh@math.cmu.edu

Follow this and additional works at: http://repository.cmu.edu/math
Part of the Mathematics Commons
Bounds on equiangular lines and on related spherical codes

Boris Bukh∗

Abstract

An L-spherical code is a set of Euclidean unit vectors whose pairwise inner products belong to the set L. We show, for a fixed $\alpha, \beta > 0$, that the size of any $[-1, -\beta] \cup \{\alpha\}$-spherical code is at most linear in the dimension.

In particular, this bound applies to sets of lines such that every two are at a fixed angle to each another.

1 Introduction

Background A set of lines in \mathbb{R}^d is called equiangular, if the angle between any two of them is the same. Equivalently, if P is the set of unit direction vectors, the corresponding lines are equiangular with the angle $\arccos \alpha$ if $\langle v, v' \rangle \in \{-\alpha, \alpha\}$ for any two distinct vectors $v, v' \in P$. The second equivalent way of defining equiangular lines is via the Gram matrix. Let M be the matrix whose columns are the direction vectors. Then $M^T M$ is a positive semidefinite matrix whose diagonal entries are 1’s, and each of whose off-diagonal entries is $-\alpha$ or α. Conversely, any such matrix of size m and rank d gives rise to m equiangular lines in \mathbb{R}^d.

The equiangular lines have been extensively studied following the works of van Lint and Seidel [9], and of Lemmens and Seidel [7]. Let $N(d)$ be the maximum number of equiangular lines in \mathbb{R}^d. Let N_α be the maximum number of equiangular lines with the angle $\arccos \alpha$. The values of $N(d)$ are known exactly for $d \leq 13$, for $d = 15$, for $21 \leq d \leq 41$ and for $d = 43$ [1, 5]. When d is large, the only known upper bound on $N(d)$ is due to Gerzon (see [7, Theorem 3.5]) and asserts that

$$N(d) \leq d(d+1)/2$$

with equality only if $d = 2, 3$ or $d + 2$ is a square of an odd integer.

A remarkable construction of de Caen[3] shows that $N(d) \geq \frac{2}{3}(d+1)^2$ for d of the form $d = 6 \cdot 4^i - 1$. A version of de Caen’s construction suitable for other values of d has been given by Greaves, Koolen, Munemasa and Szöllősi [5]. See also the work of Jedwab and Wiebe [6] for an alternative construction of $\Theta(d^2)$ equiangular lines. In these constructions the inner product α tends to 0 as dimension grows.

Previously known bounds on $N_\alpha(d)$ The first bound is the so-called relative bound (see [9, Lemma 6.1] following [7, Theorem 3.6])

$$N_\alpha(d) \leq d \frac{1-\alpha^2}{1-r\alpha^2}$$

if $d < 1/\alpha^2$.

∗Supported in part by U.S. taxpayers through NSF grant DMS-1301548.
While useful in small dimensions, it gives no information for a fixed α and large d. The second bound is

$$N_\alpha(d) \leq 2d \text{ unless } 1/\alpha \text{ is an odd integer} \ [7, \text{Theorem } 3.4].$$

This bound can be further improved to $\frac{3}{2}(d+1)$ unless $\frac{1}{2\alpha} + \frac{1}{2}$ is an algebraic integer of degree 2, see [2, Subsection 2.3].

Finally, the values of $N_{1/3}(d)$ and $N_{1/5}(d)$ for a large d have been completely determined:

$$N_{1/3}(d) = 2d - 2 \quad \text{for } d \geq 15 \quad [7, \text{Theorem } 4.5],$$

$$N_{1/5}(d) = \lfloor 3(d-1)/2 \rfloor \quad \text{for all sufficiently large } d \quad [8 \text{ and } 5, \text{Corollary } 6.6].$$

New bound We will show that $N_\alpha(d)$ is linear for every α. In fact, we will prove a result in greater generality. Following [4], we call a set of unit vectors P an L-spherical code if $\langle v, v' \rangle \in L$ for every pair of distinct points $v, v' \in P$. In this language, a set of equiangular lines is a $\{-\alpha, \alpha\}$-spherical code. Let $N_L(d)$ be the maximum cardinality of an L-spherical code in \mathbb{R}^d.

Theorem 1. For every fixed $\beta > 0$ there exists a constant c_β such that for any L of the form $L = [-1, -\beta] \cup \{\alpha\}$ we have $N_L(d) \leq c_\beta d$.

We make no effort to optimize the constant c_β that arises from our proof, as it is huge. We speculate about the optimal bounds on $N_L(d)$ in section 3. We do not know if the constant c_β must in fact depend on β.

The rest of the paper is organized as follows. In the next section we prove Theorem 1 and in the concluding section we discuss possible generalizations and strengthenings of Theorem 1.

2 Proof of Theorem 1

Proof sketch The idea behind the proof of Theorem 1 builds upon the argument of Lemmens and Seidel for $N_{1/3}(d)$. Before going into the details, we outline the argument.

Let $L = [-1, -\beta] \cup \{\alpha\}$, and let P be an L-spherical code whose size we wish to bound. Define a graph G on the vertex set P by connecting v and v' by an edge if $\langle v, v' \rangle \in [-1, -\beta]$. In their treatment of $N_{1/3}(d)$ Lemmens and Seidel consider the largest clique in G, and carefully analyze how the rest of the graph attaches to that clique. In contrast, in our argument we consider the largest independent set I of G, and show that almost every other vertex is incident to nearly all vertices of I. Iterating this argument inside the common neighborhood of I we can build a large clique in G. As the clique size is bounded by a function of β, that establishes the theorem.

Proof details For the remainder of the section, L, P and G will be as defined as in the preceding proof sketch. The following two well-known lemmas bound the sizes of cliques and independent sets in G:

Lemma 2. Suppose u_1, \ldots, u_n are n vectors of norm at most 1 satisfying $\langle u_i, u_j \rangle \leq -\gamma$. Then $n \leq 1/\gamma + 1$.

Proof. This follows from $0 \leq \| \sum u_i \|^2 = \sum_{i,j} \langle u_i, u_j \rangle \leq n - \gamma n(n-1)$.

Lemma 3.

i. Every independent set in G is linearly independent. In particular, the graph G contains no independent set on more than d vertices.

ii. The graph G contains no clique on more than $1/\beta + 1$ vertices.

Proof. i) Let p_1, \ldots, p_n be the points of the independent set. Suppose that $\sum c_i p_i = 0$. Taking an inner product with p_j we obtain $0 = (1 - \alpha)c_j + \alpha \sum c_i$ implying that all c’s are equal. The result follows since $(1 - \alpha) + n\alpha \neq 0$.

ii) This is a special case of the preceding lemma.

In the next two lemmas we analyze how the vertices of G attach to an independent set.

Lemma 4. Suppose that M is a matrix with linearly independent column vectors p_1, \ldots, p_n. Suppose that $v, v' \in \text{span}\{p_1, \ldots, p_n\}$ are points satisfying $\langle p_i, v \rangle = s_i$ and $\langle p_i, v' \rangle = s'_i$ for some column vectors $s = (s_1, \ldots, s_n)^T$ and $s' = (s'_1, \ldots, s'_n)^T$. Then $\langle v, v' \rangle = s^T (M^T M)^{-1} s'$.

Proof. By passing to a subspace we may assume that p_1, \ldots, p_n span \mathbb{R}^n, and so M is invertible. As $s = M^T v$ and $s' = M^T v'$, we infer that $\langle v, v' \rangle = v^T v' = (M^{-1} s)^T (M^T)^{-1} s' = s^T (M^T M)^{-1} s'$. □

The following lemma is the geometric heart of the proof. In its special case $v = v'$, the lemma bounds degrees from certain vertices into an independent set. More precisely, let I be a sufficiently large independent set. We will show later (in Lemma 6) that the vertices, the norm of whose projection on span I exceeds $\alpha^{1/2}$, are few. The straightforward, but slightly messy calculations in the following lemma characterize the vertices with such projections in terms of their degree into I. The case $v \neq v'$ is not needed when P comes from the set of equiangular lines, but is required to establish Theorem 1 in its full generality.

Lemma 5. Let $t = 1/\beta + 1$. There exists $n_0 = n_0(\beta)$ and $\varepsilon = \varepsilon(\beta)$ such that the following holds. Suppose that p_1, \ldots, p_n is an independent set in G of size n, and suppose that a points $p, p' \in P$ are adjacent to the same m vertices among p_1, \ldots, p_n. Assume $0 < m < n - t$ and $n \geq n_0$. Write $p = v + u$ and $p' = v' + u'$ where $v, v' \in \text{span}\{p_1, \ldots, p_n\}$ and u, u' are both orthogonal to span$\{p_1, \ldots, p_n\}$. Then $\langle v, v' \rangle \geq \alpha + \varepsilon$.

Proof. Since points p_1, \ldots, p_n are linearly independent (by Lemma 3), the condition of the preceding lemma is fulfilled. We have $M^T M = \alpha J + (1 - \alpha) I$. One can verify that its inverse is given by

\[
(1 - \alpha)(M^T M)^{-1} = I - \phi J \quad \text{with} \quad \phi \overset{\text{def}}{=} \frac{\alpha}{1 + (n - 1)\alpha}.
\]

Note that $\phi \leq 1/n$ since $\alpha \leq 1$.

Without loss of generality, p_1, \ldots, p_m are the m vertices that p and p' are adjacent to. This means that $s \overset{\text{def}}{=} M^T v$ and $s' \overset{\text{def}}{=} M^T v'$ are of the form $s = (-\beta_1, \ldots, -\beta_m, \alpha, \ldots, \alpha)$ and $s' = (-\beta'_1, \ldots, -\beta'_m, \alpha, \ldots, \alpha)$ for some $\beta_1, \beta'_1, \ldots, \beta_m, \beta'_m \in [\beta, 1]$. From Lemma 4 and (1) it follows that

\[
(1 - \alpha)\langle v, v' \rangle = \alpha^2(n - m) + \sum \beta_i \beta'_i - \phi(\sum \beta)(\sum \beta'_i).
\]
We claim that, subject to the constraint $\beta_1, \beta_1', \ldots, \beta_m, \beta_m' \in [\beta, 1]$, the right side of (2) is minimized when all the β_i’s and all the β_i'’s are equal to β. Indeed, since $[\beta, 1]^{2m}$ is compact, the minimum is actually attained. Assume that $(\beta_1, \beta_1', \ldots, \beta_m, \beta_m')$ is the vector achieving the minimum, and let j be the index for which β_j' is the largest. Then the derivative of the right side of (2) with respect to β_j' is $\beta_j - \phi \sum \beta_i \geq \beta_j - \frac{1}{n} \sum \beta_i > \beta_j - \frac{1}{m} \sum \beta_i \geq 0$. By the optimality assumption this implies that $\beta_j' = \beta$, and so $\beta_i' = \beta$ for all i. Similarly, $\beta_i = \beta$ for all i.

We thus deduce that

$$(1 - \alpha)\langle v, v' \rangle \geq \alpha^2(n - m) + \beta^2m - \phi ((n - m)\alpha - m\beta)^2.$$

Let $R(m, n)$ denote the right side of preceding inequality. Let $t^* \overset{\text{def}}{=} \frac{(1 - \alpha)(\alpha - \beta)}{\alpha (\alpha + \beta)}$. We have

$$t^* = \frac{(1 - \alpha)(\alpha - \beta)}{\alpha (\alpha + \beta)} < \frac{1 - \alpha}{\alpha + \beta} < \frac{1}{\beta} = t - 1.$$

Thus to prove the lemma, it is enough to show that $R(m, n) \geq (1 - \alpha)\alpha + \varepsilon$ whenever $1 \leq m \leq n - t^* - 1$ and $n \geq n_0$ for suitable n_0 and ε.

The expression $R(m, n)$ is a quadratic polynomial in m. A simple calculation shows that it satisfies $R(m, n) = R(n - t^* - m, n)$, and in particular that the maximum of $R(m, n)$ for a fixed n is at the point $m_{\text{max}} \overset{\text{def}}{=} (n - t^*)/2$, which is inside the interval $[1, n - t^* - 1]$. Furthermore, at the boundary points of the interval we have

$$R(1, n) = R(n - t^* - 1, n) = \alpha(1 - \alpha) + (\alpha + \beta)^2 - \frac{\alpha(1 + \beta)^2}{1 + \alpha(n - 1)}.$$

Let $n_0 = 1 + 8/\beta^2$. Since $\frac{\alpha(1 + \beta)^2}{1 + \alpha(n - 1)} < \frac{4}{n - 1}$, it follows that $R(m, n) \geq R(1, n) > \alpha(1 - \alpha) + \frac{1}{2}(\alpha + \beta)^2$ whenever $1 \leq m \leq n - t^* - 1$ and $n \geq n_0$. In particular $\langle v, v' \rangle > \alpha + \varepsilon$ holds under the same conditions, where $\varepsilon = \frac{1}{2}\beta^2$.

Lemma 6. Suppose p_1, \ldots, p_n is an independent set in G. Suppose $p_1^{(1)}, \ldots, p_m^{(m)} \in P$ are points of the form $p^{(i)} = v^{(i)} + u^{(i)}$ with $v^{(i)} \in \text{span}\{p_1, \ldots, p_n\}$ and $u^{(i)} \perp \text{span}\{p_1, \ldots, p_n\}$ and $\langle v^{(i)}, v^{(j)} \rangle > \alpha + \varepsilon$ for all i, j. Then $m \leq 1/\varepsilon + 1$.

Proof. From $\langle p^{(i)}, p^{(j)} \rangle = \langle v^{(i)}, v^{(j)} \rangle + \langle u^{(i)}, u^{(j)} \rangle$ and $\langle p^{(i)}, p^{(j)} \rangle \in [-1, -\beta] \cup \{\alpha\}$, we deduce that $\langle u^{(i)}, u^{(j)} \rangle < -\varepsilon$. The result then follows from Lemma 2. □

The combinatorial part of the argument is contained in the next result.

Lemma 7. Suppose $\delta > 0$ is given. Then there exists $M(\beta, \delta)$ such that the following holds. Let $U \subset P$ be arbitrary. Suppose I is a maximum-size independent subset of U. Then there is a subset $U' \subset U \setminus I$ of size $|U'| \geq |U| - M|I|$ such that every vertex of U' is adjacent to at least $(1 - \delta)|I|$ vertices of I.

Proof. Let t, ε and n_0 be as in Lemma 5, and put $n = \max(n_0, \lceil 1/\delta \rceil)$. Denote by R the least integer such that every graph on R vertices contains either an independent set of size $n + 1$ or a clique of size at least $1/\beta + 2$ (such an R exists by Ramsey’s theorem). Let

$M = \max(R, (1/\varepsilon + 1)2^n), \quad N = |I|.$
If $|U| < M$, then $|U| - M|I|$ is negative, and the lemma is vacuous. So, assume $|U| \geq M$. In particular, $|U| \geq R$, and since by Lemma 3 the set U contains no clique of size greater $1/\beta + 1$, we conclude that $N \geq n + 1$.

Arrange the elements of I on a circle, and consider all N circular intervals containing n vertices of I. Let S_1, S_2, \ldots, S_N be these intervals, in order.

We declare a vertex $p \in U \setminus I$ to be i-bad if it is adjacent to between 1 and $n - t^*$ vertices of S_i. For a set $T \subset S_i$, we call an i-bad vertex p to be of type T if T is precisely the set of neighbors of p in the set S_i. Let $B_{i,T}$ be the set of all i-bad vertices of type T, and let $B_i = \bigcup_T B_{i,T}$ be the set of all i-bad vertices. By Lemmas 5 and 6 we have $|B_{i,T}| \leq 1/\varepsilon + 1$ for every T, and so $|B_i| \leq (1/\varepsilon + 1)(2^n - 1)$.

Let $B = \bigcup B_i$ be the set of bad vertices. Hence, $|B| \leq N(1/\varepsilon + 1)(2^n - 1)$, and $|B \cup I| \leq MN$.

Consider a vertex $p \in U \setminus I$ that is good, i.e., $p \notin B$. Since I is a maximal independent set, p is adjacent to at least one vertex of I. Say p is adjacent to a vertex of S_i for some i. Since p is good, p must in fact be adjacent to at least $n - t$ vertices of S_i. As S_i shares $n - 1$ vertices with both S_{i-1} and S_{i+1}, we are impelled to conclude that p must be adjacent to some of the vertices of S_{i-1} and of S_{i+1}. Repeating this argument we conclude that p is non-adjacent to at most t elements from among any interval of length n. In particular, p is adjacent to at least $N(1 - t/n)$ vertices of I. As p is an arbitrary good vertex and $t/n \leq \delta$, the lemma follows.

We are now ready to complete the proof of Theorem 1. Indeed, with foresight we set

$$B = [1/\beta + 1],$$
$$\delta = 1/(B + 1)^2.$$

and let M be as in the proceeding lemma. Put $U_0 = P$ and let I_0 be a maximal independent set in U_0. By the preceding lemma, there exists $U_1 \subset U_0 \setminus I_0$ such that every vertex of U_1 is adjacent to $(1 - \delta)|I_0|$ vertices of I_0 and $|U_1| \geq |U_0| - M|I_0|$. In view of Lemma 3, $|U_1| \geq |U_0| - Md$. Let I_1 be a maximal independent set in U_1. Repeating this argument, we obtain a nested sequence of sets $U_0 \supset U_1 \supset \ldots$ and a corresponding sequence of independent sets I_0, I_1, \ldots such that

i. $|U_i| \geq |U_{i-1}| - Md$ for each $i = 1, 2, \ldots$,

ii. For $r < s$, each vertex in I_s is adjacent to at least $(1 - \delta)|I_r|$ vertices of I_r.

We claim that $|P| \leq BMd$, which would be enough to complete the proof of Theorem 1. Indeed, suppose for the sake of contradiction that $|P| > BMd$. Then I_0, \ldots, I_B are non-empty. Pick vertices v_0, \ldots, v_B uniformly at random from I_0, \ldots, I_B respectively. Since, for every $i \neq j$, the pair v_i,v_j is an edge with probability at least $1 - \delta$, it follows that v_0, \ldots, v_B is a clique with probability at least $1 - \binom{B+1}{2}\delta > 0$. In particular, G then contains a clique of size $B + 1 > \beta/2 + 1$, contrary to Lemma 3. The contradiction shows that $|P| \leq BMd$, completing the proof of Theorem 1.
3 Open problems

- I know of only one asymptotic lower bound on N_L. It is a version of [5, Proposition 5.12] that is also implicit in the bound for $N_{1/3}(d)$ in [7]. Denote by I_n the identity matrix of size n, and by J_n the all-one matrix of size n. Then the matrix $M = (r - 1)I_{rt} - (J_r - I_r) \otimes I_t$ is a positive semidefinite matrix of nullity t, it has $(r - 1)$’s on the diagonal, and its off-diagonal entries are 0 and -1. Hence, $\frac{1}{r-1+\tau}(M + \tau J_{rt})$ is a Gram matrix of a $\{-\frac{(r-1-\tau)}{r-1+\tau}, \frac{\tau}{r-1+\tau}\}$-code in $\mathbb{R}^{(r-1)t+1}$ of size rt. So, $N_L(d) \geq \frac{r}{r-1}d + O(1)$ for $L = \{-\frac{1-\tau}{r-1+\tau}, \frac{\tau}{r-1+\tau}\}$. For $\tau = 1/2$, this yields a family of equiangular lines. The results in [7, 8, 5] suggest that this bound is sharp.

Conjecture 8. The number of equiangular lines with a given angle is $N_{1/(2r-1)}(d) = \frac{r}{r-1}d + O(1)$ as d tends to infinity.

In contrast, one can show that the bound implicit in the proof of Theorem 1 is $2^{O(1/\beta^2)}d$.

- Informally, it is natural to think of Theorem 1 as a juxtaposition of two trivial results from Lemma 3: $N_{[-1,-\beta]}(d) = O(1)$ and $N_{\{1\}}(d) = O(d)$. Since $N_{\{\alpha_1, \ldots, \alpha_k\}}(d) = O(d^k)$ for any real numbers $\alpha_1, \ldots, \alpha_k$ (see [2, Proposition 1]) this motivates the following conjecture.

Conjecture 9. Suppose $\alpha_1, \ldots, \alpha_k$ are any k real numbers, and $L = [-1,-\beta] \cup \{\alpha_1, \ldots, \alpha_k\}$. Then $N_L(d) \leq c_{\beta,k}d^k$.

It is conceivable that in this case even $N_L(d) \leq c_{\beta}N_{\{\alpha_1, \ldots, \alpha_k\}}(d)$ might be true.

- I cannot rule out the possibility that for a fixed α the size of any $[-1,0) \cup \{\alpha\}$-code is at most linear in the dimension.

Acknowledgments. I am grateful to James Cummings, Hao Huang and Humberto Naves for inspirational discussions. I am thankful to Joseph Briggs for careful reading, and for finding a mistake in an earlier version of this paper.

References

