


and consider the relaxed functional F : W1*1 (0,1) -> [0, +oo] defined by

. F = sup {G : Wx-1 (0,1) -> [0, +oo] : G < F, G sequentially weakly l.s.c.}.

The main result of this section is the following.

Theorem 4.1. For every u € Wl'l(0,1) withu(O) - 0 wehave

The proof of Theorem 4.1 will be obtained by means of some preliminary lemmas.
Let us defined 0,1) = {u € Wl'l{0,l) : u(0) = 0} and, for every u 6 ^(0,1)

u)= f
Jo

L(u) = hm inf

\+oo otherwise.

Since

(4.2) Um ' u ( j ) =o foreveryu€ W1>p(0,l) withu(O) =0 ,
x—»0* I ^~

we have
G<G+L<FP<F on

Moreover, since G is sequentially weakly W1'1 (0,1)-l.s.c,

(4.3) G<F^<T o

Lemma 4.2. Letu € -4.(0,1) be such that G(u) < +oo. Thenu 6 WlJ>(6,\) forevery
6>0.

Proof. Setting £ = { i 6 ] 0 , l [ : u(i) = <p( i ) } , for every 8 > 0 we get

f | i i?dz= /" |tt'|>»di+ /" |
JS J]S,\[nE J)6M\E

= f |¥5'|pdi+ /* ov

< f \<p'\pdx + G(u) <+oo.
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Therefore « € Wl*( 6,1). •

Lemma 4 J. For cveryu 6.4(0,1) andeverye>0 there exists ue € Wl'°°(0,l) such
thatuc(0) = 0 , u e -> u strongly in W^HO,!), and

(4.4) liminf F( u«)< G( u) + lim inf L J

Proof. Let u € A( 0,1) be such that the right-hand side of (4.4) is finite; then, by Lemma
4.2, u € Wl*(6,1) for every 6 > 0. Let xt -» 0 be such that

( 4 5 )
l

It is known (see for instance Liu [Li] or Marcus & Mizel [MM2] Lemma 1) that for every
e > 0 there exist an open subset Ae of ]x£, 1[ and a Lipschitz function vc (actually ve

can be taken in C1 (R) ) such that

< £, v£ = u on

Moreover, possibly refining the sequences (Ae) and (v£) we may also assume that

f i |t;c(x€) |
P |u(x£)|P

(4.6) / \ve\
pdx<t and ——i 1-1— < e.

Define now
ve( i) if i >

<

We have ut € W 1 > o o ( 0 , 1 ) , u e - • u strongly in Wl ' ' ( 0 , 1 ) , and

F(ut)= [ 'av(x,ut)\u'e\
J>dx+ f av(

Jo JA.

+ f av(x,ue)\u'e\^dx
J)z.M\A<

A ,v;|
JA,

Passing to the limit as e —> 0 + , and recalling (4.5) and (4.6), we obtain (4.4).

Remark 4.4. From Lemma 4.3 we obtain immediately

— lu(x)|p

(4.7) F(u) < G(ti) • liminf J p - for every u €>4(0 , l ) .
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Therefore, by (4.2) and (4.7) we have

J<FP on.A(0,l).

Hence T < F~p which, together with (4.3) gives

T = TP on^(O.l).

Thus, in what follows, we shall use the functional Fp instead of F; this allows us to use
functions instead of Lipschitz functions in the approximations.

Lemma 4.5. Foreveryu € .4(0,1) andeveryt > 0 there exists ue € Wl*{0,l) such
t(O) = 0,ue -*u strongly in Wltl (0,1), and

(4.8) liminf Fp(u£) <G(u) + liminf
£—0* V — S-^)*

Proof. Le tu€ .4 (0 , l )be such that the right-hand side of (4.8) is finite; then by Lemma
4.2 u e W1>T>(6,1) for every 6 > 0. If u i pin]0,6[ for a suitable 6 > 0 , we have

= /
Jo

and sou £Wlj>(0,\). In this case it is enough to take ut = u to satisfy our requirements.
Otherwise, let yt -* 0 be such that u( ye) - <p( yt), and let i e —* 0 be such that

(4.9)

Possibly refining the sequence (xe) we may assume that xe < ye for every £ > 0. Define
now

(u(x) ifx>yt

• i f x < x t .

We have ue € W^iO, l ) ,u e -> u strongly in Wl-l(0,1), and

u«(x)

/ :

Passing to the limit as t —• 0*, and recalling (4.9), we obtain (4.8).

We are now in a position to prove Theorem 4.1.
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Then

Me |(P-D/P -
1
£

which contradicts (4.14) and (4.15).
Let us prove the last inequality in (4.13) by contradiction. Assume

( 4 . 1 7 ) Ita. sup > Urn sup

and let i £ —* 0 be such that

x-0-

From (4.17) and (4.18) it follows that |y>(i£)| < | u ( i t ) | for e small enough. As before,
if <p(0) i 0, since u(0) = 0 andG(u) < +oo, we would obtain u € Wx*(0,l) which
contradicts our assumptions. Then <p( 0) = 0, so that, setting

= max { i € [0 ,

,u) = 1 in ]y£ )x£[. Then, as in the previous part, setting

We = / O^(l ltt)|tt'|pdx,
Jy.

we have we -+ 0 and

fSt, ,1P . r x

that is

This implies

Xe

which contradicts (4.17) and (4.18). •

Remark 4.7. By Proposition 4.6 we may write

lim inf otherwise.

£
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Moreover, when \*p(x)\* I x*~x tends (as x - • 0*) to a limit (finite or not), taking into
account (4.2) and Proposition 4.6 we get

— \u(x)\p

F(u) = G(u) + liminf ' V for every u 6-4(0,1).

5, Further Remarks

We may consider the Lavrentiev phenomenon in a very abstract framework: given a
topological space X, a dense subset Y C X, and a functional F : X —> [0, +oo] define

Tx - sup{G:X — [0,+oo] : Gis l.s.c., G < F on X}

TY = sup {G: X -* [0,+oo] : G is l.s.c, G < F on Y).

It is clear that Tx < Fy, hence the Lavrentiev term L( u) defined for every u e X by

L(u) = f V U ) -Fx(u) (L(u) « 0 if FJC(U) = +oc)

turns out to be nonnegative. In particular, L = Fy — F whenever F is l.s.c
Consider now the case when X = Wl*l(Cl; Rm) , Y = Wl'°°(Cl; Rm) , and

F(u) =

Here Q is a bounded open subset of R n with a Lipschitz boundary, X is endowed with
the weak convergence, and / (x , 5,2) is a nonnegative Borel integrand.

In some situations^ may occur that L(u) « 0 whenever F*(u) < +c», so that
the relaxed functional Fy coincides with Tx • This is the case, for instance, when the
integrand / is of Caratheodory type (in the sense of (2.1)) and satisfies a condition of the
form

/ £ 1 \ f\ ID •

withp> 1,0 <c\ < C2,01,02 € L !(Q) f &€ C(R). Indeed, in this case the following
proposition holds.

Proposition 5.1. The functionalsFy andFx coincide.

Proof. Since FJC < Fy and since F is finite only on W} *( Q; R m ) , in order to conclude
the proof it is enough to show that

(5.2) Ty(u) <F(u) foreveryu€
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Let u € Wl *( Q; R m ) and let (un) be a sequence in Lip[ 0 , 1 ] converging to u strongly
in Wx *( Q; R m ) . Using the lower semicontinuity of Fy and the fact that by the second
inequality of (5.1) F is continuous in the WltP norm (cf. e.g. [ET]), we get

Fy(ti) < lim inf Fy(uh) < lim inf F(xik) = F(u)

that is (5.2). •

Another class of functional for which the Lavrentiev term L( u) vanishes whenever
u) < +00 is given by all integrals of the form (here n = m = 1)

(5.3) F(u)= f{x,u')dx
Jo

where / : Q. x R —> [ 0 , +oc] is a Borel function such that
(5.4) fix,-) is convex and Ls.c. onR fora.c. i g Q ;
(5.5) there existsuo € Lip[0,1] withF(uo) < +oo,
Then F is sequentially weakly Ls.c. and the following proposition holds (see De Arcan-
gelis [De]).

Proposition 5.2. Let / : f l x R —• [0,+oo] 6e a Bore/ function satisfying (5.4) and
(5.5), and let F be given by (5.3). Then we have

Fy(u) =F(u) foreveryueWl*l(0,l).

Proof. By considering the function

we may reduce ourselves to the case uo - 0 in (5.5). Moreover, the assumptions made
on / imply that the functional F is sequentially weakly Ls.c. on Wl>l(0,1). Therefore
we have

Fy(u) > F(u) forevery u 6 W u ( 0 f 1).

In order to prove the opposite inequality, fix u 6 Wl'} ( 0 , 1 ) , and for every h € N and
i g f l define

ti/i(i)«ti(O)+ f (u'(t)
Jo

We have that u/> 6 Lip[0,1] and
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Hence UK-* v strongly in W1*1 (0 ,1 ) , and so, by the convexity of / ( x , •),

Ty(u) < liminf F(UK) *

= lim inf / /(x,u')dx+ / /(x,/i)dx+
h-*+oo lJ{\u'\<h} J{uf>h)

< liminf | J /(x,u')dx+

< / f(x,u) dx + liminf / / ( x , 0 ) d x = / / (x ,u ' )dz ,

where the last equality follows from the fact that / (x ,0 ) has been supposed integrable
and meas({|u/| > h}) —• 0 as h —• +oo. Therefore the proof is completely achieved •

It is known (see Proposition 5.2 and also Clarke & Vinter [CV], Ambrosio, Ascenzi
& Buttazzo [AAB]) that if n = m = 1 then in order to have the Lavrentiev phenomenon
(that is L( u) ^ 0 for some u € X) the integrand / must depend on all its variables x, s, z.
If n > 1 and m = 1, on the contrary, we may have the Lavrentiev phenomenon even for
integrands of the form / ( x , z) (see De Arcangelis [De]), whereas if n > 1 and m > 1
an example in which the Lavrentiev phenomenon occurs has been provided by Bethuel,
Brezis & Coron [BBC] and by Giaquinta, Modica & Soucek [GMS] with

otherwise.

In the case n > 1, m > 1 the Lavrentiev phenomenon may occur even with integrands
of the form / = / ( * ) ; indeed Mliller [Mil] (see also Marcellini [Marl], [Mar2]) showed
that if n= m = 2 ,p 6]4/3,2[ ,and

F(u) = f |det£>u|dx (u (

with the weak Wl * convergence, one has

) forsomeu ( y )

The problem of determining whether for n > 1, m > 1, / = / ( * ) the Lavrentiev
phenomenon can occur in general with Lsx. functional of the form

F(u) = f f(Du)dx
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is, as far as we know, still open (except in the case / (z ) convex, where L = 0 under some
mild assumptions on / or on Q).

In view of the result of Clarke & Vinter [CV] forestalling the presence of a Lavren-
tiev gap in the case of first order autonomous integrands, it seems useful to present the
following example.

Example 5 3 . The autonomous second order two-point Lagrange problem with regular
integrand given by

F(u)= [ [(u'(x)-|u(x)|4/9)lg|ul'(x)|7l + e|ulf(x)|2]dx
Jo

exhibits the Lavrentiev phenomenon on

A= ^ 6 ^ ( 0 , 1 ) : u(0) = u'(0) = 0 , u( l ) = 6 > 0 , u ' ( l ) = o > 0 } .

That is, for t small enough,

inf {F(u) : u G A) < inf {F(u) : u 6 A D ^ 2 ' ° ° ( 0 , 1 ) } .

In fact, it can be shown (sec Mizel [Mi2]) that in this example the critical dense subclass
of A is the subclass consisting of all W2t5(0,1) admissible functions.
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