1991

Interpretation of the Lavrentiev phenomenon by relaxation

Giuseppe Buttazzo
Carnegie Mellon University

Victor J. Mizel

Follow this and additional works at: http://repository.cmu.edu/math
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.
Interpretation of the Lavrentiev Phenomenon by Relaxation

Giuseppe Buttazzo
Istituto di Matematiche Applicate
Via Bonanno, 25/B
56126 PISA (ITALY)

and

Victor J. Mizel
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213

Research Report No. 91-112-NAMS-16

February 1991
Interpretation of the Lavrentiev Phenomenon by Relaxation

Giuseppe Buttazzo
Istituto di Matematiche Applicate
Via Bonanno, 25/B
56126 PISA (ITALY)

Victor J. Mizel
Department of Mathematics
Carnegie Mellon University
PITTSBURGH, PA 15213 (U.S.A.)

Abstract: We consider functionals of the calculus of variations of the form

\[F(u) = \int_0^1 f(x, u, u') \, dx \]

defined for \(u \in W^{1,\infty}(0, 1) \), and we show that the relaxed functional \(\overline{F} \) with respect to weak \(W^{1,1}(0, 1) \) convergence can be written as

\[\overline{F}(u) = \int_0^1 f(x, u, u') \, dx + L(u), \]

where the additional term \(L(u) \), called the Lavrentiev term, is explicitly identified in terms of \(F \).

1. Introduction

The term Lavrentiev phenomenon refers to a surprising result first demonstrated in 1926 by M. Lavrentiev in [La]. There it was shown that it is possible for the variational integral of a two-point Lagrange problem, which is sequentially weakly lower semicontinuous on the admissible class of absolutely continuous functions, to possess an infimum.
on the dense subclass of C^1 admissible functions that is strictly greater than its minimum value on the full admissible class. Since that time there have been additional works devoted to:

(a) simplifying the original example (Mania [Ma], Heinricher & Mizel [HM1]);
(b) demonstrating that the phenomenon can occur even with fully regular integrands (Ball & Mizel [BM1], [BM2], Davie [Da], Loewen [Lo]);
(c) devising conditions which forestall occurrence of the phenomenon (Angell [An], Cesari [Ce], Clarke & Vinter [CV]);
(d) sharpening the specification of the precise dense subclass of admissible functions for which the Lavrentiev gap occurs (Ball & Mizel [BM2], Heinricher & Mizel [HM1]);
(e) presenting an analogous gap phenomenon in stochastic control and in certain (deterministic) Bolza problems (Heinricher & Mizel [HM2], [HM3]).

Ball and Mizel's investigation [BM2] was undertaken in response to certain previously unresolved foundational questions in nonlinear elasticity. There remains open the question of whether in boundary problems of nonlinear elasticity the presence of Lavrentiev's phenomenon signals the onset of elastic fracture: the force distribution associated with an elastic deformation which provides a global minimum for the elastic energy is then more singular than that associated with minimizers over subclasses of smooth admissible deformations.

The Lavrentiev phenomenon also provides a serious obstacle for numerical schemes of minimization: the cost of any sequence in the smoother admissible class is bounded away from the true minimum value. Furthermore, when a minimizer over the smoother admissible class exists, the approximation scheme typically converges to this suboptimal solution. Ball and Knowles [BK] (see also [Kn] and [Zo]) have succeeded in the development of numerical approximation schemes which do detect the lower energy singular minimizers.

As a simple example of a problem in which the Lavrentiev phenomenon arises, consider the functional

$$F(u) = \int_0^1 (u^2(x) - x)^2 |u'(x)|^6 \, dx$$

over the set

$$A = \{ u \in W^{1,1}(0,1) : u(0) = 0, u(1) = s \}.$$

Here (see [Mi1] or [He]) the global minimum over the set A is given by

$$m_1(s) = \begin{cases}
0 & \text{if } |s| \leq 1 \\
\left(\frac{3}{5} \right)^6 \left(s^{10} - \frac{5}{2} s^8 + \frac{5}{3} s^6 - \frac{1}{6} \right) & \text{if } |s| > 1,
\end{cases}$$

while the infimum over the C^1 or Lipschitz functions in A is given by

$$m_{Lip}(s) = \left(\frac{3}{5} \right)^6 \left(s^{10} - \frac{5}{2} s^8 + \frac{5}{3} s^6 \right) \quad \forall s \in \mathbb{R}.$$

The present article revises the above classical view of the phenomenon. Here we adopt the viewpoint that the Lavrentiev gap is actually a relaxation phenomenon assigning
to each admissible function \(u \) a \textit{Lavrentiev term} \(L(u) \geq 0 \) which specifies the magnitude of the gap between the value of the variational functional itself on \(u \) and the smallest sequential lower limit of the values it takes on Lipschitzian admissible functions converging weakly to \(u \). Accordingly, given a sequentially weakly lower semicontinuous (for short "l.s.c.") functional \(G \) defined on the class of all admissible functions, we proceed first to examine the functional \(F \) which coincides with \(G \) on the Lipschitz class but is assigned value \(+\infty\) on all non-Lipschitzian admissible functions. We seek the l.s.c. envelope \(\overline{F} \) of \(F \) (i.e. the maximal sequentially weakly l.s.c. functional dominated by \(F \)) on the full class of absolutely continuous admissible functions. Then \(L(u) \) is the quantity (nonnegative because of the l.s.c. behavior of \(G \)) defined for all admissible functions \(u \) by

\[
\overline{F}(u) = G(u) + L(u).
\]

In Section 2 a characterization of \(L(u) \) is provided in terms of the \textit{value function} \(V \) associated with the Lagrange problem. This description reveals, in particular, that the Lavrentiev term is local in nature; the quantity \(L(u) \) is given as a limiting value of \(V(x, u(x)) \) as \(x \) converges to a critical abscissa for the integrand (Theorem 2.1). This description is then utilized in Section 3 to provide a rather explicit calculation of \(L(u) \) for integrands satisfying a homogeneity condition (whose relevance to the Lavrentiev phenomenon was pointed out in Heinricher & Mizel [HM1]) as well as for the far larger class of integrands which only satisfy the homogeneity condition in an asymptotic sense near the relevant critical abscissa. In particular, the integrand presented by Manià [Ma] is fully analyzed by following this approach. Section 4 is devoted to the analysis of the Lavrentiev phenomenon in the case of an integrand which is discontinuous in its arguments; here the Lavrentiev term \(L(u) \) is again calculated explicitly. Finally, in Section 5 the Lavrentiev phenomenon is considered in a very general framework; examples are presented of conditions under which the Lavrentiev term is identically zero, so that the Lavrentiev phenomenon is forestalled, and an example involving a second order autonomous integrand is described for which the Lavrentiev phenomenon is present, despite the demonstrated absence of the phenomenon in the case of first order autonomous integrands (Clarke & Vinter [CV], Ambrosio, Ascenzi & Buttazzo [AAB]). Moreover, the presentation of certain multidimensional problems permits a clear discussion of the Lavrentiev phenomenon for general integral functionals of the calculus of variations.

2. A General Representation of the Lavrentiev Term

In this section we prove a rather general result on the representation of the relaxed functional associated to an integral of the calculus of variations.

Let \(\Omega \) be the interval \([0, 1] \); we consider the following spaces:

- \(W^{1,1}(0, 1) \) the space of all absolutely continuous functions \(u : \Omega \to \mathbb{R} \);
- \(\text{Lip}(0, 1) \) the space of all Lipschitz continuous functions \(u : \Omega \to \mathbb{R} \);
- \(\text{Lip}_{\text{loc}}(0, 1) \) the space of all functions \(u : \Omega \to \mathbb{R} \) which are Lipschitz continuous on every interval \([\delta, 1]\) with \(\delta > 0 \).
Moreover we set

\[A = \{ u \in W^{1,1}(0, 1) \cap Lip_{loc]} 0, 1 : u(0) = 0 \}. \]

Let \(f : \Omega \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) be a function such that

1. \(f \) is of Carathéodory type (i.e. \(f(x, s, z) \) is measurable in \(x \) and continuous in \((s, z))\);
2. \(f(x, s, \cdot) \) is convex on \(\mathbb{R} \) for every \((x, s) \in \Omega \times \mathbb{R} \);
3. \(f(x, s, 0) = 0 \) for every \((x, s) \in \Omega \times \mathbb{R} \);
4. There exists a function \(\omega : \Omega \times \mathbb{R} \times \mathbb{R} \to [0, +\infty[\) with \(\omega(x, r, t) \) integrable in \(x \) and increasing in \(r \) and \(t \) such that

\[0 \leq f(x, s, z) \leq \omega(x, |s|, |z|) \quad \text{for every} \quad (x, s, z) \in \Omega \times \mathbb{R} \times \mathbb{R}. \]

For every \(u \in A \) we define

\[G(u) = \int_0^1 f(x, u, u') \, dx \]
\[F(u) = \begin{cases} G(u) & \text{if } u \in Lip[0, 1] \\ +\infty & \text{otherwise} \end{cases} \]

and we denote by \(F \) the greatest functional on \(A \) which is sequentially l.s.c. with respect to the weak \(W^{1,1}(0, 1) \) topology and less than or equal to \(F \). Our goal is to give a representation of \(F \) on \(A \). Of course, since \(G \) is sequentially weakly l.s.c. on \(W^{1,1}(0, 1) \) (see for instance Ioffe [Io], or Buttazzo [Bu] Chapter 4), we have

\[F(u) \geq G(u) \quad \text{for every} \quad u \in A. \]

Moreover, by the inequality \(F \leq F \) we get

\[F(u) = G(u) \quad \text{for every} \quad u \in Lip[0, 1]. \]

In order to characterize the functional \(F \) on \(A \) we introduce the value function \(V(x, s) \) defined for every \((x, s) \in \Omega \times \mathbb{R} \) by

\[V(x, s) = \inf \left\{ \int_0^x f(y, u, u') \, dy : u \in Lip[0, x], u(0) = 0, u(x) = s \right\} \]

and its lower semicontinuous envelope \(\overline{V}(x, s) \) with respect to \(s \)

\[\overline{V}(x, s) = \liminf_{t \to s} V(x, t). \]

Finally, for every \(u \in A \) we define the "Lavrentiev term"

\[L(u) = \liminf_{x \to 0} \overline{V}(x, u(x)). \]
The main result of this section is the following.

Theorem 2.1. For every $u \in A$ we have

$$
\overline{F}(u) = G(u) + L(u).
$$

In order to prove Theorem 2.1 we need some preliminary results.

Lemma 2.2. Let $u \in A$ and let $u_h \in \text{Lip}[0,1]$ be such that $u_h(0) = 0$ and $u_h \rightharpoonup u$ weakly in $W^{1,1}(0,1)$. Then

$$
G(u) + L(u) \leq \liminf_{h \to +\infty} F(u_h).
$$

Proof. Fix $\delta > 0$; for every $h \in \mathbb{N}$ we have

$$
F(u_h) = \int_0^1 f(x, u_h, u'_h) \, dx + \int_0^\delta f(x, u_h, u'_h) \, dx \geq \\
\geq \int_\delta^1 f(x, u_h, u'_h) \, dx + V(\delta, u_h(\delta)) \geq \\
\geq \int_\delta^1 f(x, u_h, u'_h) \, dx + \overline{V}(\delta, u_h(\delta)).
$$

Passing to the liminf as $h \to +\infty$ and recalling that the assumptions made on the integrand f provide the weak sequential $W^{1,1}(0,1)$ lower semicontinuity of the functional $\nu \mapsto \int_\delta^1 f(x, \nu, \nu') \, dx$, we get

$$
\liminf_{h \to +\infty} F(u_h) \geq \int_\delta^1 f(x, u, u') \, dx + \liminf_{h \to +\infty} \overline{V}(\delta, u_h(\delta)) \geq \\
\geq \int_\delta^1 f(x, u, u') \, dx + \overline{V}(\delta, u(\delta)),
$$

where the last inequality follows from the fact that $\overline{V}(x, s)$ is l.s.c. with respect to s. Passing now to the liminf as $\delta \to 0$, we obtain

$$
\liminf_{h \to +\infty} F(u_h) \geq \liminf_{\delta \to 0} \int_\delta^1 f(x, u, u') \, dx + \liminf_{\delta \to 0} \overline{V}(\delta, u(\delta)) = \\
= \int_0^1 f(x, u, u') \, dx + L(u) = G(u) + L(u).
$$
Lemma 2.3. The functional $G + L$ is sequentially l.s.c. on A with respect to the weak $W^{1,1}(0,1)$ topology.

Proof. Take $u, u_h \in A$ with $u_h \rightharpoonup u$ weakly in $W^{1,1}(0,1)$; we have to prove that

$$G(u) + L(u) \leq \liminf_{h \to \infty} [G(u_h) + L(u_h)].$$

Without loss of generality, we may assume that the liminf at the right-hand side is a finite limit. Let $x_h \to 0$ be a sequence such that

(2.6) $\overline{V}(x_h, u_h(x_h)) \leq L(u_h) + \frac{1}{h} \quad$ for every $h \in \mathbb{N};$

by the definition of \overline{V} and by the properties of f we may find a sequence $s_h \to 0$ such that for every $h \in \mathbb{N}$

(2.7) $|s_h - u_h(x_h)| \leq \frac{1}{h},$
(2.8) $V(x_h, s_h) \leq \overline{V}(x_h, u_h(x_h)) + \frac{1}{h},$
(2.9) $\int_{x_h}^{1} f(x, u_h + s_h - u_h(x_h), u'_h) \, dx \leq \int_{x_h}^{1} f(x, u_h, u'_h) \, dx + \frac{1}{h}.$

Finally, let $v_h \in Lip[0, x_h]$ be such that

(2.10) $v_h(0) = 0, \quad v_h(x_h) = s_h, \quad \int_{0}^{x_h} f(x, v_h, v'_h) \, dx \leq V(x_h, s_h) + \frac{1}{h}.$

By property (2.3) of f it is easy to see that v_h can be taken monotone; hence, setting

$$w_h = \begin{cases} u_h(x) + s_h - u_h(x_h) & \text{if } x > x_h \\ v_h(x) & \text{if } x \leq x_h \end{cases}$$

we have $w_h \in Lip[0,1], w_h(0) = 0$, and

$$||w_h - u'_h||_{L^1(0,1)} \leq \int_{0}^{x_h} (|v_h| + |u'_h|) \, dx =$$

$$= v_h(x_h) + \int_{0}^{x_h} |u'_h| \, dx = s_h + \int_{0}^{x_h} |u'_h| \, dx.$$

Since $s_h \to 0$ and u'_h are equi-integrable on Ω, we get

$$\lim_{h \to +\infty} ||w_h - u'_h||_{L^1(0,1)} = 0,$$
so that \(w_h \rightarrow u \) weakly in \(W^{1,1}(0, 1) \). Therefore, by using Lemma 2.2 and (2.6)-(2.10), we obtain

\[
G(u) + L(u) \leq \liminf_{h \to +\infty} F(w_h) = \\
= \liminf_{h \to +\infty} \left[\int_{z_h}^{1} f(x, u_h + s_h - u_h(x_h), u_h') \, dx + \int_{0}^{z_h} f(x, v_h, v_h') \, dx \right] \leq \\
\leq \liminf_{h \to +\infty} \left[\int_{z_h}^{1} f(x, u_h, u_h') \, dx + V(x_h, s_h) + \frac{2}{h} \right] \leq \\
\leq \liminf_{h \to +\infty} \left[G(u_h) + L(u_h) + \frac{4}{h} \right] = \liminf_{h \to +\infty} \left[G(u_h) + L(u_h) \right].
\]

Proof of Theorem 2.1. It is easy to see that

\[
L(u) = 0 \quad \text{for every } u \in \mathrm{Lip}[0, 1], \quad u(0) = 0,
\]

so that \(G + L \leq F \) on \(A \). By Lemma 2.3 we have \(G + L \leq \overline{F} \) on \(A \), and so the proof is achieved if we prove that

\[
\overline{F}(u) \leq G(u) + L(u) \quad \text{for every } u \in A.
\]

Let us fix \(u \in A \) and let \(x_h \to 0 \) be such that

\[
(2.11) \quad L(u) = \lim_{h \to +\infty} \overline{V}(x_h, u(x_h)).
\]

By the definition of \(\overline{V} \) and by the properties of \(f \) we may find a sequence \(s_h \to 0 \) such that for every \(h \in \mathbb{N} \)

\[
(2.12) \quad |s_h - u(x_h)| \leq \frac{1}{h},
\]

\[
(2.13) \quad V(x_h, s_h) \leq \overline{V}(x_h, u(x_h)) + \frac{1}{h},
\]

\[
(2.14) \quad \int_{z_h}^{1} f(x, u + s_h - u(x_h), u') \, dx \leq \int_{z_h}^{1} f(x, u, u') \, dx + \frac{1}{h}.
\]

Finally, let \(v_h \in \mathrm{Lip}[0, x_h] \) be such that

\[
(2.15) \quad v_h(0) = 0, \quad v_h(x_h) = s_h, \quad \int_{0}^{z_h} f(x, v_h, v_h') \, dx \leq V(x_h, s_h) + \frac{1}{h}.
\]

As in the proof of Lemma 2.3, setting

\[
w_h(x) = \begin{cases}
 u(x) + s_h - u(x_h) & \text{if } x > x_h \\
v_h(x) & \text{if } x \leq x_h.
\end{cases}
\]
we have \(w_h \in \text{Lip}[0,1], w_h(0) = 0 \), and
\[
\lim_{h \to +\infty} ||w_h' - u'||_{L^1(0,1)} = 0.
\]
Hence \(w_h \to u \) strongly in \(W^{1,1}(0,1) \) and, by using (2.11)–(2.15), we obtain
\[
\overline{F}(u) \leq \liminf_{h \to +\infty} F(w_h) = \\
= \liminf_{h \to +\infty} \left[\int_{x_h}^1 f(x, u + s_h - u(x_h), u') \, dx + \int_0^{x_h} f(x, u_h, u'_h) \, dx \right] \leq \\
\leq \liminf_{h \to +\infty} \left[\int_{x_h}^1 f(x, u, u') \, dx + V(x_h, s_h) + \frac{2}{h} \right] \leq \\
\leq \liminf_{h \to +\infty} \left[G(u) + \overline{V}(x_h, u(x_h)) + \frac{3}{h} \right] = G(u) + L(u). \tag{3.1}
\]

3. Some Particular Cases

In this section we discuss some particular cases in which the expression of the Lavrentiev term \(L(u) \) can be reduced to a simpler form. To begin with, let us consider an integrand \(f \) satisfying conditions (2.1)–(2.4) and the following invariance property (see Heinricher & Mizel [HM1]):

\[(3.1) \text{there exists } \gamma \in]0,1[\text{ such that for every } t > 0 \text{ and } (x,s,z) \in \Omega \times \mathbb{R} \times \mathbb{R}
\]
\[tf(tx, t^\gamma s, t^{\gamma-1} z) = f(x, s, z).\]

In this case the following proposition holds.

Proposition 3.1. For every \(u \in A \)
\[
L(u) = \liminf_{z \to 0} \overline{V} \left(1, \frac{u(x)}{x^{\gamma}} \right).
\]

Proof. Let us fix \((x,s) \in \Omega \times \mathbb{R}\) and \(u \in \text{Lip}[0,x] \) with \(u(0) = 0 \) and \(u(x) = s \). Setting \(y = tx \) and \(v(t) = x^{-\gamma}u(tx) \) we get
\[
\int_0^x f(y, u(y), u'(y)) \, dy = \int_0^1 xf(xt, u(xt), u'(xt)) \, dx = \\
= \int_0^1 xf(xt, x^\gamma v(t), x^{\gamma-1} v'(t)) \, dx = \int_0^1 f(t, v(t), v'(t)) \, dt.
\]
Therefore

\[V(x,s) = \inf \{ F(v) : v \in \text{Lip}[0,1], v(0) = 0, v(1) = sx^{-\gamma} \} = V(1,sx^{-\gamma}) \]

and the conclusion follows from formula (2.5) for the Lavrentiev term. \[\square \]

Example 3.2. Let \(p > 1, \alpha \in [0,1[, \) and let

\[f(x,s,z) = |s - x^\alpha||z|^p. \]

It is easy to see that, if \(\alpha = (p - 1)/(p + 1), \) then \(f \) satisfies all conditions (2.1)–(2.4) and the invariance condition (3.1) with \(\gamma = \alpha. \) By Heinricher & Mizel [HM1], for every \(s \in \mathbb{R} \) we have

\[\inf \{ F(v) : v \in \text{Lip}[0,1], v(0) = 0, v(1) = s \} = G(u_s) \]

where \(u_s \) is the function

\[u_s(x) = sx^\beta \quad \left(\beta = \frac{p}{p + 1} \right). \]

Therefore, an easy calculation gives

\[V(1,s) = \begin{cases} \beta s^{p-1} s^p (1 - \beta s) & \text{if } s \leq 1 \\ \beta s^{p-1} [2(1 - \beta) - s^p (1 - \beta s)] & \text{if } s > 1. \end{cases} \]

Note that in this case, if \(u(x) = x^\alpha, \) we have \(G(u) = 0 \) whereas

\[L(u) = V(1,1) = \beta s^{p-1} (1 - \beta). \]

We consider now a larger class of integrands which only satisfy the homogeneity condition in an asymptotic sense near the relevant singular abscissa. Let \(p > 1, \) let \(\alpha \in [1,p[[, \) and suppose the integrand \(f : \Omega \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) has the form

\[f(x,s,z) = x^{\alpha - 1} a(x,s)|z|^p \]

where \(a(x,s) \) is a nonnegative continuous function such that, setting \(\gamma = (p - \alpha)/p, \) for every \(y \in \Omega \) the functions \(m_y, M_y : \mathbb{R} \to [0, +\infty] \) defined by

\[\begin{align*}
 m_y(s) &= \inf \{ a(x,x^\gamma s) : x \leq y \} \\
 M_y(s) &= \sup \{ a(x,x^\gamma s) : x \leq y \}
\end{align*} \]

are locally bounded.
For every $x, y \in \Omega$ with $x \leq y$ we consider the functionals

\[F_x(u) = \int_0^x f(t, u, u') \, dt \]
\[F_{xy}(u) = \int_0^x t^{\alpha-1} m_y(t^{-\gamma} u) |u'|^p \, dt \]
\[F_{xy}^*(u) = \int_0^x t^{\alpha-1} M_y(t^{-\gamma} u) |u'|^p \, dt \]

and the respective value functions

\[
V(x, s) = \inf \{ F_x(u) : u \in \mathcal{A}(x, s) \}
\]
\[
V_{xy}(x, y, s) = \inf \{ F_{xy}(u) : u \in \mathcal{A}(x, s) \}
\]
\[
V^*(x, y, s) = \inf \{ F_{xy}^*(u) : u \in \mathcal{A}(x, s) \}
\]

where $\mathcal{A}(x, s)$ is the set

\[
\mathcal{A}(x, s) = \{ u \in \text{Lip}[0, x] : u(0) = 0, u(x) = s \}.
\]

It is immediately seen that for every $s \in \mathbb{R}$ and every $x, y \in \Omega$ with $x \leq y$

\[(3.2) \quad V_{xy}(x, y, s) \leq V(x, s) \leq V^*(x, y, s).\]

Hereafter we shall suppress the parameter y in expressions such as $V_{xy}(x, y, s)$ and $V^*(x, y, s)$ when no confusion can arise.

We now proceed to evaluate the functions V_* and V^* by using a verification argument based on the study of variational problems of the form

\[(3.3) \quad \inf \left\{ \int_0^x t^{\alpha-1} m(t^{-\gamma} u) |u'|^p \, dt \right\}\]

where $m : \mathbb{R} \to \mathbb{R}$ is a locally bounded Borel function. If $I(u)$ denotes the integral in (3.3) and $W(x, s)$ is its value function, we will show that

\[W(x, s) = \inf \{ I(u) : u \in \mathcal{A}(x, s) \} = I(u_0) \]

where $u_0(t) = (t/x)^{p\gamma/(p-1)} s$. Indeed, setting for simplicity $k = p\gamma/(p - 1)$, the following proposition holds.

Proposition 3.3. The function

\[h(S) = pk^{p-1} \left| \int_0^S m(\xi) |\xi|^{p-2} \, d\xi \right| \]
is the solution of the Hamilton-Jacobi equation

\[(3.4) \quad \begin{cases} \gamma S h'(S) = \sup \{ Q h'(S) - m(S) |Q|^p : Q \in \mathbb{R} \} \\ h(0) = 0 \end{cases} \]

and for every \((x, s) \in \Omega \times \mathbb{R}\)

\[W(x, s) = h(x^{-\gamma}s) = I(u_0). \]

Proof. By explicitly carrying out the maximization, the Hamilton-Jacobi equation (3.4) becomes

\[\begin{cases} h'(S) = p k^{p-1} m(S) |S|^{p-2} S \\ h(0) = 0 \end{cases} \]

that is

\[h(S) = p k^{p-1} \left| \int_0^S m(\xi) |\xi|^{p-1} d\xi \right|. \]

Now let \(u \in A(x, s)\); from (3.4), taking \(S(t) = t^{-\gamma}u(t)\) and \(Q(t) = t^{1-\gamma}u'(t)\), we have

\[t^{-1} m(S(t)) |Q(t)|^p \geq t^{-1} h'(S(t)) (Q(t) - \gamma S(t)) = h'(S(t)) S'(t) = (h \circ S)'(t) \]

where the last equality follows from the chain rule for composition with Lipschitz functions (see for instance Marcus & Mizel [MM1]). Integrating on \([0, x]\) yields

\[(3.5) \quad I(u) \geq \int_0^x (h \circ S)'(t) dt = h(S(x)) - \lim_{t \to 0} h(S(t)) = h(x^{-\gamma}s) \]

where we have used the fact that \(u \in Lip[0, x]\) implies that

\[\lim_{t \to 0} t^{-\gamma}u(t) = 0. \]

Taking the infimum on \(u\) in (3.5) we obtain

\[W(x, s) \geq h(x^{-\gamma}s). \]

On the other hand, the functions

\[u_\varepsilon(t) = \begin{cases} (t/x)^k s & \text{if } t \geq \varepsilon \\ t \varepsilon^{k-1}/x^k & \text{if } t < \varepsilon \end{cases} \]

belong to \(A(x, s)\), so that for \(\varepsilon\) small enough

\[W(x, s) \leq I(u_\varepsilon) = \int_0^\varepsilon t^{\alpha-1} m(t^{-\gamma}u_\varepsilon') |u_\varepsilon'|^p dt + \int_\varepsilon^x t^{\alpha-1} m(t^{-\gamma}u_0') |u_0'|^p dt. \]
Passing to the limit as $\varepsilon \to 0$ it is easily seen that the first integral goes to 0, hence

$$W(x, s) \leq I(u_0).$$

An easy calculation shows that $I(u_0) = h(x^{-\gamma}s)$, and this achieves the proof. □

We can now evaluate the functions V_* and V^*. From Proposition 3.3 we get

$$V_*(x, s) = h_*(x^{-\gamma}s) \quad V^*(x, s) = h^*(x^{-\gamma}s)$$

where

$$h_*(S) = p k^{p-1} \left| \int_0^S m_0(\xi) |\xi|^{p-1} d\xi \right| \quad h^*(S) = p k^{p-1} \left| \int_0^S M_0(\xi) |\xi|^{p-1} d\xi \right|.$$

Therefore, from inequalities (3.2), since the functions h_* and h^* are continuous,

$$(3.6) \quad h_*(x^{-\gamma}s) \leq V(x, s) \leq h^*(x^{-\gamma}s).$$

Recalling Theorem 2.1, formula (3.6) yields for every $u \in A$

$$(3.7) \quad \liminf_{x \to 0^*} h_*(x^{-\gamma}u(x)) \leq L(u) \leq \liminf_{x \to 0^*} h^*(x^{-\gamma}u(x)).$$

Finally, taking in (3.7) the limit as $y \to 0$, and applying the monotone convergence theorem, we obtain the following result.

Theorem 3.4. Under the assumptions above on $f(x, s, z)$, for every $u \in A$ we have

$$pk^{p-1} \liminf_{x \to 0^*} \left| \int_0^{x^{-\gamma}u(x)} m_0(\xi) |\xi|^{p-1} d\xi \right| \leq L(u) \leq$$

$$\leq pk^{p-1} \liminf_{x \to 0^*} \left| \int_0^{x^{-\gamma}u(x)} M_0(\xi) |\xi|^{p-1} d\xi \right|$$

where the functions m_0, M_0 are given by

$$m_0(s) = \sup \{ m_\nu(s) : \nu > 0 \} = \lim_{\nu \to 0^*} m_\nu(s)$$

$$M_0(s) = \inf \{ M_\nu(s) : \nu > 0 \} = \lim_{\nu \to 0^*} M_\nu(s).$$

Remark 3.5. The same sort of analysis can be carried out whenever

$$f(x, s, z) = x^{-\gamma} a(x, s) \varphi(x^{1-\gamma}z).$$
where \(\varphi \) is a nonnegative superlinear convex function satisfying \(\varphi(0) = 0 \). In the case considered here \(\varphi(z) = |z|^p \).

Example 3.6. Consider the functional studied by Mania (see for instance Mania [Ma], Cesari [Ce])

\[
F(u) = \int_0^1 (u^3 - x)^2 |u'|^p \, dx \quad (p > 3).
\]

The integrand \(f \) has the form

\[
f(x, s, z) = (s^3 - x)^2 |z|^p = z^2 (s^3 x^{-1} - 1)^2 |z|^p
\]

so that \(\alpha = 3, \gamma = (p - 3)/p, \) and \(\alpha(x, s) = (s^3 x^{-1} - 1)^2 \).

When \(p > 9/2 \), which corresponds to \(\gamma > 1/3 \), one finds easily

\[
m_0(s) = M_0(s) = 1 \quad \text{for every } s \in \mathbb{R}.
\]

Therefore, from Theorem 3.4

\[
L(u) = \left(\frac{p - 3}{p - 1} \right)^{p-1} \liminf_{x \to 0^+} \frac{|u(x)|^p}{x^{p-3}}.
\]

In particular, \(L(u) = +\infty \) if \(u(x) = x^{1/3} \).

When \(p = 9/2 \), which corresponds to \(\gamma = 1/3 \), one has

\[
m_0(s) = M_0(s) = (s^3 - 1)^2 \quad \text{for every } s \in \mathbb{R}
\]

whence

\[
L(u) = \frac{1}{35} \left(\frac{3}{7} \right)^{7/2} \liminf_{x \to 0^+} H(Z(x))
\]

with \(Z(x) = u^3(x)/x \) and \(H(Z) = |Z|^{3/2} (15 Z^2 - 42 Z + 35) \). In particular, if \(u(x) = x^{1/3} \)

\[
L(u) = \frac{8}{35} \left(\frac{3}{7} \right)^{7/2}.
\]

When \(p \in]3, 9/2[\), which corresponds to \(\gamma < 1/3 \), Theorem 3.4 does not apply because the functions \(m_y \) and \(M_y \) are not locally bounded. However, it is possible to show that in this case the Lavrentiev phenomenon does not occur, that is

\[
L(u) = 0 \quad \text{whenever } \quad \int_0^1 f(x, u, u') \, dx < +\infty.
\]

Indeed, if \(u \in \mathcal{A} \) and

\[
\lim_{\varepsilon \to 0} \frac{|u(x_\varepsilon)|^{p+6}}{x_\varepsilon^{p+1}} = 0
\]

13
for a suitable sequence \(x_\varepsilon \to 0 \), taking
\[
u_\varepsilon(x) = \begin{cases} u(x) & \text{if } x \geq x_\varepsilon \\ xu(x_\varepsilon)/x_\varepsilon & \text{if } x < x_\varepsilon \end{cases}
\]
we get
\[
L(u) \leq \liminf_{\varepsilon \to 0} \int_0^{x_\varepsilon} \left(\frac{x_\varepsilon^3 u_\varepsilon(x_\varepsilon)}{x_\varepsilon^2} - x \right) \frac{|u(x_\varepsilon)|^p}{x_\varepsilon} \, dx = \\
= \lim_{\varepsilon \to 0} \left[\frac{|u(x_\varepsilon)|^{p+6}}{7x_\varepsilon^{p-1}} + \frac{|u(x_\varepsilon)|^p}{3x_\varepsilon^{p-3}} - \frac{2|u(x_\varepsilon)|^{p+3}}{5x_\varepsilon^{p-2}} \right] = 0.
\]
On the contrary, if there exists \(c > 0 \) such that
\[
(3.8) \quad |u(x)| \geq cx^{(p-1)/(p+6)}
\]
for all \(x \) small enough, we have
\[
\int_0^\varepsilon f(x, u, u') \, dx \geq \frac{1}{2} \int_0^\varepsilon c^6 x^{6(p-1)/(p+6)} |u'|^p \, dx \geq \\
\geq \frac{c^6}{2} \varepsilon y_\varepsilon^{6(p-1)/(p+6)} |u'(y_\varepsilon)|^p \geq \\
\geq \frac{c^6}{4} \varepsilon y_\varepsilon^{6(p-1)/(p+6)} \frac{|u(x_\varepsilon)|}{x_\varepsilon}
\]
for suitable \(0 < x_\varepsilon < y_\varepsilon < \varepsilon \). Therefore,
\[
\int_0^\varepsilon f(x, u, u') \, dx \geq \frac{c^6}{4} \frac{|u(x_\varepsilon)|}{x_\varepsilon^{(p-1)/(p+6)}}^p
\]
which is in contradiction with (3.8) if \(f(x, u, u') \in L^1(\Omega) \).

4. An Example with a Discontinuous Integrand

Let us fix a real number \(p > 1 \) and a function \(\varphi \in W^{1,1}(0,1) \) such that \(\varphi(0) = 0 \) and \(\varphi \in W^{1,p}(\delta,1) \) for every \(\delta > 0 \). Define the mappings \(a_\varphi :]0,1[\times \mathbb{R} \to \mathbb{R} \) and \(F : W^{1,1}(0,1) \to [0, +\infty) \) by
\[
a_\varphi(x, s) = \begin{cases} 0 & \text{if } s = \varphi(x) \\ 1 & \text{if } s \neq \varphi(x) \end{cases}
\]
\[
F(u) = \begin{cases} \int_0^1 a_\varphi(x, u)|u'|^p \, dx & \text{if } u \in W^{1,\infty}(0,1), \ u(0) = 0 \\ +\infty & \text{otherwise,} \end{cases}
\]

14
and consider the relaxed functional $\overline{F} : W^{1,1}(0,1) \to [0, +\infty]$ defined by

$$\overline{F} = \sup \{ G : W^{1,1}(0,1) \to [0, +\infty] : G \leq F, \ G \ \text{sequentially weakly l.s.c.} \}.$$

The main result of this section is the following.

Theorem 4.1. For every $u \in W^{1,1}(0,1)$ with $u(0) = 0$ we have

$$\overline{F}(u) = \int_{0}^{1} a_\varphi(x, u)|u'|^p \, dx + \liminf_{x \to 0^+} \frac{|u(x)|^p \land |\varphi(x)|^p}{x^{p-1}}.$$

The proof of Theorem 4.1 will be obtained by means of some preliminary lemmas. Let us define $\mathcal{A}(0,1) = \{ u \in W^{1,1}(0,1) : u(0) = 0 \}$ and, for every $u \in \mathcal{A}(0,1)$

$$G(u) = \int_{0}^{1} a_\varphi(x, u)|u'|^p \, dx.$$

$$L(u) = \liminf_{x \to 0^+} \frac{|u(x)|^p \land |\varphi(x)|^p}{x^{p-1}}.$$

$$F_p(u) = \begin{cases} G(u) & \text{if } u \in W^{1,p}(0,1) \\ +\infty & \text{otherwise.} \end{cases}$$

Since

$$\lim_{x \to 0^+} \frac{|u(x)|^p}{x^{p-1}} = 0 \quad \text{for every } u \in W^{1,p}(0,1) \text{ with } u(0) = 0,$$

we have

$$G \leq G + L \leq F_p \leq F \quad \text{on } \mathcal{A}(0,1).$$

Moreover, since G is sequentially weakly $W^{1,1}(0,1)$-l.s.c.,

$$G \leq \overline{F}_p \leq \overline{F} \quad \text{on } \mathcal{A}(0,1).$$

Lemma 4.2. Let $u \in \mathcal{A}(0,1)$ be such that $G(u) < +\infty$. Then $u \in W^{1,p}(\delta,1)$ for every $\delta > 0$.

Proof. Setting $E = \{ x \in [0,1] : u(x) = \varphi(x) \}$, for every $\delta > 0$ we get

$$\int_{\delta}^{1} |u'|^p \, dx = \int_{\delta,1 \cap E} |u'|^p \, dx + \int_{\delta,1 \setminus E} |u'|^p \, dx =$$

$$= \int_{\delta,1 \cap E} |\varphi'|^p \, dx + \int_{\delta,1 \setminus E} a_\varphi(x, u)|u'|^p \, dx \leq$$

$$\leq \int_{\delta}^{1} |\varphi'|^p \, dx + G(u) < +\infty.$$
Therefore $u \in W^{1,p}(\delta, 1)$. ■

Lemma 4.3. For every $u \in \mathcal{A}(0,1)$ and every $\varepsilon > 0$ there exists $u_\varepsilon \in W^{1,\infty}(0,1)$ such that $u_\varepsilon(0) = 0$, $u_\varepsilon \to u$ strongly in $W^{1,1}(0,1)$, and

$$
\liminf_{\varepsilon \to 0^+} F(u_\varepsilon) \leq G(u) + \liminf_{x \to 0^+} \frac{|u(x)|^p}{x^{p-1}}. \tag{4.4}
$$

Proof. Let $u \in \mathcal{A}(0,1)$ be such that the right-hand side of (4.4) is finite; then, by Lemma 4.2, $u \in W^{1,p}(\delta, 1)$ for every $\delta > 0$. Let $x_\varepsilon \to 0$ be such that

$$
\lim_{\varepsilon \to 0^+} \frac{|u(x_\varepsilon)|^p}{x_\varepsilon^{p-1}} = \liminf_{x \to 0^+} \frac{|u(x)|^p}{x^{p-1}}. \tag{4.5}
$$

It is known (see for instance Liu [Li] or Marcus & Mizel [MM2] Lemma 1) that for every $\varepsilon > 0$ there exist an open subset A_ε of $]x_\varepsilon, 1[$ and a Lipschitz function v_ε (actually v_ε can be taken in $C^1(\mathbb{R})$) such that

$$
\text{meas}(A_\varepsilon) \leq \varepsilon, \quad v_\varepsilon = u \text{ on }]x_\varepsilon, 1[\setminus A_\varepsilon, \quad ||v_\varepsilon - u||_{W^{1,p}(x_\varepsilon, 1)} \leq \varepsilon.
$$

Moreover, possibly refining the sequences (A_ε) and (v_ε) we may also assume that

$$
\int_{A_\varepsilon} |v_\varepsilon'|^p dx \leq \varepsilon \quad \text{and} \quad \left| \frac{|v_\varepsilon(x_\varepsilon)|^p}{x_\varepsilon^{p-1}} - \frac{|u(x_\varepsilon)|^p}{x_\varepsilon^{p-1}} \right| \leq \varepsilon. \tag{4.6}
$$

Define now

$$
u_\varepsilon(x) = \begin{cases} v_\varepsilon(x) & \text{if } x > x_\varepsilon \\ \frac{v_\varepsilon(x_\varepsilon)}{x_\varepsilon} x & \text{if } x \leq x_\varepsilon. \end{cases}
$$

We have $u_\varepsilon \in W^{1,\infty}(0,1)$, $u_\varepsilon \to u$ strongly in $W^{1,1}(0,1)$, and

$$
F(u_\varepsilon) = \int_0^{x_\varepsilon} a(x_\varepsilon) |u_\varepsilon'|^p dx + \int_{A_\varepsilon} a(x, u_\varepsilon) |u_\varepsilon|^p dx +
\cdot \int_{]x_\varepsilon, 1[\setminus A_\varepsilon} a(x, u_\varepsilon) |u_\varepsilon'|^p dx \leq
\cdot \frac{|v_\varepsilon(x_\varepsilon)|^p}{x_\varepsilon^{p-1}} + \int_{A_\varepsilon} |v_\varepsilon'|^p dx + \int_{x_\varepsilon}^1 a(x, u) |u'|^p dx.
$$

Passing to the limit as $\varepsilon \to 0^+$, and recalling (4.5) and (4.6), we obtain (4.4). ■

Remark 4.4. From Lemma 4.3 we obtain immediately

$$
\overline{F}(u) \leq G(u) + \liminf_{x \to 0^+} \frac{|u(x)|^p}{x^{p-1}} \quad \text{for every } u \in \mathcal{A}(0,1). \tag{4.7}
$$
Therefore, by (4.2) and (4.7) we have

\[\overline{F} \leq F_p \quad \text{on } A(0,1). \]

Hence \(\overline{F} \leq
F_p \) which, together with (4.3) gives

\[\overline{F} = F_p \quad \text{on } A(0,1). \]

Thus, in what follows, we shall use the functional \(F_p \) instead of \(F \); this allows us to use \(W^{1,p} \) functions instead of Lipschitz functions in the approximations.

Lemma 4.5. For every \(u \in A(0,1) \) and every \(\varepsilon > 0 \) there exists \(u_\varepsilon \in W^{1,p}(0,1) \) such that \(u_\varepsilon(0) = 0, \) \(u_\varepsilon \to u \) strongly in \(W^{1,1}(0,1), \) and

\[\lim \inf_{\varepsilon \to 0^+} F_p(u_\varepsilon) \leq G(u) + \lim \inf_{\varepsilon \to 0^+} \frac{|\varphi(x)|^p}{x^{p-1}}. \]

Proof. Let \(u \in A(0,1) \) be such that the right-hand side of (4.8) is finite; then by Lemma 4.2 \(u \in W^{1,p}(\delta,1) \) for every \(\delta > 0. \) If \(u \neq \varphi \) in \(]0, \delta[\) for a suitable \(\delta > 0, \) we have

\[\int_0^\delta |u'|^p \, dx = \int_0^\delta a_{\varphi}(x,u)|u'|^p \, dx < +\infty, \]

and so \(u \in W^{1,p}(0,1). \) In this case it is enough to take \(u_\varepsilon = u \) to satisfy our requirements. Otherwise, let \(y_\varepsilon \to 0 \) be such that \(u(y_\varepsilon) = \varphi(y_\varepsilon), \) and let \(x_\varepsilon \to 0 \) be such that

\[\lim \varepsilon \to 0^+ \frac{|\varphi(x_\varepsilon)|^p}{x_\varepsilon^{p-1}} = \lim \inf_{\varepsilon \to 0^+} \frac{|\varphi(x)|^p}{x^{p-1}}. \]

Possibly refining the sequence \((x_\varepsilon) \) we may assume that \(x_\varepsilon < y_\varepsilon \) for every \(\varepsilon > 0. \) Define now

\[u_\varepsilon(x) = \begin{cases} u(x) & \text{if } x > y_\varepsilon \\ \varphi(x) & \text{if } x_\varepsilon \leq x \leq y_\varepsilon \\ \frac{\varphi(x_\varepsilon)}{x} & \text{if } x < x_\varepsilon. \end{cases} \]

We have \(u_\varepsilon \in W^{1,p}(0,1), u_\varepsilon \to u \) strongly in \(W^{1,1}(0,1), \) and

\[F_p(u_\varepsilon) \leq \int_0^{x_\varepsilon} |u'|^p \, dx + \int_{y_\varepsilon}^1 a_{\varphi}(x,u)|u'|^p \, dx \leq \frac{|\varphi(x_\varepsilon)|^p}{x_\varepsilon^{p-1}} + G(u). \]

Passing to the limit as \(\varepsilon \to 0^+, \) and recalling (4.9), we obtain (4.8).

We are now in a position to prove Theorem 4.1.

17
Then
\[\frac{|\varphi(y_\varepsilon)|}{y_\varepsilon^{(p-1)/p}} = \frac{|u(y_\varepsilon)|}{y_\varepsilon^{(p-1)/p}} \leq \frac{|u(x_\varepsilon)|}{x_\varepsilon^{(p-1)/p}} + \varepsilon^{1/p} \leq \frac{|u(x_\varepsilon)|}{x_\varepsilon^{(p-1)/p}} + \omega_\varepsilon^{1/p} \]
which contradicts (4.14) and (4.15).

Let us prove the last inequality in (4.13) by contradiction. Assume

\begin{equation}
(4.17)
\limsup_{x \to 0^*} \frac{|u(x)|^p}{x^{p-1}} > \limsup_{x \to 0^*} \frac{|\varphi(x)|^p}{x^{p-1}}
\end{equation}

and let \(x_\varepsilon \to 0 \) be such that

\begin{equation}
(4.18)
\lim_{\varepsilon \to 0^*} \frac{|u(x_\varepsilon)|^p}{x_\varepsilon^{p-1}} = \limsup_{\varepsilon \to 0^*} \frac{|u(x)|^p}{x^{p-1}}.
\end{equation}

From (4.17) and (4.18) it follows that \(|\varphi(x_\varepsilon)| < |u(x_\varepsilon)| \) for \(\varepsilon \) small enough. As before, if \(\varphi(0) \neq 0 \), since \(u(0) = 0 \) and \(G(u) < +\infty \), we would obtain \(u \in W^{1,p}(0,1) \) which contradicts our assumptions. Then \(\varphi(0) = 0 \), so that, setting

\[y_\varepsilon = \max \{ x \in [0, x_\varepsilon] : u(x) = \varphi(x) \} \]

\[a_\varphi(x, u) = 1 \text{ in } y_\varepsilon, x_\varepsilon \]. Then, as in the previous part, setting

\[\omega_\varepsilon = \int_{y_\varepsilon}^{x_\varepsilon} a_\varphi(x, u)|u'|^p \, dx, \]
we have \(\omega_\varepsilon \to 0 \) and

\[(x_\varepsilon - y_\varepsilon) \left| \frac{u(x_\varepsilon) - u(y_\varepsilon)}{x_\varepsilon - y_\varepsilon} \right|^p \leq \int_{y_\varepsilon}^{x_\varepsilon} |u'|^p \, dx = \int_{y_\varepsilon}^{x_\varepsilon} a_\varphi(x, u)|u'|^p \, dx = \omega_\varepsilon, \]
that is

\[u(x_\varepsilon) \leq u(y_\varepsilon) + \omega_\varepsilon^{1/p} |x_\varepsilon - y_\varepsilon|^{(p-1)/p}. \]

This implies

\[\frac{|u(x_\varepsilon)|}{x_\varepsilon^{(p-1)/p}} \leq \frac{|u(y_\varepsilon)|}{y_\varepsilon^{(p-1)/p}} + \omega_\varepsilon^{1/p} \leq \frac{|\varphi(y_\varepsilon)|}{y_\varepsilon^{(p-1)/p}} + \omega_\varepsilon^{1/p} \]
which contradicts (4.17) and (4.18). \(\blacksquare \)

Remark 4.7. By Proposition 4.6 we may write

\[F(u) = \begin{cases} G(u) & \text{if } u \in W^{1,p}(0,1) \\ G(u) + \liminf_{x \to 0^*} \frac{|\varphi(x)|^p}{x^{p-1}} & \text{otherwise.} \end{cases} \]
Moreover, when $|\varphi(x)|^p/x^{p-1}$ tends (as $x \to 0^+$) to a limit (finite or not), taking into account (4.2) and Proposition 4.6 we get

$$\overline{F}(u) = G(u) + \liminf_{x\to 0^+ x \to 0} \frac{|u(x)|^p}{x^{p-1}} \quad \text{for every } u \in A(0,1).$$

5. Further Remarks

We may consider the Lavrentiev phenomenon in a very abstract framework: given a topological space X, a dense subset $Y \subset X$, and a functional $F : X \to [0, +\infty]$ define

$$\overline{F}_X = \sup \{ G : X \to [0, +\infty] : G \text{ is l.s.c., } G \leq F \text{ on } X \}$$
$$\overline{F}_Y = \sup \{ G : X \to [0, +\infty] : G \text{ is l.s.c., } G \leq F \text{ on } Y \}.$$

It is clear that $\overline{F}_X \leq \overline{F}_Y$, hence the Lavrentiev term $L(u)$ defined for every $u \in X$ by

$$L(u) = \overline{F}_Y(u) - \overline{F}_X(u) \quad (L(u) = 0 \text{ if } \overline{F}_X(u) = +\infty)$$

turns out to be nonnegative. In particular, $L = \overline{F}_Y - F$ whenever F is l.s.c.

Consider now the case when $X = W^{1,1}(\Omega; \mathbb{R}^m)$, $Y = W^{1,\infty}(\Omega; \mathbb{R}^m)$, and

$$F(u) = \int_{\Omega} f(x, u, Du) \, dx \quad (u \in X).$$

Here Ω is a bounded open subset of \mathbb{R}^n with a Lipschitz boundary, X is endowed with the weak convergence, and $f(x, s, z)$ is a nonnegative Borel integrand.

In some situations, it may occur that $L(u) = 0$ whenever $\overline{F}_X(u) < +\infty$, so that the relaxed functional \overline{F}_Y coincides with \overline{F}_X. This is the case, for instance, when the integrand f is of Carathéodory type (in the sense of (2.1)) and satisfies a condition of the form

$$c_1(|z|^p + a_1(x)) \leq f(x, s, z) \leq c_2(|z|^p + b(s) + a_2(x))$$

with $p > 1$, $0 < c_1 \leq c_2$, $a_1, a_2 \in L^1(\Omega)$, $b \in C(\mathbb{R})$. Indeed, in this case the following proposition holds.

Proposition 5.1. The functionals \overline{F}_Y and \overline{F}_X coincide.

Proof. Since $\overline{F}_X \leq \overline{F}_Y$ and since F is finite only on $W^{1,p}(\Omega; \mathbb{R}^m)$, in order to conclude the proof it is enough to show that

$$\overline{F}_Y(u) \leq F(u) \quad \text{for every } u \in W^{1,p}(\Omega; \mathbb{R}^m).$$
Let \(u \in W^{1,p}(\Omega; \mathbb{R}^m) \) and let \((u_h) \) be a sequence in \(\text{Lip}[0,1] \) converging to \(u \) strongly in \(W^{1,p}(\Omega; \mathbb{R}^m) \). Using the lower semicontinuity of \(F_Y \) and the fact that by the second inequality of (5.1) \(F \) is continuous in the \(W^{1,p} \) norm (cf. e.g. [ET]), we get

\[
F_Y(u) \leq \liminf_{h \to \infty} F_Y(u_h) \leq \liminf_{h \to \infty} F(u_h) = F(u)
\]

that is (5.2). □

Another class of functionals for which the Lavrentiev term \(L(u) \) vanishes whenever \(F(u) < +\infty \) is given by all integrals of the form (here \(n = m = 1 \))

\[
F(u) = \int_0^1 f(x,u') \, dx \quad (u \in W^{1,1}(0,1))
\]

where \(f : \Omega \times \mathbb{R} \to [0, +\infty] \) is a Borel function such that

- (5.4) \(f(x, \cdot) \) is convex and l.s.c. on \(\mathbb{R} \) for a.e. \(x \in \Omega \);
- (5.5) there exists \(u_0 \in \text{Lip}[0,1] \) with \(F(u_0) < +\infty \).

Then \(F \) is sequentially weakly l.s.c. and the following proposition holds (see De Arcangelis [De]).

Proposition 5.2. Let \(f : \Omega \times \mathbb{R} \to [0, +\infty] \) be a Borel function satisfying (5.4) and (5.5), and let \(F \) be given by (5.3). Then we have

\[
F_Y(u) = F(u) \quad \text{for every } u \in W^{1,1}(0,1).
\]

Proof. By considering the function

\[
g(x,z) = f(x,z + u_0'(x))
\]

we may reduce ourselves to the case \(u_0 = 0 \) in (5.5). Moreover, the assumptions made on \(f \) imply that the functional \(F \) is sequentially weakly l.s.c. on \(W^{1,1}(0,1) \). Therefore we have

\[
F_Y(u) \geq F(u) \quad \text{for every } u \in W^{1,1}(0,1).
\]

In order to prove the opposite inequality, fix \(u \in W^{1,1}(0,1) \), and for every \(h \in \mathbb{N} \) and \(x \in \Omega \) define

\[
u_h(x) = u(0) + \int_0^x (u'(t) \wedge h) \vee (-h) \, dt.
\]

We have that \(u_h \in \text{Lip}[0,1] \) and

\[
\int_0^1 |u'_h - u'| \, dx = \int_{\{ |u'| > h \}} |h - |u'|| \, dx \leq \int_{\{ |u'| > h \}} (h + |u'|) \, dx \leq 2 \int_{\{ |u'| > h \}} |u'| \, dx.
\]
Hence $u_h \to u$ strongly in $W^{1,1}(0,1)$, and so, by the convexity of $f(x, \cdot)$,

$$
\overline{F}_Y(u) \leq \liminf_{h \to +\infty} F(u_h) = \\
= \liminf_{h \to +\infty} \left[\int_{\{|u'| \leq h\}} f(x, u') \, dx + \int_{\{|u'| > h\}} f(x, h) \, dx + \right. \\
\left. + \int_{\{|u'| < -h\}} f(x, -h) \, dx \right] \leq \\
\leq \liminf_{h \to +\infty} \left\{ \int_{\{|u'| \leq h\}} f(x, u') \, dx + \\
\int_{\{|u'| > h\}} \left[\frac{h}{|u'|} f(x, u') + \left(1 - \frac{h}{|u'|} \right) f(x, 0) \right] \, dx \right\} \leq \\
\leq \int_{\Omega} f(x, u') \, dx + \liminf_{h \to +\infty} \int_{\{|u'| > h\}} f(x, 0) \, dx = \int_{\Omega} f(x, u') \, dx,
$$

where the last equality follows from the fact that $f(x, 0)$ has been supposed integrable and \text{meas}(\{|u'| > h\}) \to 0$ as $h \to +\infty$. Therefore the proof is completely achieved. ■

It is known (see Proposition 5.2 and also Clarke & Vinter [CV], Ambrosio, Ascenzi & Buttazzo [AAB]) that if $n = m = 1$ then in order to have the Lavrentiev phenomenon (that is $L(u) \neq 0$ for some $u \in X$) the integrand f must depend on all its variables x, s, z. If $n > 1$ and $m = 1$, on the contrary, we may have the Lavrentiev phenomenon even for integrands of the form $f(x, z)$ (see De Arcangelis [De]), whereas if $n > 1$ and $m > 1$ an example in which the Lavrentiev phenomenon occurs has been provided by Bethuel, Brezis & Coron [BBC] and by Giaquinta, Modica & Soucek [GMS] with

$$
f(s, z) = \begin{cases}
|z|^2 & \text{if } |s| = 1 \\
+\infty & \text{otherwise.}
\end{cases}
$$

In the case $n > 1, m > 1$ the Lavrentiev phenomenon may occur even with integrands of the form $f = f(z)$; indeed Müller [Mü] (see also Marcellini [Mar1], [Mar2]) showed that if $n = m = 2, p \in]4/3, 2[, and

$$
F(u) = \int_{\Omega} |\det Du| \, dx \quad (u \in W^{1,p}(\Omega, \mathbb{R}^2))
$$

with the weak $W^{1,p}$ convergence, one has

$$
\overline{F}_X(u) < \overline{F}_Y(u) \quad \text{for some } u \in W^{1,p}(\Omega, \mathbb{R}^2).
$$

The problem of determining whether for $n > 1, m > 1, f = f(z)$ the Lavrentiev phenomenon can occur in general with l.s.c. functionals of the form

$$
F(u) = \int_{\Omega} f(Du) \, dx
$$
is, as far as we know, still open (except in the case $f(x)$ convex, where $L = 0$ under some mild assumptions on f or on Ω).

In view of the result of Clarke & Vinter [CV] forestalling the presence of a Lavrentiev gap in the case of first order autonomous integrands, it seems useful to present the following example.

Example 5.3. The autonomous second order two-point Lagrange problem with regular integrand given by

$$F(u) = \int_0^1 \left[\left(u'(x) - |u(x)|^{4/9} \right)^{18} |u''(x)|^{78} + \varepsilon |u''(x)|^2 \right] dx$$

exhibits the Lavrentiev phenomenon on

$$\mathcal{A} = \{ u \in W^{2,1}(0,1) : u(0) = u'(0) = 0, u(1) = b > 0, u'(1) = a > 0 \}.$$

That is, for ε small enough,

$$\inf \{ F(u) : u \in \mathcal{A} \} < \inf \{ F(u) : u \in \mathcal{A} \cap W^{2,\infty}(0,1) \}.$$

In fact, it can be shown (see Mizel [Mi2]) that in this example the critical dense subclass of \mathcal{A} is the subclass consisting of all $W^{2,5}(0,1)$ admissible functions.

Acknowledgements. We wish to acknowledge helpful conversations with Art Heinricher, Bob Jensen and Stefan Müller. The first author wishes to thank the Department of Mathematics of the EPFL of Lausanne, where this paper was partially written. The research of Mizel was partially supported by the US National Science Foundation under grants DMS 8704530 and DMS 9002562.

References

Interpretation of the Lavrentiev Phenomenon by Relaxation

Giuseppe Buttazzo and Victor J. Mizel

Carnegie Mellon University
Department of Mathematics
Pittsburgh, PA 15213

U. S. Army Research Office
P. O. Box 12211
Research Triangle Park, NC 27709-2211

The present article concerns problems in the calculus of variations. It was discovered by Lavrentiev in 1926 that when the variational (cost) integrand grows in a less straightforward way than is assumed in traditional treatments of one dimensional Lagrange problems, then there can be a nonzero gap between the actual minimum value of the variational integral over the full class of absolutely continuous admissible functions and the lower limit of the values it assumes on the dense subclass of smooth admissible functions. This "Lavrentiev phenomenon" has important implications for the numerical analysis of control and variational problems as well as for the treatment of variational problems faced in such areas as nonlinear elasticity.

The present work shows that the relations between the infima of the functional on various dense subspaces of admissible functions are best understood as an outgrowth of the fact that to each admissible function, minimizer or not, there can be assigned a term measuring the gap between the actual value of the variational functional on that function and the smallest lower limit of the values attained on sequences of Lipshitz admissible functions converging to the given function. A technique is presented for explicitly evaluating this Lavrentiev (gap) term in many cases.

Lavrentiev phenomenon, relaxation

Approved for public release; distribution unlimited.

The present article concerns problems in the calculus of variations. It was discovered by Lavrentiev in 1926 that when the variational (cost) integrand grows in a less straightforward way than is assumed in traditional treatments of one dimensional Lagrange problems, then there can be a nonzero gap between the actual minimum value of the variational integral over the full class of absolutely continuous admissible functions and the lower limit of the values it assumes on the dense subclass of smooth admissible functions. This "Lavrentiev phenomenon" has important implications for the numerical analysis of control and variational problems as well as for the treatment of variational problems faced in such areas as nonlinear elasticity.

The present work shows that the relations between the infima of the functional on various dense subspaces of admissible functions are best understood as an outgrowth of the fact that to each admissible function, minimizer or not, there can be assigned a term measuring the gap between the actual value of the variational functional on that function and the smallest lower limit of the values attained on sequences of Lipshitz admissible functions converging to the given function. A technique is presented for explicitly evaluating this Lavrentiev (gap) term in many cases.

Lavrentiev phenomenon, relaxation

Approved for public release; distribution unlimited.
Interpretation of the Lavrentiev Phenomenon by Relaxation

Giuseppe Buttazzo and Victor J. Mizel

Carnegie Mellon University
Department of Mathematics
Pittsburgh, PA 15213

U. S. Army Research Office
P. O. Box 12211
Research Triangle Park, NC 27709-2211

The present article concerns problems in the calculus of variations. It was discovered by Lavrentiev in 1926 that when the variational (cost) integrand grows in a less straightforward way than is assumed in traditional treatments of one dimensional Lagrange problems, then there can be a nonzero gap between the actual minimum value of the variational integral over the full class of absolutely continuous admissible functions and the lower limit of the values it assumes on the dense subclass of smooth admissible functions. This "Lavrentiev phenomenon" has important implications for the numerical analysis of control and variational problems as well as for the treatment of variational problems faced in such areas as nonlinear elasticity.

The present work shows that the relations between the infima of the functional on various dense subspaces of admissible functions are best understood as an outgrowth of the fact that to each admissible function, minimizer or not, there can be assigned a term measuring the gap between the actual value of the variational functional on that function and the smallest lower limit of the values attained on sequences of Lipshitz admissible functions converging to the given function. A technique is presented for explicitly evaluating this Lavrentiev (gap) term in many cases.

Lavrentiev phenomenon, relaxation