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by (3.5) at (x ,t ). We employed in this calculation the bound | D ^ | < 1, which follows from

(3.9). Sending e -» 0 we deduce

(3.12) 0 t — A0>— -J at (xo,to).

3. Assume next d(xo,to) < 0. Since d is continuous from below, we have 7/(d) = — 6 on the

set {|x—XQ | < a, to — tr < t < to} for some a > 0. Thus

o,to) > 0,

and so

(3.13) <f>t-A<p>0 at (xo,to).

4. If 7/(d) — <p has a minimum at a point (xo,t*), we argue using the Remark after Theorem

2.2. Assertion (3.6) is proved.

5. To prove (3.7), suppose d(xo,to) > 6/2. Then for small e > 0, d(x£,t£) > 6/2. By (3.5) we

conclude that —1\" (ipe) = 0 at (x ,t ). Using this in (3.11), we arrive at (3.7). o

Our intention next is to build using q and d a supersolution of the scaled Allen—Cahn

equation. For this let us take constants a,(3 > 0 (to be selected later) and write

(3.14) w£(x,t) = q(7Ad(x^)) + °*) + ep (x E Rn, 0 < t < t*).

Since the cut—off function r/ depends on the parameter 6, so does the above function w .

However for notational simplicity we suppress this dependence in the notation.
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Theorem 3.2 There exist a = a(6) > 0, fi = P(6) > 0 and e0 = £o(£) > 0 such that

(3.1b) w? - Aw6 + - f(w£) > 0 in Rn « (0,t*]
e2

for all 0 < e < e0- -fa addition a,(3 = 0(5) as £-* 0.

Proof 1. As usual choose (p € C0D(Rn x (0,QD)) and suppose

(3.16) vfE — <p has a minimum at (xo,to) G Rn x (0,t*]

vrith

(3.17) we-tf> = 0 at (xo,to).

We must demonstrate

(3.18) <£ t- A<̂> + — f((^) > 0 at (xo,to),

provided e is sufficiently small, depending only on 6 and not on (f>.

2. Write

and set ^(x,t) = eq'l((f>(x,t) — eft). This function is defined near (xO)to) since

- 1 < 0(xo,to) - eft = q ( ^ ^ + a t ) < 1. Owing to (3.14), (3.16), (3.17)

(3.19) r/(d) — (i> — at) has a minimum at (xo,to),
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with T7(d) - (i>- at) = 0 at (xo,t0).

According to Lemma 3.1 we have

(3.20) i>t-Aip>a-j at (xo,to)

and

(3.21) ipt-Ai>>a at (xo,to) if d(xo,t0) >

3. Since

we can compute

(3.22)

e2

± q" (|)(1 - | D*|2) + ± [f(q(|) + efi -

at the point (xo,to), where we utilized the ODE (3.3) to derive the last equality.

We now must estimate the various terms in (3.22).

Case 1 d(xo,to) > | .

In this situation d > -* near (xo,to) and so r/(d) = d — 6 near (xo,to). Then (3.19) implies
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|DV<x o , t o ) |= l .

Thus (3.21) and (3.22) yield

£ 2

(3.23)

Fix 0 < 7 < 1 so that

inf f'(z) = a i > 0 .

Then set

inf q'(s) = a 2 > 0 ,
lQ(s)|<7

define

(3.24) a = - L

We consider two further possibilities:

Subcase 1 | q ( | ) | > 7.

Then (3.23) implies

at(xo,to)



25

if e is small enough, depending only on S.

Subcase 2 | q ( | ) | < 7.

Then (3.23) implies

T CD

L

> 0 at (x0>t0)

for small £, depending on 6.

Both subcases therefore yield (3.18).

Case 2 d(xo,to) < j .

We use the same choices of a and p as in the previous case. In this situation 7/(d) < — ^

and so

**<-!,

according to (3.24). Hence (3.19) yields the inequality

(3.25) i>< - j at (xo,to).

Statement (3.19) and the definition (3.5) of r/ imply also |D^| < C at (xo,to).

We then compute utilizing (3.20), (3.22)

(3.26) fa -
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But since q" > 0 on (-OD,O], (3.25) and (3.4) force

Similarly

p -6/2e
< - T e =o( l ) as e-.O.

e2

We analyze the remaining terms on the right hand side of (3.26) as in the two subcases of

Case 1.

The conclusion is

<pt-A<p + — i(<p) >0 at(xo>to)

for all 0 < e < eo(6), £Q(6) sufficiently small. As the constant appearing in the above argument

is independent of <p, the choice of eo{6) does not depend on <p.

D
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4. Asymptotics for the Allen—Cahn equation

We at last turn to the scaled Allen—Cahn equation

vf - Av* + — f (v£) = 0 in Rn x (0,*)

(4.1),
[ve = he on Rn x {t = 0},

the cubic f given by (3.2) and the initial function hE described below.

We intend to prove ve -> 1 in a region I C Rn x [0,00), Y€ -»—1 in another region

0 c Rn x [O,QD), the "interface" T between I (the "inside") and 0 (the "outside") being a

generalized motion governed by mean curvature.

To induce this behavior, however, we must choose appropriate initial functions. More

specifically, let To henceforth denote the smooth boundary of a bounded, connected open set

U c Rn. Let d be the signed distance function to r0 , and set

(4.2) he(x) = q(^fl) (x 6 R»).

Thus h6 is approximately equal to 1 within U, is approximately equal to —1 within Rn \U,

and has a transition layer of width approximately e across the surface IV Moreover, by the

maximum principle, —1 < v < 1 in Rn x [0,©).

We will show that \ e roughly maintains this form at later times, the transition layer

forming across the generalized motion by mean curvature starting with Fo. To this end, we

choose a continuous function g : Rn -> R satisfying (2.27), solve the mean curvature evolution

PDE (2.3), and define T t, I t , O t , 1,0 by (2.4), (2.28)-{2.31).
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Theorem 4.1 We have

(4.3)' ve -» 1 uniformly on compact subsets of I

and

(4.4) v£ -» -1 uniformly on compact subsets of 0.

Remark Assertions (4.3), (4.4) provide a great deal, but by no means all, of the desired

information about the limiting behavior of the {\6} Q. We note in particular it is not known

whether the "interface" T can develop an interior, see the discussion following in §5.

Proof 1. As To is smooth we may choose g to be smooth, with |Dg| = 1 near IV Thus if

6 > 0 is small enough the set

is smooth. We let

(4.6) r f = {x 6 Rn | u(x,t) = -26} (t > 0)

be the generalized evolution starting with To, and take d to denote the signed distance

function to F t , d0 being the signed distance function to TQ. Let t*c be the extinction time

Choose rj( •) as in §3 and set

for {rf

(4.7)
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a and 0 are given by (3.24), with t^ replacing t*. Then for 0 < e < e<>(6) we have

(4.8) w ? / - Aw£)* + — f(w£'5) > 0 in Rn x (o,tJ) .

2. We first claim

(4.9) w£'5(x,0) > h£(x) (x € Rn).

To verify this inequality it suffices in view of (4.2) to prove

Ttfdo(x)) > d(x) (x e Rn).

Now owing to (4.5) d£(x) > d(x) + 26; and so i?(do(x)) > v(d{x) + 26)(xe Rn). It is

therefore enough to show

(4.10) d(x) < r^d(x) + 26) (x 6 Rn).

But if d(x) > - nf , then d(x) + 26 > | ; whence

r^d(x) + 26) = d(x) + 6> d(x).

On the other hand, if d(x) < - 1 5, (4.10) is obvious as ij> -6.

3. Now write

(4.11) w = e ~ A V ' t f (A > 0).

We next claim
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<TAt w
(4.12) w t - Aw + Aw + ^ - f(eAtw) > 0 in Rn * (0,tJ

To check this, select as always <f> € C(B(Rn * (0,a>)) and assume

w — <p has a minimum at a point (xo,to) eK n « (

with w - 4> = 0 at (xo,to). Then

e~Xiwe'6= w > 4> in Rn * (O.tjj,

with equality at (xo,to)- Hence

in

with equality at (xo,to), for ^ = e <p. Assertion (4.8) then implies

— i(i>) > 0 at (xo,to).

We rewrite the last inequality to read

* it
- A<p + \<p + -— f(eAV) > 0 at (xo,to).

e2

This establishes (4.12).

4. We hereafter set
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A = A =

Then for each t the mapping

- A t A
(4.13) z H Az H f(e z) is strictly increasing.

e2

5. We now assert

(4.14) w e ^> ve in Rnx [O,t:

Indeed if not, then

wE} <\£ somewhere in Rn

and consequently

w < v somewhere in Rn x

for w = e w£) , v = e"" ve. The function w is lower semi continuous. In addition

w > v on Rn x [t = 0],

and

l i m w > e~A t(- l + e0) > l i m • = - e At .
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Hence there exists a point (xo,to) G Rn « (0,t^] such that

(4.15) (w-v)(xo,to) = min (w-v) = b < 0.

Now (4.14) and (4.1). yield

(4.16) v t - Av + Av + - — f(eAtv) = 0 in Rn

If

(4.17) 4> = v + b,

then tf> e C^R11 x [0)(B)) and (4.15) says

w — <j> has a minimum at (xo.to)

with w — <p = 0 at (xo,to). According to step 3 above, we conclude

(TXt At
(4.18) <pt - A<p + \<f> + -— i(e 4>) > 0

e2

at (xo,to). However since b < 0, <p < v. Consequently (4.13), (4.17), (4.18) imply

.-At Xi
v t - Av + Av + -— t(eA\) > 0

e2

at (xO)to). This contradicts (4.16) and thereby proves (4.14).

6. Utilizing (4.14) and the definition (4.7) of the auxiliary function we> , we discover

(4.19)
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for x e Rn, 0 < t < t J. Now if

x 6 of = {x € Rn | u(x,t) < -26}, 0 < t < t J ,

we have d (x,t) < 0 and so

ij{d. (x,t)) + at <c - 6 + at ̂

£ - | < 5 by (3.24) (with t^ replacing t*).

Thus

e-0 c

In view of (4.19) we have

l i m v ^ t )

uniformly on 0 = {(x,t) € Rn * [0,t̂ ] | u(x,t) < -2£}. In particular,

(4.20) limve(x,t) = - l
e-»0

uniformly on compact subsets of O for sufficiently small 6. For large 6 > 0, a minor

modification of the above proof yields (4.20). Since

0 = U OS,
6>0

the proof of (4.4) is now complete. A similar argument proves (4.3).
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5. Uniqueness?

In this concluding section we elaborate upon the remark following Theorem 4.1. Let us

return to the scaled Allen—Cahn PDE and calculate the time derivative of the scaled excess free

energy:

i f | | Dv£ | 2 + I F(v£)dx = [ eDv£ • D vf + I f( ve) vf dx
a tJRn^ £ J R n

 £

= [ v £ ( -
Rn

(v£)2dx<0.
Rn

Thus

T
(5.1) sup [ I |Dv£|2 + iF(v£)dx + J [ (v£)2dxdt<[ £ |Dh£| + 1 F(h£)dx

0<t<TJRn^ £ JoJ|Rn JR n
2 £

< C < in,

in view of the special form (4.2) for the initial function h£. Since this inequality implies

T
f f F(v£)dx <
JoJRn

as e -• 0 for each T > 0, we deduce

(5.2) ( v £ ) 2 - l a.e. in Rn
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2

In addition if we set G ( z ) = ^ - - z and write

v£ = G(v£) ,

we have (cf. Bronsard-Kohn [BK 1989])

[ |Dv£ |dx=[ |(v£)2-l | |Dv£| dx
Rn Rn

<-l
Rn

and

f [ | v £ | d x = [ [ | ( v £ ) 2 - l | |vf|dxdt
J 0 J R n J0JR n

T

"J 1 n £^2 + h F(v C)d x d t * C < »•

Thus { v e } £ > 0 is bounded in BV(Rn » (0,T)) for each T > 0, and so is precompact in

Lioc(Rn x (°>T))- Xt foUows that { v £ } £ > 0 is precompact in L{oc (R
n x (0,T)). Consequently,

passing if necessary to a subsequence we have

(5.3) v£j -. ± 1 in Rn x [0,*).

Our Theorem 4.1 augments this simple fact with the assertion

(5.4) v £ -» l in I , v £ - » - l in 0 .
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However we do not know

T = Rn x [O,CD)\[I U 0]

has (n+l)-dimensional Lebesgue measure zero, and consequently (5.4) does not imply (5.2),

(5.3). The problem is that the sets {Ft} t>0 could conceivably develop an interior for times

t* > t > t , t denoting the first time the classical evolution by mean curvature has a

singularity. See [ES 1989a, §8] for an example of a nonsmooth 1—dimensional compact set

To C R2 for which Ft has an interior for times t > 0.

On the other hand Evans—Spruck [ES 1990 ] have recently proved for smooth Fo that

where Hn"! is (n—1)—dimensional Hausdorff measure and F* = #IY Thus Ft has positive

n-dimensional Lebesgue measure if and only if F t has an interior. Finally, [BSS 1991] gives a

general but by no means sharp geometric condition which guarantees no interior. This

condition is used by Soner—Souganidis [So Sou 1991] to show that rotationally symmetric

surfaces which look like the torus, do not develop interior.

Now if in fact int(Ft) + 0 in Rn for some time t+ < t < t*, then int(F) #0 in Rn x

[O,CE). In this case assertion (5.3) tells us that for some subsequence vej -» ± 1 a.e. within F,

whereas (5.4) provides no information at all regarding \e inside F.

Should this be possible, it seems most likely that the regions when veJ -> 1 and v£j"-» -1

would be separated by an "interface" evolving by mean curvature in the sense of Soner

[So 1990]. Such a motion is generally nonunique. And perhaps different subsequences

correspond to different interfaces, or the initial profile picks the particular interface to which

the solutions convergence. At present it is unclear whether these circumstances can arise and,

if so, how the solutions ve of the scaled Allen-Cahn equation would behave within the interior

of F.
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