
Carnegie Mellon University
Research Showcase

Institute for Software Research School of Computer Science

1-1-2005

Coverage and the Use of Cyclic Redundancy
Codes in Ultra-Dependable Systems
Michael Paulitsch

Jennifer Black
Carnegie Mellon University, jenmorris@cmu.edu

Brendan Hall

Kevin Driscoll

Elizabeth Latronico
Carnegie Mellon University

See next page for additional authors

Follow this and additional works at: http://repository.cmu.edu/isr

This Conference Proceeding is brought to you for free and open access by the School of Computer Science at Research Showcase. It has been accepted
for inclusion in Institute for Software Research by an authorized administrator of Research Showcase. For more information, please contact research-
showcase@andrew.cmu.edu.

Recommended Citation
Paulitsch, Michael; Black, Jennifer; Hall, Brendan; Driscoll, Kevin; Latronico, Elizabeth; and Koopman, Philip, "Coverage and the Use
of Cyclic Redundancy Codes in Ultra-Dependable Systems" (2005). Institute for Software Research. Paper 687.
http://repository.cmu.edu/isr/687

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fisr%2F687&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/isr?utm_source=repository.cmu.edu%2Fisr%2F687&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fisr%2F687&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/isr?utm_source=repository.cmu.edu%2Fisr%2F687&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/isr/687?utm_source=repository.cmu.edu%2Fisr%2F687&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu
mailto:research-showcase@andrew.cmu.edu


Authors
Michael Paulitsch, Jennifer Black, Brendan Hall, Kevin Driscoll, Elizabeth Latronico, and Philip Koopman

This conference proceeding is available at Research Showcase: http://repository.cmu.edu/isr/687

http://repository.cmu.edu/isr/687?utm_source=repository.cmu.edu%2Fisr%2F687&utm_medium=PDF&utm_campaign=PDFCoverPages


Coverage and the Use of Cyclic Redundancy Codes in Ultra-Dependable Systems

Michael Paulitsch∗ Jennifer Morris† Brendan Hall∗

Kevin Driscoll∗ Elizabeth Latronico† Philip Koopman†

Honeywell∗, Carnegie Mellon University†

{michael.paulitsch, brendan.hall, kevin.driscoll}@honeywell.com∗

{jenmorris, beth, koopman}@cmu.edu†

Abstract

A Cyclic Redundancy Code (CRC), when used properly,
can be an effective and relatively inexpensive method to de-
tect data corruption across communication channels. How-
ever, some systems use CRCs in ways that violate common
assumptions made in analyzing CRC effectiveness, result-
ing in an overly optimistic prediction of system dependabil-
ity. CRCs detect errors with some finite probability, which
depends on factors including the strength of the particu-
lar code used, the bit-error rate, and the message length
being checked. Common assumptions also include a pas-
sive network inter-stage, explicit data words, memoryless
channels, and random independent symbol errors. In this
paper we identify some examples of CRC usage that com-
promise ultra-dependable system design goals, and recom-
mend alternate ways to improve system dependability via
architectural approaches rather than error detection cod-
ing approaches.

1. Introduction

Recent industrial trends point to an increased reliance
on computerized control in “ultra-dependable” distributed
embedded systems. An ultra-dependable system is one
whose malfunction results in significant financial loss or
loss of human life. A good example of an ultra-dependable
distributed embedded system is a commercial aircraft. Ac-
cording to government aviation regulations, commercial air-
craft “must be designed to ensure that they perform their
intended functions under any foreseeable operating condi-
tion” [15]. Similar requirements for other ultra-dependable
systems can be found in IEC 61508 [22].

A common reliability requirement for existing ultra-
dependable systems is 10−9 failures/hour. It can be ar-
gued that large-scale deployment of ultra-dependable sys-
tems, such as in drive-by-wire applications for automobiles,
requires even more stringent reliability targets due to in-
creased passenger hour exposure [28]. Even worse, sys-
tems with large-scale deployments tend to have significant
cost constraints – cars cost about one thousandth as much
as large passenger jets.

One method of achieving ultra-dependability is through
the use of distribution to tolerate faulty subsystems or spa-
tially correlated faults. A key component of such a dis-
tributed embedded system is a dependable communication
system. Ultra-dependable communication systems are al-
ready common in the aviation domain, and are emerging
in the automotive market as well (e.g., so-called X-by-wire
systems that include steer-by-wire and brake-by-wire appli-
cations). These communication systems often use Cyclic
Redundancy Codes (CRCs), which provide relatively inex-
pensive in-line error detection of data corruption.

This paper reviews the use of CRCs in systems from the
viewpoint of ultra-dependable system design. It is the ob-
jective of this paper to revisit CRC protection mechanisms
with respect to probabilistic strength and underlying as-
sumptions. We identify examples of ultra-dependable sys-
tems in which these assumptions do not hold, and present
alternate design strategies for achieving adequate error de-
tection coverage. In particular, we focus on the implications
and design assumptions of active intermediate communica-
tion stages in the network topology and the use of implicit
data in CRC calculations.

1.1. Overview of Paper

The rest of this paper is organized as follows: Sec-
tion 2 gives an overview of ultra-dependable system de-
sign. Section 3 provides background on CRCs, including
the underlying assumptions of their error detection capabil-
ities. Section 4 provides specific examples of incompatibil-
ities between CRC usage assumptions and applications in
ultra-dependable systems. Section 5 presents recommenda-
tions for improved ultra-dependable design practices. Fi-
nally, section 6 presents our conclusions.

2. Ultra-Dependable Systems

The electronic hardware components from which ultra-
dependable “10−9 systems” are built have a typical failure
probability of 10−6 failures/hour. While permanent fail-
ure rates of these components have been slightly decreas-
ing during recent years (getting better; 10−7 to 10−8 fail-
ures/hour), the transient failure rates have actually been in-
creasing, and are often up to 100 times more frequent than



permanent failures [12]. Using a component failure rate of
10−6 seems to be a safe bound ([45] provides guidance for
reliability numbers and influencing factors).

Although the failure rate of data source components
within a distributed system is on the order of 10−6 to
10−7 failures/hour, the communication subsystem requires
a much lower failure rate (10−9 or less), because it serves as
the “glue” between all sources and sinks of a distributed ar-
chitecture. All fault-tolerance mechanisms at higher layers
are typically built with an assumption of ultra-dependable
communications. In general, complete loss of communica-
tions causes a system failure.

Integrity and availability are two attributes of depend-
ability that are especially relevant for dependable commu-
nication systems and the analysis performed in this paper.
Integrity is the “absence of improper system state alter-
ations” [4]. With respect to communication systems and
CRCs, this means that any communication failure should
be detected with sufficiently high probability (i.e., the prob-
ability of any undetected failure must be sufficiently low).

Availability is “readiness for correct service” [4]. For
fail-operational dependable embedded systems, this means
that the communication system needs to be available nearly
all the time. Moreover, any outage that occurs during sys-
tem operation must be very short. For example, [20] gives
a minimum steer-by-wire system outage of no more than
50 msec during vehicle operation. Limitations in system
resources may require a tradeoff between availability and
integrity. The art of dependable system design is to ensure
both have sufficiently high levels.

It is usually impracticable to test ultra-dependable sys-
tems long enough to assure high dependability (Butler and
Finelli make this argument for ultra-reliable software [9]).
Ultra-dependable system designers must therefore invest a
significant amount of time during the development process
on design assurance (e.g. DO-254 [38], DO-178B Level
A [37], IEC 61508 SIL 3,4 [22]). As a result, the accuracy
of the dependability analysis of ultra-dependable systems is
extremely important.

3. Cyclic Redundancy Codes

Cyclic redundancy codes (also known as cyclic redun-
dancy checks) have long been used for error detection in
computing. [33] and [35] are among the commonly cited
standard reference works for CRCs. This paper focuses on
the use of CRCs to detect medium-induced errors in mes-
sages transferred over communication channels. CRCs are
also commonly used to protect the integrity of data stored
in memory.

A CRC can be thought of as a (non-secure) digest func-
tion for a data word that can be used to detect data corrup-
tion. Mathematically, a CRC can be described as treating
a binary data word as a polynomial over GF(2) (i.e., with
each polynomial coefficient being zero or one) and perform-

ing polynomial division by a generator polynomial G(x).
The generator polynomial will be called a CRC polynomial
for short. (CRC polynomials are also known as feedback
polynomials, in reference to the feedback taps of hardware-
based shift register implementations.) The remainder of that
division operation provides an error detection value that is
sent as a Frame Check Sequence (FCS) (also called a syn-
drome) within a network message or stored as a data in-
tegrity check. Whether implemented in hardware or soft-
ware, the CRC computation takes the form of a bitwise con-
volution of a data word against a binary version of the CRC
polynomial.

Error detection is performed by comparing an FCS
computed on a piece of retrieved or received data against
the FCS value originally computed and either sent or stored
with the original data. An error is declared to have occurred
if the stored FCS and computed FCS values are not equal.

Bit error properties are often evaluated using test equip-
ment emulating field characteristics. Evaluating perfor-
mance in the wide variety of operating circumstances found
in embedded systems is difficult in general. In practice
CRCs have been found to be an adequate protection mech-
anism for deployment in everyday communication systems
for medium-induced errors. But this experience is insuffi-
cient to assure ultra-dependable operation.

3.1. Probabilistic Strength of CRC Polynomials

The error detection probability of CRCs have been
studied extensively [10, 25, 27, 1, 7, 17, 32, 18]. The key
research topic of interest is the probability of undetected er-
ror for CRCs given various fault assumptions.

As with all digital signature schemes, there is a small,
but finite, probability that a data corruption will occur that
inverts a sufficient number of bits in just the right pattern
such that the error is undetectable. The minimum number
of bit inversions required to achieve such undetected errors,
the Hamming distance, is dependent on the CRC polyno-
mial and the length of the data word.

For a given CRC polynomial, a (binary) data word of
length m and an FCS of lengths k there are 2

m+k

2k = 2m cor-
rect code words. A k-bit CRC used as an FCS detects all
burst errors in the data word up to length k. The probabil-
ity that a random data word will produce a particular FCS
is 2

m

2k /2m = 2−k. Example: For an FCS of 24 bits, the
likelihood that a different data word will produce the “cor-
rect” FCS is 2−24 = 6 · 10−8. It has been shown that 2−k

is a good approximation of the upper bound of undetected
errors for most applications; all assuming a uniform error
distribution [1, 7, 17, 32].

Note that one cannot assume the associated failure
modes of devices will follow any common mathematical
distribution. As a result, a component suffering a system-
atic arbitrary fault might not produce uniformly distributed
random messages. If the messages are not uniformly dis-



tributed, in the worst case the FCS of the generated mes-
sage could always match the FCS of the original message,
in which case the CRC would provide no protection. In this
case, the end-to-end failure rate would equal the compo-
nent’s failure rate.

3.2. Error Model Assumptions

In addition to the bit error rate, other characteristics of
the error model play an important role in CRC effective-
ness. Common assumptions include explicit data words, un-
correlated errors from bit to bit, memoryless channels, and
a passive network interstage. This section discusses how
the probabilistic arguments presented in section 3.1 apply
to ultra-dependable system design.

3.2.1. Network Medium. In the preceding section, the
probability was calculated as if CRC polynomial perfor-
mance were the sole determining factor of error detection
capability, and assumed that all errors encountered resulted
in bit inversions that were undetectable by other means.
When considering the probability of undetected, medium-
induced errors, physical layer influence and other effects
have to be considered. These effects have a significant ef-
fect on the overall end-to-end undetected error probability.

The choice of encoding rule in the underlying physi-
cal layer may improve the error detection probabilities for
medium-induced errors. For example, framing errors and
errors leading to invalid symbol encodings can be detected
and provide a layer of error detection capability before re-
ceived messages are checked for a valid FCS value. In [26],
Koopman investigated the error detection probability of the
TCN (Train Communication Network) and its overall error
detection capabilities. TCN uses Manchester encoding for
the physical channel. Undetectable symbol inversions be-
tween zero and one require sigmoid-shaped noise functions,
which seem unlikely and for which there is no known phe-
nomenology in train applications. The use of a semi-bit er-
ror model that assumed errors would take the form of inde-
pendent “semi-bit” flips found that most noise-induced data
errors would be detected at the bit encoding level. This ap-
proach to analysis greatly increased the expected overall er-
ror detection performance. Similarly, Stone et al. found for
real world tests on an ATM (Asynchronous Transfer Mode)
network that certain failures are detected even without CRC
or checksum use [41].

The probabilistic strength of CRCs depends on the bit
error rate of the network, performing best for single burst
errors smaller than the FCS size (which are all detectable)
and for individual uncorrelated bit errors. The bit error rate
is highly dependent on the network medium, system de-
ployment environment and communication speed. Typical
values are 10−6 to 10−13 errors/bit, although error rates in
the field are said to vary dramatically. Some standards for
optical networks specify maximum allowable BERs, such
as 2.5 ∗ 10−10 in the Boeing ARINC 636 standard [11] and

10−12 for Gigabit Ethernet [40]. Copper BERs are typically
higher. For example, the Train Communication Network
conformance tests allow only three frame errors in 3 ∗ 106

frames, for a BER of about 10−6 to 10−7 for customary
small frame sizes [23]. Field data from a Controller Area
Network factory automation application cites a measured
BER of approximately 3.8 ∗ 10−7 [3].

If the uncorrelated bit error assumption holds true, the
probabilistic strength of CRCs is generally improved com-
pared to 2−k. In a single uncorrelated bit error model, the
corrupted data word is not random, since the corrupted data
word is a function of the original data word. To produce an
undetected error, the number of bit errors must first equal or
exceed the Hamming distance (HD) of the CRC. Therefore,
the overall probabilistic strength is 2−k multiplied by the
probability that the number of bit errors equals or exceeds
the HD. For single uncorrelated bit errors, this probability
is approximately (BER * message size)HD, multiplied by
the number of messages per hour.

Another common assumption of CRC error detection
analysis is the use of memoryless communication channels.
A communication channel is called memoryless if the noise
affects each transmitted symbol independently. Memory-
less channels are also called random-error channels. On
channels with memory, the noise is not independent from
symbol to symbol. Examples of channels with memory are
burst-error channels and fading channels [33, p.9,13].

Kuznetsov et al. present one of few papers that investi-
gate the undetected error probability on channels with mem-
ory [29]. Lin and Costello even conclude: “Appropriate
models for channels with memory are difficult to construct,
and coding for these channels is more of an art than a sci-
ence” [33, p.9].

These examples demonstrate that without knowledge of
the possible failure modes of the communication channels
and error detection capabilities of the physical encoding, a
computed integrity value based on the usual set of CRC per-
formance assumptions will not be an accurate prediction of
real-world experience.

3.2.2. Byzantine Errors. While it might seem odd at first
sight, it is possible that data can be marked with a cor-
rect CRC FCS, but different data values are seen at differ-
ent receivers. Driscoll et al. call this undetected error a
“Schrödinger’s CRC” [14]. Schrödinger’s CRC is a Byzan-
tine fault that can occur if selected bits of a message can be
interpreted differently at different receivers, i.e. one or more
bits of a message can be seen as a zero at some receivers but
as a one at other receivers.

One potential cause for this type fault is a weak driver
on a bus. A similar scenario is a stuck-at 1

2
bit in the trans-

mitter. For example, a transceiver might send some weak
bits (called 1

2
bits because the analog voltage level is nei-

ther logical one nor logical zero) to several receivers. As the
threshold levels are likely different at different receivers, 1

2



bits can be interpreted differently. If the number of 1

2
bits

is larger than the HD, a receiver might receive a corrupted
message with a valid CRC-based FCS, but incorrect data.

The probability of a Schrödinger’s CRC is hard to eval-
uate. A worst-case estimate of its occurrence due to a sin-
gle device is the device failure rate. This phenomenon is
a source error, but it has some resemblance to inter-stage
failures (Section 4.2) due to a systematic failure of a single
device, described in a subsequent section.

Powell et alii describe message authentication in the
contents Byzantine failures and their coverage as well as
traditional solutions in [36].

4. Questionable CRC Use In Ultra-Dependable
Systems

Section 3.2 described assumptions of the CRC that in-
fluence the end-to-end error-detection coverage. This sec-
tion presents examples of systems in which those assump-
tions might be violated, thereby potentially decreasing the
end-to-end error-detection coverage of the CRCs.

4.1. Implicit Data Words

Some communication protocols compute the CRC
frame check sequence over several fields but send only
some fields as part of the message. Figure 1 depicts the
calculation of the FCS at the source and the sink as well
as the message transmitted. If the data at the source (data
A) and the sink (data A’) are the same, then the ability of
CRCs to detect errors (bit flips) on the communication line
is not influenced. The only consequence of including data
A in the CRC calculation is the need to consider the overall
length (length of data A and data B) for the achievable Ham-
ming distance (HD). A reason for including some informa-
tion (data A) into the CRC calculation but not transmitting
it might be that this data is already part of a different proto-
col layer (e.g. the address in TCP/IP), or that agreement on
a protocol version needs to be enforced without the expense
of communication bandwidth. We call the CRC FCS calcu-
lation with additional data that is not sent an extended CRC
check.

If the data – included in the CRC calculation but not
sent – is different at the source and the sink (data A and
data A’ in figure 1) the ability of the CRC to detect failure
in transmitted data is decreased. The decrease is dependent
on the number and positioning of bits that are different be-
tween data A and data A’. Even a single bit error in data
transmission can lead to an undetectable error if more than
HD − 1 bits differ in the unsent data (see section 3).

Example: Implicit Acknowledgment in TTP/C. The
HD of TTP/C is at least 6 [44] for frames that use the CRC
to protect 2024 or fewer bits. For certain types of frames
(called N-frames) TTP/C calculates the CRC over the data

������

������

���

���

�����	

����
��
���������������	��������������

���������������������

������ ��������	�

����
��
���������������	��������������� ����

���

����
�

�����

�������������

Figure 1. Calculation of an extended CRC check

and header (including the version number/schedule identi-
fier and the membership vector), but the version number
and the membership vector is not transmitted. TTP/C has
a mechanism called implicit acknowledgment [8]. When
a sending node experiences a fault that prevents any re-
ceiver from receiving its frame, it is placed into a separate
group from other transmitters, and the membership vector
of nodes in these different groups can differ by up to two
bits. Sending nodes then compute their transmitted FCS
based on these different membership vectors. Because the
Hamming distance of the TTP/C CRC is at least 6, and 2 bits
of Hamming distance can be consumed by membership vec-
tor differences, this leaves only a Hamming distance budget
of 4 bit inversions to detect possible bit errors in transmitted
data. This clearly increases the probability of an undetected
error.

Example: Group Membership in TTP/C. In TTP/C
there is another mechanism that is also based on the mem-
bership vector and extended CRC check if N-frames are
used. This mechanism is called the clique avoidance mech-
anism [6]. If a frame is received from some nodes but not
from others (a Byzantine fault), two cliques will form. One
clique that has received the frame correctly, and one that
has not. These cliques will not be able to communicate be-
tween each other, because TTP/C requires agreement on the
membership vector to be able to receive a frame due to con-
sistency requirements.

In the two TDMA rounds following a Byzantine fault,
two node-local counters are increased at each node depend-
ing on the CRC check. The accept counter (AC) is increased
for a matching FCS, and the reject counter is increased for
a failed CRC check. Before a node sends, it checks the
relative value of the counters (AC > FC) and shuts down
when the counters indicate that it is a member of the smaller
of the two cliques (this is if FC ≥ AC). It can take up to
two TDMA rounds until all nodes in the smaller clique shut
down (assuming no CRC coverage issues). During this pe-
riod, the membership vector of different cliques and nodes
(see [8] for illustrations) differ by nearly up to the number
of communicating nodes (called the cluster size).



Since the Hamming distance of TTP/C is 6 and mem-
bership bits could be arbitrarily distributed over the 64 bits,
this means that for cluster size larger than 6 it is possible
that two different membership vectors will alias to an iden-
tical CRC computation. If this happens, counters will be
inadvertently increased even in the case of fault-free trans-
missions. For larger clusters this can lead to cliques that
survive for a non-analytically determinable time even with
no network transmission errors.

As an example, consider a cluster with 32 nodes, which
splits into two cliques (with 16 nodes each) due to a Byzan-
tine fault [39]. The probability that a node increases the
wrong counter can be calculated as follows: There are 16
minus 6 (=10) possibilities that the wrong counter is in-
creased, since a clique will receive up to 16 frames from
the other clique during the first TDMA round following the
Byzantine fault and the first 6 are covered by TTP/C’s HD.
The chance of an undetected CRC error is 2−24 = 6 · 10−8.
So the chance of the wrong counter being increased at any
node is 6 · 10−8 · 10 · 32 = 1.92 · 10−5. This is an effect
that is probably not acceptable for ultra-dependable sys-
tems, except in situations in which such Byzantine faults
can be proven to occur with very low frequency.

It has to be emphasized that the membership-dependent
decrease in CRC error detection coverage of TTP/C can
only happen with the frame type “N-frames” but not with
“X-frames” or “I-frames”, because the latter do not “hide”
the membership vector by using extended CRC checks.

4.2. Intermediate Communication Stages

The error detection capability of CRCs discussed in
section 3.1 might also be compromised by inter-stages in
the network. Any active network component that is on the
path from the source to the sink of a message is called an
intermediate communication stage (an inter-stage).

If constructed using active components, an inter-stage
could encounter a systematic (correlated) error. One ex-
ample of such a systematic error is a bit flip every several
data bits caused by a faulty transceiver circuit, weak driver,
partial short, or defective multi-bit buffer register. The com-
plexity of a circuit is not an issue for encountering system-
atic failure modes, as even simple circuits can exhibit this
or similar behavior [24, 31].

The effect of correlated failures on CRC error detec-
tion is comparable to bursty and fading channel effects (i.e.,
a channel with memory). If systems with inter-stages are
similar to channels with memory, the often used bound of
undetected errors that assumes random independent errors
(see section 3.2.1) may not hold.

These potential systematic failure modes of inter-stages
are equivalent to source (and destination) failure modes.
One key distinction for ultra-dependable systems design lies
in the influence that an inter-stage can have on the entire
communication system. If the interstage is central and in-

sufficient independent communication paths exist from the
data source to the data sink (that is a single or dual path in
a single fault-tolerant system), interstages have a significant
influence. In contrast, source errors only affect the output
of a single device, which can be dealt with known fault tol-
erance techniques.

Another distinction of inter-stages from source devices
is that the potential for Byzantine errors [13] makes it
impossible to increase the error-detection coverage of the
inter-stage to a level required in ultra-dependable systems
by traditional means such as replication of inter-stages (i.e.
two devices in a single interstage) and mutual monitoring
and controlling of outputs of the devices. For example,
one of the two inter-stage devices could be faulty and out-
put a weak signal (a signal with some “1/2 signal values”),
where 1/2 values of the signals are interpreted as a one at
the nearby correct monitor node but as zero by distant re-
ceiver nodes due to different voltage levels of receivers and
signal attenuation due to the communication medium. Even
triple replication might not work since the required voter
of replicated guardian devices could exhibit failure modes
with correlation.

In some systems, the inter-stage also recalculates the
CRC. In [42], Stone and Partridge find the end-to-end un-
detected error probability relatively high (up to 1 packet in
16 million packets, which equals an undetected error prob-
ability of 62.5 · 10−9) when evaluating the performance
of real networks in which the CRC is recalculated in each
inter-stage. The link-level CRC has been found correct for
up to 1 packet in 1100 packets when the TCP checksum
fails. This high error rate is attributed to hardware and
software failures of end-systems and intermediate commu-
nication stages. Indeed, Stone and Partridge recommend
application-level CRCs (transmitted in the data field and not
recalculated by network inter-stages) to help detect trans-
mission errors due to inter-stages.

Even if the CRC is not recalculated, and the signal is
“only” reshaped by the inter-stage (such as in [5]), it is ques-
tionable whether the error detection probability of CRCs
is as strong as for memoryless channels (described in sec-
tion 3.2.1), where no correlation is assumed.

What has to be assumed for end-to-end undetected error
probability for communication systems with inter-stages?
This is difficult to tell. An interesting evaluation of end-
to-end error detection in computer networks conducted by
Lai [30] evaluated the link-level and node-level probabil-
ities of undetected and detected error and found that the
end-to-end error detection probabilities are actually domi-
nated by link and node level probabilities, and that the influ-
ence of the network medium and inter-stages were minimal.
Thus, a safe bound has to assume the device failure rate of
the inter-stage is approximately (10−6 failures/hour) unless
further system-level or component-level mitigation is per-
formed. This value might have to be used even if CRCs are
being used with a significantly better undetected error rate.



Any argument that CRCs improve error detection beyond
this bound has to hinge on an assertion that CRCs provide
a digital signature that is cryptographically secure enough
to resist ”attack“ by arbitrary faults. We discuss this point
later in section 5.5.
4.2.1. Example: Dual-Bus vs. Dual-Star. In the fol-
lowing, dual-bus and dual-star network topologies are com-
pared purely from a CRC error detection perspective and
overall system claims. First, emphasis is placed on a purely
probabilistic arguments for CRCs. The comparison is then
revisited taking other failure modes into account. Exam-
ple architectures for dual redundant network configurations
are TTP/C [44], FlexRay [16], or AFDX [2]. TTP/C and
FlexRay use a 24-bit CRC. Figure 2 depicts a dual-bus and
dual-star network.

��

��

�� ��

�����	


���� ����������������������

���� ���������	���

���� �����	�����

��

��

�� ��

��

��

�� ��

��

��

�� ��

��

��

�� ��

��

�� ��

��

�� ��

��

�� ��

��

��

�� ��

��

��

�� ��

����	�����������������

����	����������������

Figure 2. (a) Dual-bus Network and (b) Dual-star
Network

In a dual bus topology, CRC error detection is only
used for medium-induced errors because the communica-
tion path from one communication controller to another
does not contain active inter-stages. For medium-induced
errors and low bit-error rates, the probability of undetected
errors is likely less than 2−24 ≈ 6 · 10−8 per message (sec-
tion 3.1). Fault-tolerance mechanisms on top of the bus can
reach at most an integrity value of 6 · 10−8 per message, if
no other error detection mechanism (e.g. physical layer en-
cryption as described in section 5.4) is taken into account.
At 10,000 messages per second and a BER of 10−6, this is
approximately 2 · 10−6 failures per hour.

In a dual-star topology with an active inter-stage such a
bus guardian with reshaping of the signal1, the end-to-end
error detection of CRCs cannot easily be analyzed, because

1Note that the passive unconstrained failure mode of central guardians
refers to creating messages. While it is possible [31], it is difficult to as-

failures might be uncorrelated. In the worst case, the unde-
tected error probability (and thus integrity of the communi-
cation network) is the device failure rate of any active inter-
stage, which is around 10−6 (section 2). The complexity of
the inter-stage is not the primary issue here. The issue is
that any device can fail in an arbitrary way, including cor-
related bit flips. This is a failure mode against which CRCs
provide a poor error detection probability.

The recent shift in X-by-Wire protocol emphasis from
distributed bus-based architectures towards star-based ar-
chitectures with active central inter-stages comes along with
a potential significant decrease in the achievable depend-
ability. In a bus-based system, the device failure rate of
network components can be masked, e.g., by using voting
of multiple independent data sources. For a star-based sys-
tem with active inter-stages, the device failure rate of the
inter-stage influences every message. As a consequence
of the central element potentially affecting the integrity of
every message, voting of independent sources is not effec-
tive for nodes connected to any single star hub. If voting
can be done at all, it requires voting across multiple star
hubs. This transforms the purpose of having multiple physi-
cal networks from one of reliability and availability (having
a second physical network in case the first one breaks) to
one of integrity (having a second physical network to avoid
single-point failures that corrupt data in an arbitrary man-
ner).

It has to be stressed that this comparison solely looks at
the CRC error detection coverage. A holistic picture should
consider the failure probabilities of the different architec-
tures as well. In reality, the likelihood of failures on a bus
system may be greater than the likelihood of failures on
a star-based system due to several factors, such as: a bus
topology has a higher bit error rate due to more connectors
that can fail on a per-link basis, additional reflections due
to more connectors on the shared common hardware link,
increased driver load due to greater bus driver fan out, and
common resource failures (spatial proximity failures, bab-
bling nodes). As an example: The probability of a babbling
device in a dual-bus configuration with 20 end-components
is 2·10−6(= 20·10−7) for device failure rates of 10−7 caus-
ing babbling failures. In a dual star configuration, where
the inter-stage detects babbling nodes with sufficiently high
coverage (say it detects babbling failures with a coverage of
10−3), the probability of the system being affected by bab-
bling devices is equal to 2 · 10−9(10−3 · 2 · 10−6). Assum-
ing independence of the interstages, the probability of both
inter-stages failing at the same time is better than 2 · 10−9.
For such a “babbling” failure mode, dual-star clearly out-
performs the dual-bus configuration.

We have to mention again that it is difficult to tell

sociate a probability number for creation of messages. Yet, a guardian
performs signal reshaping. Any reshaping circuit is active and will influ-
ence CRC coverage even with a simple failure mode, if a systematic error
is assumed!



what the real device failure rate is that leads to an unde-
tected CRC error of an inter-stage. Yet, some of the au-
thors have seen “unbelievable” failure modes [13], so as-
suming the worst case is always a good rule to follow in
ultra-dependable system design.

5. Design Recommendations

This section explicitly states some guidelines for the
use of CRCs in ultra-dependable systems. It also presents
design mitigation strategies illustrating how to avoid re-
liance on CRCs for error detection for sources beyond
medium-induced errors. These guidelines and design mit-
igation strategies are only intended to be used for ultra-
dependable systems (i.e., system failure rates of 10−9 fail-
ures per hour or smaller).

5.1. Use CRCs Only for Medium-Induced Errors

Given that any device in the system can fail in any arbi-
trary way, including systematic failures that violate the ran-
dom independent error assumption, CRCs should only be
used for error-detection coverage in the network medium.

The end-to-end error detection ability of CRCs
for communication paths including active inter-stages is
bounded by the device failure rate (i.e. around 10−6 fail-
ures per hour, section 2). Beyond a certain point, using big-
ger CRCs doesn’t provide additional coverage, because the
inter-stage device failure rate dominates.

As explained in section 2, testing is not a means to
achieve 10−9 assurance levels. These arguments rule out
the sole dependence on CRCs for end-to-end error-detection
coverage if inter-stages are present, including even inter-
stages constructed with passive devices. That is, a system
should not solely rely on the use of CRCs to produce signed
messages. Building upon this guideline are the recommen-
dations described in the next sections.

5.2. Independent Data Paths for Topologies with
Inter-stages

In systems with inter-stages it is necessary to use in-
dependent communication paths to achieve sufficient data
integrity assurance. The argument is that a checking mech-
anism that can increase the error detection coverage of the
communication medium needs independent input (indepen-
dent from the inter-stages). The following two sections il-
lustrate how this might be achieved:

5.2.1. Voting. An example of the use of voting in order
to achieve data integrity is ROBUS (reliable optical bus)
from SPIDER [34]. SPIDER may use CRCs to detect errors
in the communication medium, but does not depend on the
error-detection coverage of CRCs. Figure 3 depicts a single-
fault tolerant ROBUS of SPIDER.

��� ��� ��� ��� ���

��� ������

����	
�

���� ������	���������	��

���� ���
�	
�	�����	�����	���	���

Figure 3. ROBUS of SPIDER: example of voting to
ensure data integrity and availability in a single
Byzantine failure scenario

The SPIDER architecture contains inter-stages, called
redundancy management units (RMUs), between the end
nodes, called bus interface units (BIUs). To perform suc-
cessful majority voting despite F faulty elements (RMU,
BIU, or links), SPIDER requires at least 2F + 1 RMUs and
2F + 1 BIUs with direct connections between each RMU
and BIU. For a single fault-tolerant systems, this means at
least 3 RMUs and 3 BIUs. As a consequence of redundancy,
majority voting allows bit-for-bit comparison and thus pro-
vides data integrity and availability.

5.2.2. Coverage – Braided Ring. Another concept
achieving integrity data via independent links and thus no
reliance on CRCs to cover inter-stages is the full error-
detection coverage approach achieved by an independent
link. The coverage approach requires an independent (pas-
sive) communication path in case of an inter-stage.

���� ���� ����

����	
�

����� �����	�����	��	�������

Figure 4. Coverage approach to assurance of data
integrity

Figure 4 illustrates the coverage approach for an inter-
stage – communication controller 2 (CC 2) – for a data path
from CC 1 to CC 3. Data from CC 1 to CC 3 is sent via
CC 2 and directly. This allows bit-for-bit comparison at the
receiver and ensures data integrity despite of the presence
of an inter-stage.

A braided ring uses the full coverage approach to
achieve assurance of the error detection coverage for inter-
stages [19]. Each node of the ring performs a bit-for-bit
comparison of the received data of its inner link and its braid
link, which enables high-integrity data transmission without



relying on CRC error detection capability.

����

����

����

����	
�

����� �����	�����	��	�������

��������

����

Figure 5. Conceptual view of a braided ring using
coverage approach building blocks

The braided ring uses the reverse transmission direc-
tion to achieve communication availability. The ring can
use CRCs to detect medium-induced errors without influ-
ence of systematic failures of inter-stages. The connectivity
in the ring allows neighboring devices to work as fully in-
dependent guardians without the expense of additional de-
vices. Figure 5 shows a conceptual view of the ring. Ca-
bling of the braid can be routed via the inter-stage, which
saves wires and cabling effort. The braided ring achieves
equivalent integrity levels as SAFEbusTM [21].

5.3. Careful Analysis of Extended CRC Checks

Any change in the data of an extended CRC check (that
is, any change in the untransmitted data) must be detectable
by CRCs. That is, the length of any sequence of bits in the
untransmitted data that can differ between the source and
destination must be limited to the length of the CRC, and
the total number of bits that can differ between the source
and destination must be smaller than the Hamming distance.

The interactions of extended CRC checks and medium-
level coverage should be studied in detail. Once the data for
the extended CRC check or the CRC initialization value at
the sender and receiver differ, the error-detection coverage
of CRCs on the physical layer is decreased, because any
additional bit errors on the physical layer may exceed the
error detection capability of the CRC.

The practice of using different initialization values (also
called seed values) to provide separate virtual communica-
tion channels has similar issues to an extended CRC check.
From an error detection perspective, using different initial-
ization values for computing CRCs is identical to having
untransmitted data equal to the CRC size. Both techniques

reduce the effective Hamming distance available by over-
loading CRC operation with both data error detection within
a virtual channel and prevention of spillover between virtual
channels in the event of bit errors.

Extended CRC checks and/or different initialization
methods should only be used where the consequences are
studied in detail. An example for using the different initial-
ization values in the CRC calculation in an acceptable way
can be found in TTP/C, which initializes the CRC block
differently for different channels. The initialization values
are a function of the schedule identifier of the TDMA ac-
cess table (Message Descriptor List) in TTP/C. This allows
detection of crossed-out channels and incompatible sched-
ules. The use of CRCs to prevent incompatible schedule ta-
bles seems to be adequate and will be detected with a high
probability.

5.4. Physical Layer Encryption

Instead of using CRC initialization values or extended
CRC checks, physical layer “encryption” can be a design al-
ternative (or additional mechanism) to achieve a good error-
detection coverage. Crossed channels (two channels mis-
takenly connected to the wrong connectors on a physical
device) are one type of error that can be detected with phys-
ical layer encryption. Two channels are considered crossed
out if the signal on one is the inverted signal on the other.
Since start of message signals normally use out-of-band en-
codings, channels connected backward will send invalid (in-
verted polarity) start of message signals, and thus be de-
tected independently of the CRC.

For example, in TTP/C this means that if one chan-
nel uses a specific physical medium level decoding then the
other channel could use the inversion of the first without af-
fecting the error detection coverage of CRCs. Using differ-
ent bit encoding schemes on two channels (e.g., Manchester
vs. NRZ encoding) is another common approach. Please
note, however, that certain physical layer decoding tech-
niques, such as bit stuffing can influence the error detection
coverage of CRCs, as illustrated for CAN in [43].

5.5. Cryptographic Techniques

There have been many suggestions in the literature to
provide message integrity and authentication by using cryp-
tographic integrity methods similar to CRCs. These meth-
ods append either a message authentication code or a digital
signature to a message. The distinction between these meth-
ods is that the latter uses public-key cryptography. These
suggestions always include the required assumption that the
appended data is “unforgeable”. Alternatively, one could
use a CRC and append the message sender’s ID to each
message, either explicitly or implicitly (e.g. use the ID as
the CRC seed). The CRC method typically is 10 to 1000
times less costly in system resources (CPU time, memory,
hardware area) than the cryptographic methods.



Cryptographic integrity methods do not provide fault
detection benefits to ultra-dependability that are commen-
surate with their additional costs. In fact, in one respect,
the cryptographic methods are weaker than a CRC method.
This is because the cryptographic methods cannot guaran-
tee a Hamming distance greater than one. If this were not
the case, the method would be cryptographically weak. An
interesting issue is the degree to which the “unforgeable”
assumptions hold. One fallacy is that cryptographic meth-
ods with a secret key are harder to forge. In reality, it makes
no difference to natural failure mechanisms whether the key
is kept secret or is published in all the world’s newspapers.
For equal size ID/key, the probability of success for “brute
force attacks” is the same for CRCs as it is for any crypto-
graphic method. The remaining assumption question is: Is
it more probable that a device failure will emulate a simple
CRC mechanism than a more complex cryptographic mech-
anism? The question is moot. The probability of either
is so small that their difference is unquantifiably infinitesi-
mal. That is, one cannot gather enough statistical evidence
to differentiate between the probabilities. For this reason,
many certification agencies say that one cannot differentiate
among failure behaviors for devices with very small failure
rates. That is, one must assume that when such a device
does fail, it fails such that it does exactly what you don’t
want to do. An example is a failure that results in a device
state and/or structure change that then can forge messages.
Thus, there is no distinction between the failure probabili-
ties for CRC versus cryptographic mechanisms.

6. Conclusions

Cyclic Redundancy Codes (CRCs) are a proven ap-
proach to detecting errors for random, independent bit in-
versions of the type often seen on passive communication
media. They can help bring communication system unde-
tected error rates down to the level of hardware component
failure rates.

However, the use of CRCs as a mechanism to provide
ultra-dependable system operation (10−9 failures/hour) is
questionable in many cases. The main problem is that net-
work inter-stages can exhibit arbitrary faults, accidentally
forging valid CRC check sequences. These faults can dom-
inate system dependability issues, resulting in undetected
failures at the 10−6 component failure rate.

Getting beyond the component failure rate limit re-
quires architectural methods. Moreover, cryptographic
methods cannot be argued to be strong for single arbitrary
component failures.

An additional consideration in the use of CRCs is that
the inclusion of ”hidden“ state in CRC computations can
compromise error detection properties. This includes both
extended CRCs, in which hidden state is included in a CRC
computation, as well as diverse initialization (seed) values
intended to provide logically separate communication chan-

nels over a single network. Careful consideration of Ham-
ming distance capability as well as potential differences in
hidden state computations is required to avoid compromis-
ing error detection effectiveness if a data transmission error
happens to combine with a hidden state difference to pro-
duce an undetected error.

7. Acknowledgements

This work is supported in part by the General Motors
Collaborative Research Laboratory at Carnegie Mellon Uni-
versity, the American Association of University Women and
Zonta Int. fellowship programs, a National Science Founda-
tion Graduate Research Fellowship, and the Federal Avia-
tion Administration, Aircraft Certification Service (AIR-1),
800 Independence Ave., S. W., Washington, DC 20591.

Any opinions, findings, conclusions, or recommenda-
tions expressed in this publication are those of the authors
and do not necessarily reflect the views of the National Sci-
ence Foundation or the Federal Aviation Administration.

References

[1] K. Abdel-Ghaffer, “A Lower Bound on the Undetected Error
Probability and Strictly Optimal Codes”, Information The-
ory, IEEE Trans. on, Sept. 1997, pp. 1489–1502.

[2] Airlines Electronic Engineering Committee (AEEC), “Part
7: Avionics Full Duplex Switched Ethernet (AFDX) Net-
work (Draft 3)”, Project Paper 664: Aircraft Data Network,
Aeronautical Radio, Inc., Annapolis, MD, USA, Sept. 2004.

[3] Allen-Bradley, “Tech Talk: A Giant Leap in Noise Immu-
nity: Unshielded is NOT Unhealthy”, Sensors Today, Rock-
well Int. Corp., June 1999, pp. 8–13.

[4] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr,
“Basic Concepts and Taxonomy of Dependable and Secure
Computing”, Dependable and Secure Computing, IEEE
Trans. on, IEEE Press, Jan. 2004, pp. 11–33.

[5] G. Bauer, H. Kopetz, and W. Steiner, “The Central Guardian
Approach to Enforce Fault Isolation in a Time-Triggered
System”, Autonomous Decentralized Systems, Proc. of the
6

th Intl. Symp. on, Pisa, Italy, Apr. 2003, pp. 37–44.
[6] G. Bauer and M. Paulitsch, “An Investigation of Member-

ship and Clique Avoidance in TTP/C”, Reliable Distributed
Systems, Proc. of the 19

th IEEE Symp. on, IEEE Press,
Nuremberg, Germany, Oct. 2000, pp. 118–124.

[7] V. Blinovsky, “New Estimation of the Probability of Unde-
tected Error”, Information Theory, Proc. of Int. Symp. on,
IEEE Press, 17–22 Sept 1995, p. 57.

[8] A. Bouajjani and A. Merceron, “Parametric Verification of a
Group Membership Algorithm”, Formal Techniques in Real-
Time and Fault-Tolerant Systems, Int. Symp. on, LNCS Vol.
2469, Springer-Verlag Heidelberg, Sept 2002, pp. 311–330.

[9] R. Butler and G. Finelli, “The Infeasibility of Quantifying
the Reliability of Life-Critical Real-Time Software”, Soft-
ware Engineering, IEEE Trans. on, Jan. 1993, pp. 3–12.

[10] G. Castagnoli, S. Brauer, and M. Herrmann, “Optimization
of Cyclic Redundancy-Check Codes with 24 and 32 Parity
Bits”, Communic., IEEE Trans. on, June 1993, pp. 883–892.



[11] E. Chan, Q. Le, and M. Beranek, “High Performance,
Low-Cost Chip-on-Board (COB) FDDI Transmitter and Re-
ceiver for Avionics Applications”, Electronic Components
and Technology Conf., Proc., IEEE, May 1998, pp. 410–17.

[12] C. Constantinescu, “Trends and Challenges in VLSI Circuit
Reliability”, IEEE Micro, July–Aug. 2003, pp. 14–19.

[13] K. Driscoll, B. Hall, M. Paulitsch, P. Zumsteg, and H. Siven-
crona, “The Real Byzantine Generals”, IEEE Aerospace and
Electr. Systems Soc., Salt Lake City, UT, USA, Oct. 2004.

[14] K. Driscoll, B. Hall, K. Sivencrona, and P. Zumsteg.,
“Byzantine Fault Tolerance, from Theory to Reality”, Comp.
Safety, Reliability and Security (SAFECOMP 2003), Conf.,
LNCS 2788 Springer-Verlag, Sept. 2003, pp. 235–248.

[15] Federal Aviation Administration, U.S.Dept.of Transp., “Part
25 Airworthiness Standards: Transport Category Airplanes.
Section 25.1309”, Code of Fed.Reg. Title 14: Aeronautics
and Space, U.S. Gov. Print. Off., 2004, pp. 456–457.

[16] FlexRay Cons., FlexRay Communications System: Pro-
tocol Spec. Ver.2.0, http://www.flexray-group.
com/ (accessed on 2004-12-03), June 2004.

[17] F. Fu, T. Kløve, and V. Wei, “On the Undetected Error Prob-
ability for Binary Codes”, Information Theory, IEEE Trans.
on, IEEE Press, Feb. 2003, pp. 382–390.

[18] T. Fujiwara, T. Kasami, and S.-P. Feng, “On the Monotonic
Property of the Probability of Undetected Error for a Short-
ened Code”, Information Theory, IEEE Trans. on, IEEE
Press, Sept. 1991, pp. 1409–1411.

[19] B. Hall, K. Driscoll, M. Paulitsch, and S. Dajani-Brown
“Ringing Out Fault Tolerance: A New Ring Network for
Superior Low-Cost Dependability”. In Dependable Systems
and Networks, Conf., Yokohama, Japan, June–July 2005.

[20] G. Heiner and T. Thurner, “Time-Triggered Architecture
for Safety-Related Distributed Real-Time Systems in Trans-
portation Systems”, Fault-Tolerant Computing Symp, Proc.
of, IEEE, Munich, Germany, June 1998, pp. 402–407.

[21] K. Hoyme and K. Driscoll, “SAFEbusTM”, IEEE Aerospace
and Electronics Systems Mag., IEEE, Mar. 1993, pp. 34–39.

[22] International Electronic Commission (IEC), IEC 61508:
Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-related Systems., IEC, http://www.
iec.ch/ (accessed on 03 Dec 2004), 1998–2004.

[23] International Electrotechnical Commission, IEC 61375-7,
Annex B: Guidelines for Conformance Testing, IEC, http:
//www.iec.ch/ (accessed on 03 Dec 2004), May 1998.

[24] H. Konuk and F. Ferguson, “Oscillation and Sequential Be-
havior Caused by Interconnect Opens in Digital CMOS Cir-
cuits”, Test Conference, Proc. of the IEEE Int., IEEE Comp.
Soc. Press, Nov. 1997, p. 597.

[25] P. Koopman, “32-bit cyclic redundancy codes for Internet
applications”, Dependable Systems and Networks, Proc. Int.
Conf. on, IEEE, Wash., DC, USA, June 2002, pp. 459–468.

[26] P. Koopman and T. Chakravarty, “Analysis of the Train
Communication Network Protocol Error Detection Capabil-
ities”, Technical Report, Carnegie Mellon University, Pitts-
burgh, PA, USA, Feb. 2001.

[27] P. Koopman and T. Chakravarty, “Cyclic Redundancy Code
CRC Polynomial Selection For Embedded Networks”, De-
pendable Systems and Networks, Int. Conf. on, IEEE, Flo-
rence, Italy, 28 June – 1 July 2004, pp. 131–140.

[28] P. Koopman, E. Tran, and G. Hendrey, “Toward Middle-
ware Fault-Injection for Automotive Networks”, Fast Ab-
stract. Fault-Tolerant Computing Systems, 28th Int. Symp.
on, IEEE Comp. Soc. Press, Munich, Germany, June 1998.

[29] A. Kuznetsov, F. Swarts, A. Vinck, and H. Ferreira, “On
the Undetected Error Probability of Linear Block Codes on
Channels with Memory”, Information Theory, IEEE Trans.
on, IEEE Press, Jan. 1996, pp. 303–309.

[30] W. Lai, “End-to-End Probability of Undetected Error in
Computer Networks”, Communications, IEEE Trans. on,
IEEE Press, Mar. 1986, pp. 291–293.

[31] D. B. Lavo, T. Larrabee, and B. Chess, “Beyond the Byzan-
tine Generals: Unexpected Behaviour and Bridging Fault
Diagnosis”, Test Conference, Proc. of Int., IEEE, Washing-
ton, DC, USA, Oct. 1996, pp. 611–619.

[32] S. Leung-Yan-Cheong and M. Hellman, “Concerning a
Bound on Undetected Error Probability”, Information The-
ory, IEEE Trans. on, IEEE Press, Mar. 1976, pp. 235–237.

[33] S. Lin and D. Costello, Error Control Coding: Fundamen-
tals and Applications, 2nd edition, Prentice Hall, Englewood
Cliffs, NJ, USA, 2002.

[34] P. Miner, M. Malekpour, and W. Torres, “A conceptual de-
sign for a Reliable Optical Bus (ROBUS)”, Proc. of the 21

st

Digital Avionics Systems Conference, IEEE Press, Hampton,
VA, USA, 2002, pp. 13D3–1 – 13D3–11.

[35] W. Peterson and E. Weldon, Error-Correcting Codes, 2nd
edition, MIT Press, Cambridge, MA, USA, 1972.

[36] D. Powell et al. A Generic Fault-Tolerant Architecture for
Real-Time Dependable Systems, p. 45ff. Kluwer Academic
Publishers, 2003.

[37] RTCA, Inc., RTCA/DO-178b: Software Considerations
in Airborne Systems and Equipment Certification, RTCA,
Washington, DC, USA, Dec. 1992.

[38] RTCA, Inc., RTCA/DO-254: Design Assurance Guidance
For Airborne Electronic Hardware, RTCA, Washington,
DC, USA, Apr. 2000.

[39] H. Sivencrona, P. Johannessen, and J. Torin “Protocol Mem-
bership Agreement in Distributed Communication System –
A Question of Brittleness”. In SAE World Congress, number
2003-01-0108, Detroit, MI, USA, Mar. 2003. SAE.

[40] R. Stephens, “Analyzing Jitter at High Data Rates”, IEEE
Optical Communications, Feb. 2004, pp. S6–S10.

[41] J. Stone, M. Greenwald, C. Partridge, and J. Hughes, “Per-
formance of Checksums and CRC’s Over Real Data”, Net-
working, IEEE/ACM Trans., ACM, Oct. 1998, pp. 529–543.

[42] J. Stone and C. Partridge, “When the CRC and TCP check-
sum disagree”, Applications, Technologies, Architectures,
and Protocols for Computer Communication, Proc. of the
Conf. on, ACM, Stockholm, Sweden, 2000, pp. 309–319.

[43] E. Tran “Multi-Bit Error Vulnerabilities in the Controller
Area Network”, Master’s thesis, Carnegie Mellon Univer-
sity, Pittsburg, PA, USA, 1999.

[44] TTTech Computertechnik GmbH, Time-Triggered Protocol
TTP/C, TTTech Comp. GmbH, Vienna, Austria, 2004.

[45] U.S. Dept. of Defense, MIL-HDBK-217F: Reliability Pre-
diction of Electronic Equipment, DAPS, Philadelphia, PA,
USA, Feb. 1995.


	Carnegie Mellon University
	Research Showcase
	1-1-2005

	Coverage and the Use of Cyclic Redundancy Codes in Ultra-Dependable Systems
	Michael Paulitsch
	Jennifer Black
	Brendan Hall
	Kevin Driscoll
	Elizabeth Latronico
	See next page for additional authors
	Recommended Citation
	Authors



