
Carnegie Mellon University
Research Showcase

Software Engineering Institute

2-1-2011

A Framework for Evaluating Common Operating
Environments: Piloting, Lessons Learned, and
Opportunities
Cecilia Albert
Carnegie Mellon University, cca@sei.cmu.edu

Steven Rosemergy
Carnegie Mellon University, swrosemergy@sei.cmu.edu

Follow this and additional works at: http://repository.cmu.edu/sei

This Technical Report is brought to you for free and open access by Research Showcase. It has been accepted for inclusion in Software Engineering
Institute by an authorized administrator of Research Showcase. For more information, please contact research-showcase@andrew.cmu.edu.

Recommended Citation
Albert, Cecilia and Rosemergy, Steven, "A Framework for Evaluating Common Operating Environments: Piloting, Lessons Learned,
and Opportunities" (2011). Software Engineering Institute. Paper 663.
http://repository.cmu.edu/sei/663

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fsei%2F663&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/sei?utm_source=repository.cmu.edu%2Fsei%2F663&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/sei?utm_source=repository.cmu.edu%2Fsei%2F663&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/sei/663?utm_source=repository.cmu.edu%2Fsei%2F663&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

A Framework for Evaluating Common
Operating Environments: Piloting,
Lessons Learned, and Opportunities

Cecilia Albert
Steve Rosemergy

February 2011

SPECIAL REPORT
CMU/SEI-2010-SR-025

Acquisition Support Program
Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2011 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-
nal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about SEI publications, please visit the library on the SEI website (www.sei.cmu.edu/library).

mailto:permission@sei.cmu.edu
http://www.sei.cmu.edu/library

CMU/SEI-2010-SR-025 | i

Table of Contents

Acknowledgments vii

Abstract ix

1 Introduction 1
1.1 Background 1

2 Software Evaluation Framework 3
2.1 Common Language: Why it is Important 3
2.2 Software Evaluation Framework for Common Operating Environments 4
2.3 Linking Business Goals and Quality Attributes 6
2.4 Software Evaluation Process 6

3 Post-Mortem Notes 9

Appendix A: Assessment Framework Questions 10

Appendix B: Case Study—ASA(ALT) Case Study Assessment 14

Appendix C: Case Study—Software Assessment Results 20

References 24

CMU/SEI-2010-SR-025 | ii

CMU/SEI-2010-SR-025 | iii

List of Figures

Figure 1: Software Evaluation Framework 3

Figure 2: Common Operating Environment 14

CMU/SEI-2010-SR-025 | iv

CMU/SEI-2010-SR-025 | v

List of Tables

Table 1: Quality Attribute Areas 5

Table 2: Sample Questions by Quality Attribute Area 5

Table 3: Quality Attribute to Business Mapping 6

Table 4: Essential Characteristics of the Evaluation Method Applied to Technical Solutions 6

Table 5: The High-Level Process 7

Table 6: Quality Attribute Characterization 8

Table 7: Post-Mortem Strengths and Opportunities 9

Table 8: Business Goals and Priorities 20

Table 9: Quality Attribute to Business Goal Mapping 20

Table 10: Summary Technical Solution Strengths and Weaknesses 21

CMU/SEI-2010-SR-025 | vi

CMU/SEI-2010-SR-025 | vii

Acknowledgments

The authors would like to acknowledge the time and contributions of Dr. Lawrence E. Grosberg,
Steve Ford, Monica Farah-Stapleton, Phillip Minor, and Lt. Colonel Steward Liles with the U.S.
Army. Their participation in this study provided invaluable insight and guidance regarding the
business objectives of the technical solutions under review. We would also like to acknowledge
Pete Dugan and Evan Jalbert, with MITRE, for their contributions and feedback associated with
the technical aspects of this study.

Finally, we would like to acknowledge John Klein, Edwin Morris, and Bryce Meyer of the SEI.
Each was instrumental to the successful development of the evaluation framework, leveraging
past work, experience, and practical insight.

CMU/SEI-2010-SR-025 | viii

CMU/SEI-2010-SR-025 | ix

Abstract

This report explores the interdependencies among common language, business goals, and soft-
ware architecture as the basis for a common framework for conducting evaluations of software
technical solutions. It also describes the SEI’s experience piloting this framework, which inte-
grated commercial technologies, customized open-source systems, and legacy systems, and the
insights gained from the project. As described in the report, those insights have enabled the SEI to
further refine the framework to make it reusable and applicable for a variety of technical solu-

tions.

CMU/SEI-2010-SR-025 | x

CMU/SEI-2010-SR-025 | 1

1 Introduction

1.1 Background

On May 24, 2010, the Pentagon published the execution order Army Enterprise Common Operat-
ing Environment Convergence Plan. This order directs the merging of two network modernization
strategies into one plan. In response, the Assistant Secretary of the Army for Acquisition, Logis-
tics, and Technology (ASA(ALT)) directed assessments of alternative technical solutions to both
support Army requirements and to develop insight into possible solution alternatives.

To promote both objectivity and timely closure of assessment activities, ASA(ALT) assembled a
team of internal and external technical experts, including U.S. Army Test & Evaluation Command
(ATEC), the Program Executive Office for Integration (PEO-I), MITRE, and the SEI.

With the goal of completing technical assessments by the end of July 2010, the SEI (under the
direction of ASA(ALT) was assigned the role of third-party subject matter expert and was tasked
with

1. creating a foundation of common language for all technical studies

2. developing a software evaluation framework, which can be used to independently validate
internal and external technical studies

3. facilitating the collection of data to populate the framework for use by the U.S. Army.

These three tasks are the basis for the evaluation framework described in this report.

CMU/SEI-2010-SR-025 | 2

CMU/SEI-2010-SR-025 | 3

2 Software Evaluation Framework

Figure 1: Software Evaluation Framework

As described in Section 1, the Army approached the SEI with an immediate need to develop ob-
jective insight into prospective technical solutions, using an approach based on broad goals. What
resulted was a reusable framework presented in this document, assessment results, and the basis
for developing informed decisioning on technical programs. Shown in Figure 1 are the key as-
pects of the software evaluation framework, which are common language, to facilitate alignment
of evaluation activities amongst the key stakeholders, quality attributes, which provide insight
into the underlying technical solution capabilities and constraints, and business goals. Taken to-
gether, these three aspects are used to develop objective and informative insight.

2.1 Common Language: Why it is Important

Common language is the main cog or gear, shown in Figure 1, of this interrelated set of activities.
Common language serves at least two purposes:

• to baseline common understanding of the scope of the overall assessment activities and pro-
vide declarative understanding of which quality attributes are important

• to facilitate and frame the most important business goals in the commonly understood con-
text, coupled with an assessment method, business goals, quality attributes, and common
language

Technical experts and business leaders in a multi-faceted team have differing perspectives and
source knowledge; this often creates gaps in understanding among involved stakeholders. Because
of this, establishing a common and objective understanding of key technical terms from authorita-
tive sources sets the stage for a common language. For this particular study, source terminology,
referenced from U.S. Army Chief Information Officer/G-6, the U.S. Army Training and Doctrine
Command (TRADOC), G-3/5/7 (Operations, Plans, and Training), and Boeing, created confusion

Common
Language

Quality
Attributes

Business
Goals

Assessment

Method

Assessment

Results

CMU/SEI-2010-SR-025 | 4

and competing discussions due to inconsistencies between source definitions, institutionalized
understanding, and commercial definitions and norms. Within the context and authority of each
organization, these technical terms were defined correctly—but taken out of their native context,
each was incomplete or insufficient for use in completing evaluation activities for the technical
solutions intended for common use across the Army enterprise.

In order to address this issue and establish common understanding and a foundation for proceed-
ing with evaluation activities, the SEI and ASA(ALT) collected references to each of the relevant
technical terms defined by the Department of Defense (DoD) and commercial industry. Each term
was then normalized and elaborated upon to incorporate illustrative descriptions and commonly
recognized commercial examples. Stakeholder reviews of the normalized definitions were then
conducted, followed by updates and enhancements to the terms. At the conclusion of this activity,
ASA(ALT) established a common set of terms to be used as part of the subsequent evaluation
activities and plans. The critical accomplishments associated with this activity were

• Centralized terminology: One defined set of terminology definitions, which include illustra-
tive elaborations, architectural descriptions, and commonly understood commercial exam-
ples.

• Reduced confusion and ambiguity: With one set of established terminology, debates and dis-
cussions surrounding which terms to use as the basis for subsequent studies were set aside.
While some disagreement remained with some aspects of the definitions, all stakeholders
agreed that the established terminology was sufficiently declarative for use for follow-on
evaluation activities.

• Stakeholder collaboration: Stakeholders contributed to the development of terms by sourcing
the authoritative descriptions, debating the merits of each, and providing feedback to the fi-
nalized terms. This early involvement in the development and evolution of the terms served
to establish rapport, understanding, and cooperation between the team members—important
elements needed for conducting evaluation activities.

2.2 Software Evaluation Framework for Common Operating Environments

With a foundation of common understanding of terms, quality attributes and business goals could
then be elaborated upon to develop our assessment framework. Because the technical solution
under review used many aspects of service-oriented architectures (SOAs), the SEI team leveraged
insights gleaned from development work associated with the SEI report titled Quality Attributes
and Service-Oriented Architectures, which was used as a starting point [O’Brien 2005]. The ra-
tionale for leveraging this body of knowledge was based in part on the type of technical solutions
under review. Composable stateless, location-transparent, and network-addressable services were
foundational attributes of the technical solutions—key hallmarks of service-oriented architectures.

The quality attribute areas for this framework are described in Table 1.

CMU/SEI-2010-SR-025 | 5

Table 1: Quality Attribute Areas

Quality Attribute Area Explanation

Adaptability Adaptability enables the common operating environment (COE) to respond to changes
in internal configuration and external environment.

Architecture Architecture of a software-reliant system is the structure of the system, which compris-
es software components, the externally visible properties of those components, and
the relationships among them.

Functional This area concerns a focus on functional capabilities provided by the COE.

Support for Governance Architecture governance is the practice and orientation by which architectures are
managed and controlled at an enterprise-wide level.

Interoperability This area concerns the ability of the COE to support interoperation among different
systems, versions of systems, and development environments.

Development and Test These concerns focus on the development and test environments for both the candi-
date COE and the applications developed to execute within the COE.

Hardware and Software
Platform

These concerns focus on the computing environments upon which the COE will ex-
ecute.

Quality of Service This area concerns a focus on the availability, performance, and other characteristics
of the services delivered by the COE.

Information Assurance This area concerns a focus on secure operation of the COE.

The quality attribute areas served as “containers” for individual quality attributes, which were
then transformed into a series of questions, designed to elicit the extent to which each alternative
addressed the attribute. Sample questions by quality attribute are shown in Table 2 (see Appendix
A for the full list of quality attribute questions). Note the cross referencing between quality
attributes and business goals.

Table 2: Sample Questions by Quality Attribute Area

ID Question

Q1 To what extent do development tools enforce established standards of the candidate COE system?
What aspects of the standards are not programmatically enforced? How might this affect governance
over application development?

Q2 How is compliance with candidate COE standards ensured for developed applications and services?

Q3 How do installation and deployment tools support governance through mechanisms such as environ-
ment compatibility validation, version checking, etc.?

Q4 What mechanisms are used to handle evolution of the infrastructure, tools, and deployed applications
in the current development of the candidate COE?

CMU/SEI-2010-SR-025 | 6

2.3 Linking Business Goals and Quality Attributes

In the absence of organizational goals, any evaluation of a technical solution against quality
attributes is of limited value. Quality attributes by themselves assume broadly associated business
goals (e.g., agility, streamlining, ease, and flexibility). This step in the process was designed to
incorporate declarative guidance to link the specific business goals of the Army, their relative
priority, and a declarative relationship to the quality attributes. Once this step was completed,
each goal was mapped to relevant quality attribute questions, providing a transparent prioritized
set of quality attribute questions with direct linkages to business goals.

Table 3: Quality Attribute to Business Mapping

Priority Q1 Q2 Q3 Q4 Q5 … Qn

Goal #1 1 x

Goal #2 2 x x

… … x

Goal #m m x x

2.4 Software Evaluation Process

To ensure that results of an evaluation provide objective, informative, and inclusive results, the
SEI felt that a declarative and transparent process for conducting the evaluation was needed.
Based on this need, the essential characteristics the SEI team deemed the most relevant to con-
ducting evaluation activities are outlined in Table 4.

Table 4: Essential Characteristics of the Evaluation Method Applied to Technical Solutions

Characteristic Explanation

Accuracy Appraisal characterizations reflect the technical solution’s capability against the stated busi-
ness goals. The approach could be used for comparison across technical solutions. Appraisal
results reflect the strengths and weaknesses of the evaluated technical solution.

Repeatability The characterizations and findings of a characterization will likely be consistent with those of
another independent appraisal conducted under comparable conditions.

Cost/Resource and
Effectiveness

The appraisal method is efficient in terms of person-hours spent planning, preparing, and
executing an appraisal. The method takes into account the organizational investment in ob-
taining the appraisal results, including the resources of the host organization, the impact on
the appraised organization, and the appraisal team.

Meaningfulness of
Results

Appraisal results are useful to the appraisal sponsor in supporting decision-making. This
support of decision-making may include application of the appraisal results in the context of
technical solution selection, or continued engineering investment.

CMU/SEI-2010-SR-025 | 7

Rather than invent standards and rules for conducting the evaluation, the team borrowed from
proven approaches developed by the SEI, the Standard CMMI®1 Appraisal Method for Process
Improvement (SCAMPISM). As in the SCAMPI method, the team identified roles and responsi-
bilities for establishing the plan for the appraisal. However, because the appraisal was conducted
against a set of business goals and quality attributes instead of against a capability model, the
business goals served as the basis for appraisal results. The high-level process is outlined in Table
5.

Table 5: The High-Level Process

Step Activity Roles and Responsibilities

1 Quality attribute questions are answered
with supporting reference data to demon-
strate performance capabilities.

A. The assessment team provides quality
attribute questions to the technical solu-
tion owner.

B. The technical solution owner answers
questions and provides supporting data.

C. The assessment team provides quality
attribute question guidance.

2 Establish business goals associated for the
prospective technical solution under consid-
eration and review. Prioritize goals and cor-
relate goals to quality attribute questions.
Identify critical quality attributes and goals
that must be achieved.

A. The sponsor coordinates definition, re-
finement, and prioritization of mission and
business goals.

B. The assessment team provides process
support, as requested.

C. The sponsor and assessment team con-
ducts quality attribute to goal mapping.

3 For each candidate COE, characterize an-
swers to questions to identify key strengths
and weaknesses based on the established
and prioritized business goals.

A. The assessment team performs the as-
sessment.

B. The assessment team validates assess-
ment characterizations with the technical
solution owner.

C. The technical solution owner responds to
findings with supporting data where find-
ings disagree. The technical solution own-
er acknowledges key strengths and weak-
nesses.

4 For each candidate COE, conduct a roll-up
characterization of identified strengths and
weaknesses by business goal. Aspects that
definitively achieve the identified business
goal are identified as key strengths, weak-
nesses which place high or medium priority
goals at risk are characterized as risk areas.

A. The assessment team performs the as-
sessment.

B. The assessment team presents results to
the sponsor.

C. The sponsor validates the assessment
team’s findings.

Table 6 shows a sample characterization. The quality attributes are linked to business goals, with
indicators of strength and weakness. Key strengths indicate goal achievement of medium- or high-
priority goals. Risk area indicates that a medium- or high-priority goal may not be achievable
based on the indicated weaknesses. The weaknesses column indicates that one or more weak-
nesses have been identified. The business goal (L, M, H) can be used to weigh or normalize cha-
racterizations.

1 CMMI is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. SCAMPI is a ser-

vice mark of Carnegie Mellon University.

CMU/SEI-2010-SR-025 | 8

Table 6: Quality Attribute Characterization

Business Goal Strengths Weaknesses/
Observations

Importance Characterization

Goal ID(s) Attributes of the technical
solution that demonstrate
achievement of business
goal(s).

Indicators that
a goal may not
be met

[L, M, H] based on
business priority

[Key strengths,
weaknesses,
and/or risk areas
identified]

Characterize
based on whether
technical solution
can achieve the
business goal.
See step 4.

CMU/SEI-2010-SR-025 | 9

3 Post-Mortem Notes

After completing the software evaluation pilot/case study, the SEI team conducted a post-mortem
discussion to identify both improvement opportunities and key strengths of the assessment
framework. Table 7 shows a summary of positive aspects and opportunities for improvement. The
software assessment framework had a positive impact on all assessment activities through the de-
velopment of foundational understanding among assessment participants, leading to more accu-
rate assessment findings. This was confirmed by complementary results from independent studies.

Table 7: Post-Mortem Strengths and Opportunities

Key Strengths Opportunities

The identified strengths and weaknesses reinforced
findings of other technical studies.

There were too many quality attribute questions.

The framework uniquely uncovered areas of risk asso-
ciated with the achievement of business goals.

There was insufficient time to conduct the assessment.

There was transparency of findings and characteriza-
tions.

Business goals were not very quantifiable.

The overall assessment process aligned all assessment
activities and foundational understanding among teams.

Prepping the technical team on quality attributes by
employing the mission thread workshop would likely
have helped.

A “perfect” assessment framework is not necessary to
develop representative findings.

The technical team had difficulty with questions. The
assessment team should complete the QA answers
through a series of interviews and data collection with
the technical team.

 Information assurance and licensing questions are rela-
tively thin.

For use of the framework in future studies, the following is recommended:

1. Reduce the size and refine the questions. Some of the quality attribute questions are duplica-
tive or unclear. Improvement could streamline the assessment process.

2. Improve information assurance questions. Leverage the CERT® Resilience Management
Model (CERT-RMM)2 to develop quality attribute questions relating to security, secure cod-
ing, and resilience. This quality attribute will become more important over time.

3. Develop formalized mechanisms for eliciting measurable business goals from business spon-
sors. This activity became a critical path item in completing assessment activities.

4. Refine the framework documentation to facilitate consistent use and reuse.

2 CERT is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

CMU/SEI-2010-SR-025 | 10

Appendix A: Assessment Framework Questions

Adaptability

Adaptability enables the COE to respond to changes in internal configuration and the external
environment.

1. What protocols and/or communication standards are adapted or translated for use in the can-
didate COE? What are the performance impacts? How does this affect interoperability with
other systems?

2. What (if any) off-the-shelf tools may be used or configured to work with the candidate COE
without modification? How?

3. Describe the system-tailoring options to adapt to internal configuration variations. What me-
chanisms and tools are used to tailor the candidate COE for different platforms? What is the
process or workflow required to create and deploy a tailored system?

4. How can applications interface with other systems within the candidate COE? What are the
interoperability and interfacing constraints?

5. Which modules, components, or subsystems of this operating environment can be utilized
and/or ported to other systems or OEs? What are the constraints and/or limitations of doing
so (e.g., licensing, technical)?

6. A new task organization is created. Describe the workflow required to configure the COE to
reflect this.

Architecture

The architecture of a software-reliant system is the structure of the system, which comprises soft-
ware components, the externally visible properties of those components, and the relationships
among them.

1. What is the architecture of the candidate COE (including rationale for key architectural deci-
sions)? How will the candidate COE architecture support both new and legacy applications?

2. How does the architecture support the strategic plans for the Army enterprise?

3. What mechanisms are available for synchronizing component and application interactions?
What is the rationale for these decisions?

4. How can data be shared across applications and domains?

5. What restrictions or constraints does the candidate COE place on application design?

6. What architectural patterns and technologies are necessary to bring legacy systems into
alignment with the candidate COE? Are the necessary technologies available today?

7. How does the candidate COE manage shared Computing Environment (CE) and network
resources used by multiple applications? Shared resources include CE throughput, CE mem-
ory, user interface (UI) display real estate and network bandwidth.

CMU/SEI-2010-SR-025 | 11

8. How does the candidate COE support applications operating in environments with compro-
mised operating conditions, such as intermittent network connectivity or disconnected opera-
tion?

9. If all data communications in and out of a single Tactical Operations Center (TOC) were lost
for one hour, how would the operation of the candidate COE be affected? When data com-
munication to the impacted TOC is restored, what is the sequence of events that the candi-
date COE would perform to restore full capability?

10. Can an application discover available services within the candidate COE at runtime (i.e.,
runtime binding between the application and other applications and middleware)? How is
this achieved?

11. How are errors handled and reported by the candidate COE? How do applications detect and
respond to errors in the candidate COE?

12. Does the candidate COE manage application processes and memory? How are application
faults handled?

Functional

These concerns focus on functional capabilities provided by the COE.

1. What functional capabilities of the underlying computing environment are explicitly made
unavailable when operating within the candidate COE? What is the rationale for removal?

2. What functional capabilities provided by the underlying computing environment are replaced
or overridden? What is the rationale for replacement?

3. What capabilities are provided for managing operations in the deployed COE (including per-
formance, capabilities, configurations, data, and infrastructure)?

Support for Governance

1. Architecture governance is the practice and orientation by which architectures are managed
and controlled at an enterprise-wide level.

2. To what extent do development tools enforce established standards of the candidate COE
system? What aspects of the standards are not programmatically enforced? How might this
affect governance over application development?

3. How is compliance with candidate COE standards ensured for developed applications and
services?

4. How do installation and deployment tools support governance through mechanisms such as
environment compatibility validation and version checking?

5. What mechanisms are used to handle the evolution of the infrastructure, tools, and deployed
applications in the current development of the candidate COE?

Interoperability

Interoperability concerns the ability of the COE to support interoperation among different sys-
tems, different versions of systems, and different development environments.

CMU/SEI-2010-SR-025 | 12

1. What software interfaces are exposed for use by external applications or services, including
new and legacy applications? What tools and technologies are these interfaces compatible
with? What standard technologies are used to realize these interfaces? What data models,
types, and formats are exposed on external interfaces to the candidate COE?

2. Can multiple versions of the candidate COE interoperate? How is this achieved? Describe
any constraints.

3. Can multiple versions of an application execute within the candidate COE? How is this
achieved? Describe any constraints.

4. Can multiple versions of a CE operate within the candidate COE? How is this achieved? De-
scribe any constraints.

5. Can non-certified applications operate within the candidate COE? How is this achieved? De-
scribe any constraints.

6. How are external capabilities invoked from the candidate COE and how do they invoke in-
ternal capabilities within the candidate COE?

7. What constraints are placed on systems outside to interoperate with this system?

8. How many distinct code bases are used to support CE and interface variability in the candi-
date COE?

Development and Test

These concerns focus on the development and test environments for both the candidate COE and
applications developed to execute within the COE.

1. Describe the development, testing, staging, and deployment environments for application
and services development.

2. What capabilities and support of the infrastructure are available for off-the-shelf develop-
ment tools?

3. What testing tools are included? Are there black box/white box, performance and profiling
tools? Is there a test executive included?

4. What installation and deployment tools are used for the candidate COE itself and for new
applications deployed to the candidate COE?

5. What logging, tracing, and debugging capabilities are available to support development and
maintenance of the candidate COE itself?

6. What logging, tracing, and debugging capabilities are available to support development and
maintenance of applications running within the candidate COE?

Hardware and Software Platform

These concerns focus on the computing environments upon which the COE will execute.

1. What computing environments are supported by the candidate COE?

2. What assumptions does the candidate COE make about its environment (e.g., platform, in-
frastructure, and operational characteristics)?

3. What dependencies does the candidate COE have with single-source off-the-shelf software
components?

CMU/SEI-2010-SR-025 | 13

Quality of Service

These concerns focus on the availability, performance, and other characteristics of the services
delivered by the COE.

1. What is the estimated availability of the candidate COE? What is the basis for this estimate?

2. What is the estimated capacity of the system (such as the number of nodes and simultaneous
transactions)? What mechanisms enable the management and monitoring of capacity per-
formance of the system?

Information Assurance

These concerns focus on secure operation of the COE.

1. What are the security monitoring capabilities?

2. How does the candidate COE implement information assurance (IA) policies? What aspects
are realized using COTS technology?

3. How does the candidate COE implement user management and identity management? Does
the COE provide an infrastructure for policy-based security?

4. How does the chosen IA approach impact other system quality attributes such as perfor-
mance, usability, and modularity.

CMU/SEI-2010-SR-025 | 14

Appendix B: Case Study—ASA(ALT) Case Study Assessment

Technical Memo: Developing Common Understanding

To: Monica Farah-Stapleton Date: June 10, 2010

From: Ceci Albert, Dennis Smith, Ed Morris, Bryce
Meyer, Sholom Cohen, Steve Rosemergy

Memo ID: ASA(ALT) 10-1-1 v.3

Subject: Refined OE, COE, and Middleware Defini-
tions

Keywords: computing environment,
operating environment,
common operating envi-
ronment, middleware,

Project: Army Strategic Software Improvement Pro-
gram (ASSIP)

No. Pages: 7

Summary The SEI reviewed public definitions of the terms “computing environment,” “common operat-
ing environment,” and “middleware” and elaborated on these definitions and their attributes
to aid common understanding for the purposes of evaluating systems solutions. Examples
included in this paper are intended only to provide illustrative insight into the definitions in-
dependent of the problem space.

References a) Vice Chief of Staff of the Army (VCSA) Execution Order: (U) Army Enterprise Common
Operating Environment (COE) Convergence Plan

b) U.S. Army CIO/G-6 Common Operating Environment Technical Architecture, Appendix
F to the Strategy for ‘End State’ Army Network Architecture—Tactical

Army
Definitions

Common Operating Environment

The common operating environment (COE) illustrated in Figure 2 is an approved set of
computing technologies and standards that enable secure and interoperable applications to
be rapidly developed and executed across a variety of computing environments (i.e., serv-
er(s), client, mobile, sensors, and platform).

Figure 2: Common Operating Environment

 Operating Environment

Each Operating+ Environment has a minimum standard configuration that supports the Ar-
my’s ability to rapidly produce and deploy high-quality applications and to reduce the com-
plexities of configuration, support, and training associated with the computing environment.
Reference document U.S. Army CIO/G-6 Common Operating Environment Technical Archi-
tecture, Appendix F to the Strategy for ‘End State’ Army Network Architecture—Tactical

CMU/SEI-2010-SR-025 | 15

elaborates further to specify specific functional requirements of an Army operating environ-
ment.

+NOTE: U.S. Army CIO/G-6 Common Operating Environment Technical Architecture, Ap-
pendix F to the Strategy for ‘End State’ Army Network Architecture—Tactical: label in draft
document mistakenly labels an Operating Environment as Computing Environment.

 Computing Environment

Computing environments are: server(s), client, mobile, sensors, and platform.

Discussion:
Concept and
Aspects of a
Common Operating
Environment

In its simplest form, a common operating environment is simply an infrastructure for enabling
distributed computing. Such an infrastructure incorporates reference standards (both com-
mercial and problem domain specific), and includes oversight mechanisms to provide go-
vernance over both the evolution of the infrastructure and compliance over the application
intended for deployment.

For software and software/hardware systems, a common operating environment will ordina-
rily start with a set of reference standards, software interfaces, data formats, protocols, and
systems used to allow distributed applications and systems to communicate, coordinate and
execute tasks, and respond to events in an integrated or predictable manner.

 Governance

Governance is the largest and most complex aspect of a given operating environment and is
realized in several complementary and integrated forms, including:

Standards Committee provides oversight over the standards and their evolution and de-
velops the requirements and constraints relating to the other aspects of governance. The
standards committee designs and evolves the common operating environment based on
both the business and technology needs of the consumer and organization over the life of
the common operating environment.

Application Governance is one of the more critical elements of a common operating envi-
ronment. Application governance oversees the deployment and usage of applications. Ap-
plication governance involves coordination between both automated processes imple-
mented by a supporting infrastructure (or the operating environment itself), and people
processes. Like the standards committee, all aspects of application governance are tied
directly to the business objectives of the governing organization.

Governance Tools reinforce the technical aspects relating to application governance and
technologies accessible and approved for use within the common operating environment.
Generally, there are several types of governance tools available:

• Application development tools are designed to reinforce the rules associated with data
formats, protocols, and software interfacing.

• Automated testing tools are generally used to uncover software defects and non-
conformance with system or application requirements.

• Certification tools are used to aid reviewers and administrators of the system in gaining
insight into critical elements of an application before its deployment. Critical elements
may include safety and security, privacy, look and feel, application resiliency, resource
usage, and design and compliance rules.

• Deployment tools are used to ensure that applications are installed correctly in the
target computing environments without disrupting or compromising either a target sys-
tem or common operating environment.

• Technical/peer review is a people process executed by technical experts to find and
resolve software defects.

• Configuration management is used to manage versioning of integrated components for
applications and their deployment targets.

• Operations support provides maintenance support and monitors the health of the sys-
tem.

Examples

Commercial examples of software system COEs include Cisco WebEx, Microsoft NetMeet-

CMU/SEI-2010-SR-025 | 16

ing, and Apple iTunes.

Example Problem Space Reference

Description

Cisco WebEx Distributed confe-
rencing

www.cisco.com/en/US/prod/ps10352/collabor
ation_cloud.html

WebEx both provides applications and enables application development using Cisco
standardized APIs and standard OS and hardware platforms to enable secure collabora-
tion among a diverse set of connected devices/OS/protocols as long as they use com-
mercial protocols.

Microsoft
NetMeeting

Desktop
collaboration

http://technet.microsoft.com/en-
us/library/cc507850.aspx#E5

NetMeeting uses Microsoft methods for implementing internet security and communica-
tions protocols and standards, allowing developers to field applications that use provided
services via reuse to collaborate over a variety of platforms that run a Microsoft OS.

Apple iTunes Online sales and
distribution of
streaming and
stored entertain-
ment content

www.itunes.com

Apple provides the development environment and registers applications to allow applica-
tion development by integrating common components. The download software allows
diverse hardware and OSs to use the iTunes structure. SDK and Apple resources over
internet protocols secure communications.

Discussion:
Concept of an
Operating
Environment

At its core, an operating environment is an integral component of a common operating envi-
ronment where applications are developed. Generally, it includes a set of hardware and
software (but it could be purely software) configured to interface with both the common op-
erating environment and its underlying hardware or software components. Operating envi-
ronments vary in complexity and size (depending on their end-use application), but all en-
capsulate the critical elements needed to both interoperate AND develop applications within
the common operating environment. In most cases, one or more sets of governance tools
are deployed onto the operating environment to provide a framework for developing applica-
tions compatible with the common operating environment.

http://www.cisco.com/en/US/prod/ps10352/collabor
http://technet.microsoft.com/en-us/library/cc507850.aspx#E5
http://technet.microsoft.com/en-us/library/cc507850.aspx#E5
http://technet.microsoft.com/en-us/library/cc507850.aspx#E5
http://www.itunes.com

CMU/SEI-2010-SR-025 | 17

Commercial OE examples of systems and software systems include VMWare, Microsoft
Visual Studio.NET, Google Android Development Environment, Mobile Phones, VMware
Workstation/Server, and Sun Java Platform.

Examples

Example Governance OE Tools

Description

Cisco WebEx Distributed conferencing WebEx Connect Integration Platform

WebEx Connect Integration Platform provides a development environment that enables
integration between distributed conferencing and custom client applications. Cisco pro-
vides interfaces between applications and conference hosting for applications using web
services and platform-neutral mechanisms. Cisco’s governance infrastructure allows a
high degree of flexibility in how WebEx is used, while retaining common functional sup-
port for both internal and co-branded/third-party applications.

Microsoft
NetMeeting

Desktop collaboration Microsoft Visual Studio.NET

Microsoft VS.NET includes all necessary libraries and tools needed to integrate custom
user-defined applications with terminal services supporting Microsoft Windows (including
Windows Mobile), Linux, Unix, Mac OS X, and other current operating systems. Microsoft
provides governance support for VS.NET and shares governance responsibility for the
underlying protocols with the ITU. Governance allows a high degree of flexibility and only
governs to underlying protocols and platform support.

Apple iTunes Online sales and distribu-
tion of streaming and
stored entertainment con-
tent

PodCast Creator

Podcast Creator provides integrated support for creating iTunes applications, submission
to governing authority, and deployment to the iTunes network for sharing or purchase.
Podcast creator provides the necessary tools to create content and compile its required
metadata for publishing, discovery, cataloging, and extending the content to a series.
Tools dictate the constraints on the applications and content, constraining options for
developers, thereby providing safeguards against non-compliant content types. Addition-
al governance mechanisms have been institutionalized by Apple to review content for
appropriateness and security before it is published and to review the underlying protocol
for communication (itms).

CMU/SEI-2010-SR-025 | 18

Discussion:
Concept of
Computing
Environment

A computing environment (CE) comprises the necessary hardware and software required to
run applications within the common operating environment. Operating environments and
computing environments are essentially the same, the key difference being what each runs.
Operating environments are used to develop applications, and use development tools to
design and create applications to run in a computing environment. The computing environ-
ment by itself includes the necessary hardware, operating system, and library support in
order for it to run applications within the common operating environment.

 Example Computing Environments Common Operating Environment

Description

Cisco WebEx MS Windows PC, MAC-
0S4, iPhone, Blackberry

WebEx Meeting Services Platform

Microsoft
NetMeeting

MS Windows, Linux, MAC-
OS4

Open or closed network, custom user
defined

Apple iTunes MS Windows, MAC OSX,
Apple TV, iOS

Mac OS X 10.6 Snow Leopard,
iTunes Protocol (itms)

Discussion:
Concept of
Middleware

Middleware is custom software developed to support specific applications or COEs installed
and configured in an OE. Middleware can be thought of as drivers and libraries used to de-
velop and run specific applications in a given COE and OE, targeting specific CEs. Middle-
ware is customized software that modifies, overrides, or enhances the standard offerings of
a commercial off-the-shelf COE and is tightly coupled to applications and the OE it supports.
It is developed and packaged as a set of software components that are reusable from appli-
cation to application to provide a consistent look and feel or functionality within a given ap-
plication domain.

Commercial examples of middleware include Embedded Windows XP/CE (customized libra-
ries in Windows for embedded applications) and the Adobe Reader plug-ins for Internet
browsers.

CMU/SEI-2010-SR-025 | 19

Overall System
View

 Common Operating Environment

network

Enterprise
Server

Tactical Server

Sensors
Mobile/Platform

CMU/SEI-2010-SR-025 | 20

Appendix C: Case Study—Software Assessment Results

Business Context

As described in Section 2.3 of this report, to fully characterize the key strengths, weaknesses, and
risks associated with a given technical solution, a prioritized set of business goals provide the ne-
cessary guidance in conducting an evaluation. As part of the case study, the ASA(ALT) team pro-
vided the prioritized list of goals for evaluating the capability and suitability of a common operat-
ing environment, shown in Table 8. (A fifth goal “reduced overall cost” was also provided.
However, because this technical solution was evaluated in isolation, this goal was not included.)

Table 8: Business Goals and Priorities

Business Goal Description Importance

Operational
relevance

The COE supports the needs of the warfighter, not the application develop-
ment organization.

1

Interoperability The COE enables interoperation and data sharing of systems, applications,
and data sources.

2

Reduced devel-
opment time

The COE enables rapid application development, integration, and deployment. 3

Reduced certifi-
cation cost

The COE reduces certification costs through the use of common technology
that can be certified once and used in multiple computing environments.

4

Table 9: Quality Attribute to Business Goal Mapping

Business Goal Questions

A
d

ap
ta

b
ili

ty

A
rc

h
it

ec
tu

re

F
u

n
ct

io
n

al

G
o

ve
rn

an
ce

In
te

ro
p

er
ab

il
-

it
y

D
ev

el
o

p
-

m
en

t/
T

es
t

H
W

/S
W

P
la

tf
o

rm

Q
u

al
it

y
o

f
S

er
vi

ce

In
fo

rm
at

io
n

A

ss
u

ra
n

ce

Operational relevance Q6 Q3,8,
10

Q1,3 Q4 Q2-7 Q1,2 Q1,2 Q1-4

Interoperability Q1,4 Q5,7,
9

 Q1,5,6,
7

 Q1-3 Q3,4

Reduced development time Q2,3,5 Q5,6,
11,12,
13

Q2,3 Q1-4 Q2-8 Q1-9 Q1-3 Q2-4

Reduced certification cost Q2,3,5 Q11 Q2,3 Q1-4 Q2-8 Q1,2 Q3 Q1-4 Q2-4

Summary Characterization

Based on the answers and supporting documentation provided by the technical team, a characteri-
zation was developed using the business goals described in the Business Context section on page
20 of this document. For details relating to the characterizations, see Table 10, which summarizes
the significant strengths and weaknesses across all areas.

CMU/SEI-2010-SR-025 | 21

Table 10: Summary Technical Solution Strengths and Weaknesses

Business Goal Strengths Weaknesses Assessment

Operational
Relevance

Because technical solu-
tion is middleware,
much of the operational
relevance comes from
the applications that the
technical solution
enables, most notably
fault-tolerant communi-
cations capabilities.

Quality Attribute Areas:

• Architecture Q3,9,
10

1) Applications and Infrastructure must be in lock-
step, creating tight coupling between the COE and
deployed applications. Already deployed applica-
tions are not guaranteed to function with COE
changes.

2) Licensing constraints may preclude support for
platforms beyond the current solution set.

Quality Attribute Areas:

• Interoperability Q2, 3
• Development & Test Q7
• Support for Governance Q4
• Hardware and Software Platform Q1,2

Risk Area

Interoperability Loose coupling be-
tween infrastructure
and task capabilities
with adapters to provide
interoperation support.

Adapter extensibility support could lead to fragmen-
tation and undermine the Army's ability to migrate
toward unified approaches.

Key Strength

Reduced Devel-
opment Time

1) Dynamic services
discovery (AR11)

2) COTS development
tools can be used
(DT2)

Quality Attribute Areas:

• Architecture Q11
• Development & Test

Q2
• Interoperability Q6, 7

1) Development tools can bypass system infra-
structure.

2) Task integrated network (TIN) is a custom-
developed workflow solution that competes with
commercial alternatives.

3) Technical solution may be tightly coupled with
licensing constraints.

4) Performance relating to coordination across
application boundaries has not been established.

5) The complexity, fragility, and complexity of both
configuration files and their proliferation is high.

Quality Attribute Areas:

• Architecture Q4, 6, 13
• Functional Q1, 2
• Support for Governance Q1, 2
• Adaptability Q5

Risk Area

Reduced Certifi-
cation Cost

COTS testing and certi-
fication tools could be
used in place of custom
in-house solutions.

Quality Attribute Areas:

• Development &
Test: Q2

Provided development tools only govern source
syntax and do not govern usage. This may result in
extensive process/policy governance and testing.
This, in turn, may offset any savings afforded by
use of a common framework

Quality Attribute Areas:

• Architecture Q6
• Support for Governance Q1, 2

Weaknesses
Identified

Operational Relevance: Risk Area

This area was characterized as an area of risk because of weaknesses in how versioning is handled
within this framework. Because only a single version of the framework is supported on a given
node or set of connected nodes, applications must be developed, tested, certified, and deployed

CMU/SEI-2010-SR-025 | 22

with the framework each time changes occur in the common libraries. While it is possible to as-
sure functional backward compatibility with this architectural approach, behavioral and perfor-
mance-related compatibility cannot be guaranteed nor expected whenever common code is
changed and deployed onto one or more connected nodes. Because this weakness may have a di-
rect impact on warfighter access and availability to applications in mission-critical environments,
this goal is deemed a risk area with this technical solution.

Interoperability: Key Strength

This area was characterized as an area of strength for this technical solution. That is, it provides a
complete technical solution for interoperation with existing applications, services, and yet-to-be-
developed applications and services using other technical solutions. This area of strength could
become an area of weakness and liability because it can be used to undermine migration to unified
approaches, increasing the number of interoperable interfaces and adapters.

Reduced Development Time: Risk Area

This area was characterized as an area of risk for this technical solution. No one weakness stands
out as a critical risk element, but the number of weaknesses, when taken collectively, serve to put
this goal at risk. Some of the more notable weaknesses include:

• Complexity and fragility of configuration files

Configuration files drive the behaviors and security of applications developed under this
framework. Because applications are wholly dependent on these configuration files to oper-
ate, they require developer expertise to develop, integrate, test, and deploy. Additionally,
while they are field modifiable, this further increases the complexity of their use and increas-
es the opportunities for errors and omissions.

• TINS workflow

This is a custom-developed workflow solution. With the ever-increasing set of technologies
and programming paradigms, the commercial sector will likely migrate toward one dominant
solution for workflow: Business Process Execution Language (BPEL). Developing compet-
ing alternatives may not make financial or technical sense in the long run.

• Tools can bypass COE infrastructure

Because the technical solution is a set of custom-developed libraries integrated on a com-
mercial platform base, COTS development tools can circumvent these libraries in a manner
that may violate the intent of their use. Put simply, the technical solution does not constrain
the developer to use (or not use) its libraries as intended. Additionally, this technical solution
provides no means or mechanisms to detect when and how it has been bypassed, increasing
the complexity associated with development, testing, evolution of the framework, and go-
vernance of programming and application-development practices.

Reduced Certification Cost: Weaknesses Identified

This area was characterized as an area of weakness. While it should be recognized that COTS
development and testing tools can be used to develop, test, and certify applications, the acquiring

CMU/SEI-2010-SR-025 | 23

organization must develop all necessary infrastructure, tools, and standards for certifying applica-
tions. Additionally, taking into consideration the ability of a developer to circumvent the technical
solution’s functional libraries, this is an added complexity with which the acquiring organization
must contend.

CMU/SEI-2010-SR-025 | 24

References

URLs are valid as of the publication date of this document.

[O’Brien 2005]
O’Brien, L.; Bass, L.; & Merson, P. Quality Attributes and Service-Oriented Architectures
(CMU/SEI-2005-TN-014). Software Engineering Institute, Carnegie Mellon University, 2005.
www.sei.cmu.edu/library/abstracts/reports/05tn014.cfm

[U.S. ARMY CIO/G-6 2010]
U.S. Army CIO/G-6. Common Operating Environment Technical Architecture, Appendix F to the
Strategy for ‘End State’ Army Network Architecture—Tactical, August 2010.
www.us.army.mil/suite/files/22614179

http://www.sei.cmu.edu/library/abstracts/reports/05tn014.cfm
http://www.us.army.mil/suite/files/22614179

CMU/SEI-2010-SR-025 | 25

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

February 2011

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

A Framework for Evaluating Common Operating Environments: Piloting, Lessons Learned, and
Opportunities

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Cecilia Albert & Steve Rosemergy

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2010-SR-025

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report explores the interdependencies among common language, business goals, and software architecture as the basis for a
common framework for conducting evaluations of software technical solutions. It also describes the SEI’s experience piloting this
framework, which integrated commercial technologies, customized open-source systems, and legacy systems, and the insights gained
from the project. As described in the report, those insights have enabled the SEI to further refine the framework to make it reusable and
applicable for a variety of technical solutions.

14. SUBJECT TERMS

system of systems engineering, common operating environment, computing environment,
operating environment, software systems quality attributes, business goals and software
quality attributes, business goals and system quality attributes, Army enterprise common
operating environment convergence, software evaluation framework

15. NUMBER OF PAGES

38

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Carnegie Mellon University
	Research Showcase
	2-1-2011

	A Framework for Evaluating Common Operating Environments: Piloting, Lessons Learned, and Opportunities
	Cecilia Albert
	Steven Rosemergy
	Recommended Citation

	A Framework for Evaluating Common Operating Environments: Piloting, Lessons Learned, and Opportunities
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	2 Software Evaluation Framework
	3 Post-Mortem Notes
	Appendix A: Assessment Framework Questions
	Appendix B: Case Study—ASA(ALT) Case Study Assessment
	Appendix C: Case Study—Software Assessment Results
	References

