
Beyond the Black Box:

A Case Study in C to Java

Conversion and Product

Extensibility

Pisey Huy
Grace A. Lewis
Ming-hsun Liu

August 2001

COTS-Based Systems Initiative

Unlimited distribution subject to the copyright.

 Technical Note
CMU/SEI-2001-TN-017

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2001 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2001-TN-017 i

���������

Abstract vii

1 Introduction 1

2 NDBS 1.0 2
2.1 Architecture of NDBS 1.0 2
2.2 Users of NDBS 1.0 4

3 NDBS 2.0 5
3.1 Development of NDBS 2.0 5
3.2 Architecture of NDBS 2.0 17

4 Extending the Functionality of NDBS 2.0 21

5 Summary 27

References 29

Appendix A: Acronyms and Terms 31

Appendix B: Microsoft Security Architecture 33

Appendix C: NDBS 2.0 UML Class Diagrams 34

ii CMU/SEI-2001-TN-017

CMU/SEI-2001-TN-017 iii

�	����
��	�����

Figure 1: NDBS 1.0 Architecture 3

Figure 2: High-Level UML Class Diagram for Netscape
Keystore Management 8

Figure 3: High-Level UML Class Diagram for
Cryptography Routines 10

Figure 4: High-Level UML Class Diagram for the
Berkeley DB 1.85 Hash Structure 12

Figure 5: High-Level UML Class Diagram for the
Keystore Service Provider Interface 13

Figure 6: PSM Architecture 15

Figure 7: Runtime Architectural Diagram for NDBS 2.0 17

Figure 8: NDBS 2.0 Architecture 18

Figure 9: Mapping of Components to the NDBS 2.0
Architecture 19

Figure 10: Bridge Pattern in NDBS 2.0 21

Figure 11: Code in NDBSKeystore.java that
Implements the Bridge Pattern 22

Figure 12: Façade Pattern in NDBS 2.0 for HMAC
SHA-1 24

Figure 13: Java Sample Code for Implementing the
Façade Pattern for the HMAC with SHA-1
Algorithm in NDBS (Part 1 of 2) 25

Figure 14: Java Sample Code for Implementing the
Façade Pattern for the HMAC with SHA-1
Algorithm in NDBS (Part 2 of 2) 26

Figure 15: Microsoft Security Architecture 33

Figure 16: UML Class Diagram for the Keystore
Management Layer 34

Figure 17: UML Class Diagram for the Netscape
Keystore Layer 35

iv CMU/SEI-2001-TN-017

Figure 18: UML Class Diagram for the Netscape
Crypto Façade Layer 36

Figure 19: UML Class Diagram for the Berkeley DB
Access Layer 37

CMU/SEI-2001-TN-017 v

�	����
��������

Table 1: Lines of Code in NDBS 1.0 and NDBS 2.0 6

Table 2: Lines of Code in NDBS 2.0 After Adding
Write and Delete Capabilities 6

vi CMU/SEI-2001-TN-017

CMU/SEI-2001-TN-017 vii

���������

This case study describes the experience of converting and enhancing NDBS 1.0 (Netscape
Database Keystore), a programmatic library to extract private keys and digital certificates
from a Netscape database written in C and Java. The result of this work is NDBS 2.0, a 100%
Java version of NDBS 1.0 designed to support other keystores easily. NDBS 2.0 also includes
write and delete capabilities, features that were not present in NDBS 1.0. The case study
describes the experience of the conversion and development process, difficulties, and lessons
learned.

viii CMU/SEI-2001-TN-017

CMU/SEI-2001-TN-017 1

�� ��������	���

In 1999, an SEI project required the capability to programmatically extract private keys and
digital certificates from a Netscape Communicator v4.5 database. The result of this effort is a
programmatic library named Netscape Database Keystore (NDBS 1.0) and an SEI technical
note describing the experience [Plakosh 99]. The limitations of NDBS 1.0 are

• platform dependency because it is written in Java and interfaces with C code using the
Java Native Interface (JNI)

• inability to write or delete certificates and private keys from the Netscape database
(reading is enabled)

NDBS 2.0 is a platform-independent, 100% Java version of NDBS 1.0, with added
functionality to write and delete certificates and private keys. It is designed for extensibility
so that future projects may extend NDBS to support other keystores such as Microsoft
Cryptographic Service Provider (CSP).

This case study describes

1. converting NDBS 1.0 and part of the underlying database manager from C to Java

2. using design patterns for extensibility

3. adding write and delete capabilities

Following the introduction, we describe the features and architecture of NDBS 1.0 in Section
2. In Section 3, we describe the features and architecture of NDBS 2.0, along with the
conversion experience and the addition of write and delete capabilities. In Section 4, we
present the use of design patterns to provide an extensible architecture. Finally, the lessons
learned are included in Section 5.

2 CMU/SEI-2001-TN-017

�� ���������

The Netscape Database Keystore (NDBS) 1.0 is a programmatic library for extracting private
keys and X.509v3 certificates from Netscape products. Since Netscape’s Network Security
Services (NSS) would not divulge private key management information or specifications,
NDBS 1.0 was built so that Public Key Infrastructure (PKI)-enabled products could access
private keys and certificates from Netscape’s database. NDBS 1.0 is a Java Cryptography
Extension (JCE) 1.2-compliant provider for keystore services designed to read certificates
and private key material from the Netscape database. Writing and deleting certificates and
private keys were not supported in this version.

NDBS 1.0 features include a 100% Java Cryptography Extension (JCE)-1.2 compliant
Keystore Service Provider Interface (SPI). Its capabilities include the following:

• maps the internal files where Netscape stores its security information (key3.db and
cert7.db) to one logical database

• reads password protected or unprotected Netscape database files

• works with Java Development Kit (JDK) 1.2 keytool key/certificate management tool

• supports certificate chains

• supports Windows NT, Windows 95/98/2000, and Solaris 2.5.1 and higher

For further information on NDBS 1.0 refer to the SEI technical note Into the Black Box: A
Case Study in Obtaining Visibility into Commercial Software [Plakosh 99] and to the URL
<http://agora.sei.cmu.edu/ndbs/>.

���� ����	��������
����������

The architecture of NDBS 1.0 is a layered system, as shown in Figure 1. The layers of the
architecture are described in Figure 1.

CMU/SEI-2001-TN-017 3

key3.db cert7.db

Berkeley DB v. 1.85

Abstract Data Access Layer

Decryption
Code

Key
Management

Hash
Algorithms

Password
Management

Keystore Management

.dll .so

NSJava

disp (JNI)

NDBS Service Provider Interface

Java Cryptography Extension (JCE)

some

borrowed

shareware

product

Java

Java to C
Binding

C

Figure 1: NDBS 1.0 Architecture

• JCE - Java Cryptography Extension: JCE is a package that provides a framework and
implementations for encryption, key generation, key agreement, and Message
Authentication Code (MAC) algorithms. It is designed so that other qualified
cryptography libraries can be plugged in as service providers, and new algorithms can be
added.

• NDBS Service Provider Interface: This layer acts as the SPI. The use of this provider is
specified in the java.security file.

• disp (JNI): The Java Native Interface is a standard programming interface for writing
Java native methods and embedding the Java Virtual Machine into native applications.
The primary goal is binary compatibility of native method libraries across all Java Virtual
Machine implementations on a given platform. This layer is used to enable the NDBS
SPI to communicate with routines written in the C programming language.

• NSJava: NSJava is the library that contains the calls to the routines that are able to
extract, decrypt, and decode information from the Netscape database files.

• .dll and .so: Because the output from the C programming language compiler is platform
dependent, .dll is the NSJava version for the Windows platform, and .so is the NSJava
version for the Solaris platform.

• Keystore Management: This layer contains the routines that extract, decrypt, and decode
information from the Netscape database.

• Decryption code, key management, hash algorithms, password management: These are
specific routines for performing the described functions. Some of this code was
downloaded from several sources found on the Internet.

• Abstract data access layer: This is the C Application Program Interface (API) for the
Berkeley database (DB).

4 CMU/SEI-2001-TN-017

• Berkeley DB v1.85: This is the Database Management System used by the Netscape
browser to manage its keystores.

• key3.db: This is the Netscape private key database that stores the encrypted private key
information.

• cert7.db: This is the Netscape certificate database that stores X.509v3 certificates, as well
as links to the key3.db file.

���� ������
����������

The users of NDBS 1.0 are Java developers who need programmatic access to a Netscape
keystore database (certificates and private keys). It is available only for Microsoft Windows
under the Intel architecture and Solaris platforms because it uses JNI to interface between
Java code and platform-dependent C code. NDBS 1.0 was made available to the public in
August 1999. From August 1999 to March 2001 there have been 4,546 downloads of the
abstract, 3,226 downloads of the PDF version of the report, and 320 downloads of the actual
software. Several requests for the NDBS 1.0 source have been made from universities,
software consulting and development companies, and communication companies.

The success of NDBS 1.0 is its ability to read password protected or unprotected Netscape
database files.

The limitations of NDBS 1.0 are that it

• is only proven to operate on Solaris platforms and Microsoft Windows platforms under
the Intel architecture. The reason for this is that NDBS 1.0 is partly written in C and
therefore is platform dependent.

• cannot write or update the Netscape database files

• cannot delete key materials or certificates

• only operates on Netscape database files

• does not have an automated installation process

These limitations drove the development of NDBS 2.0.

CMU/SEI-2001-TN-017 5

!� ���������

NDBS 2.0 is a 100% Java version of NDBS 1.0 with the addition of write and delete
capabilities so that users can read, write, and delete certificates and private keys from a
Netscape keystore.

The users of NDBS 2.0 are the same users of NDBS 1.0; that is, Java developers who need
programmatic access to a Netscape keystore database. The difference is that NDBS 2.0 is
platform-independent because it is 100% Java. Installation requirements are

• Java 2 (JDK 1.2 or later version)

• RSA BSAFE Crypto-J 2.1 or Entrust/Toolkit Java™ Edition 4.1 or equivalent security
provider, conforming to JCE 1.2 SPI for Crypto

• JCE 1.2 compliant crypto provider that supports Triple Data Encryption Standard (DES)
with Cipher Block Chaining (CBC) and Standard Block Padding, and Keyed-Hash
Message Authentication Code (HMAC) with SHA-1 algorithms, such as SunJCE, IAIK,
JCSI, or Crypto-J.

!��� ��"���#$�����
����������

The code for providing 100% Java-equivalent functionality of NDBS 1.0 was converted
completely. We did not, however, convert the crypto routines because we used classes
provided either by Java or by a JCE 1.2-compliant crypto provider. Both systems are layered.
The LOC1 for each system and layer are listed in the table on the next page.

1 Lines of C code were counted using a tool called CodeCount from the University of Southern

California. This tool counts logical LOCs classified as compiler directives, data lines, or executable
lines. It excludes comments (whole or embedded) and blank lines
(http://sunset.usc.edu/research/CODECOUNT/license.html).

 Lines of Java code were counted using a tool called JavaCount from the University of Hawaii. This
tool counts non-comment lines of Java source code
(http://csdl.ics.hawaii.edu/Tools/JavaCount/JavaCount.html).

6 CMU/SEI-2001-TN-017

Table 1: Lines of Code in NDBS 1.0 and NDBS 2.0

 NDBS 1.0 NDBS 2.0

Development Stage C LOC Java LOC Program
Files/Classes

Java LOC Classes

Berkeley DB Hash Functions 1200 0 6 1621 8

Cryptography Routines 910 0 4 2121 3

Netscape Key Store 788 0 1 1323 8

NDBS Key Store SPI 0 4992 6 214 3

SUB-TOTAL 2898 499 11/6 1749 22

TOTAL 3397 3370

After adding the write and delete capabilities, lines of code (LOC) count for NDBS 2.0
changed as shown below.

Table 2: Lines of Code in NDBS 2.0 After Adding Write and Delete Capabilities

 NDBS 2.0 Java LOC Count

Development Stage Before
Write/Delete

After
Write/Delete

Berkeley DB Hash Functions 1621 3289

Cryptography Routines 212 215

Netscape Key Store 1323 2535

NDBS Key Store SPI 214 563

TOTAL 3370 6602

The major challenges in the conversion are listed below and detailed in the remaining
sections.

• The code used by NDBSKeystore in NDBS 1.0 is written in C - source code downloaded
from the Internet, as well as code developed at the SEI. Because the motivation in NDBS
1.0 was to prove that access to the Netscape keystores was possible, there is no
documentation, except for the information in [Plakosh 99] and the references listed in this
technical note.

• Converting from a structured language like C to an object-oriented language like Java
required a complete redesign of the system. Instead of designing around functions, NDBS
2.0 was designed around data structures. These were merged into classes with the
functions that operate on them, following the object-oriented concept of encapsulation.

• To make use of Java exception handling, all error conditions and error reporting had to be
converted to exceptions.

1 Code for the cryptography algorithms did not have to be converted because classes from the

java.security and javax.crypto packages were used instead.
2 LOC count includes code that provides the bindings from Java to C.

CMU/SEI-2001-TN-017 7

• The code in the Berkeley DB layer was very complicated and made extensive use of
pointers. Also, because of lack of documentation, some portions of the code were
converted without understanding the rationale of the implementation (e.g., why is a
certain condition testing against a value “10”?).

• Testing required a large effort. A “unit test program” was created for each class because
there is no user interface. The system had to be tested against many different databases of
different sizes to make sure that all the Berkeley DB code was exercised. A detailed
system test plan was created that required generating test programs and using keytool – a
key/certificate management tool included with the Java Development Kit.

• Adding the write and delete capabilities required just as much effort as converting to
100% Java. Deleting and writing certificates and keys to the keystore required detailed
knowledge of exactly how key/data pairs are stored in the Netscape database. Even the
Mozilla documentation was unclear; there were errors regarding the structure of some of
the record types and some features, albeit promised, were never discussed.

!����� ���"���	����
�����������#��%�&������'�����$���������

The first step in the detailed design was to understand the data structures being used, which
mostly resembled the different record types in the certificate and key file, and to understand
the routines that were using these data structures. While looking at the code, it was clear that
although a lot of information is read from the different records, not all of it is actually used.

The second step was to identify the information used in the keystore management process
and the routines that worked on these data structures. The third step was to group the routines
into logical classes, following the object-oriented concept of encapsulation where data and
functions are integrated. Using all this information, we produced the high-level UML
(Unified Modeling Language) class diagram for the Netscape keystore layer, shown in Figure
2. Details can be found in Appendix C.

8 CMU/SEI-2001-TN-017

KeyDataPair

ASN1Certi ficateParser

PrivateKeyUtilityNetscapeKeyStore

CertificateChain

CertificateRecord

+certificatesLinkedList

certificates

+certificateChainLinkedList

PasswordChecker

Figure 2: High-Level UML Class Diagram for Netscape Keystore Management

The NetscapeKeystore class contains the global Netscape keystore information, such as the
certificate and key file names, the global salt,1 and the hashed password. It has two references
to the BerkeleyDBManager2 class that correspond to the certificate and key files. The
KeyDataPair class is used to pass information in the form of key/data pairs to and from the
NetscapeKeystore and BerkeleyDBManager classes.

The PasswordChecker class is used to check the validity of the password provided to the
NetscapeKeystore class. It interprets the records that store information used in password
checking and uses crypto routines to verify the password.

Once the password has been verified, the information from the certificate and key files is
stored in the CertificateRecord and CertificateChain classes. The CertificateRecord class
contains generic certificate information, such as its alias, and keeps a linked list of all the
certificates in its certificate chain using the CertificateChain class. These classes do not store
the actual information contained in the keystore. Instead, they store the database keys to
access the data.

1 A salt is a random set of bytes that is concatenated with a password before encrypting it, in order to

make an unauthorized decryption harder.
2 The relationship between Netscape KeyStore Management and the BerkeleyDBManager classes is

shown in Figure 4.

CMU/SEI-2001-TN-017 9

Each certificate in the Netscape certificate file contains a reference to an entry in the key file.
The ASN1CertficateParser class contains the functionality to extract the database key to the
entry in the key file from a certificate record. We converted the existing ASN.1 parser code
because we were not able to find equivalent existent Java code. We tried to use the Java
classes java.security.cert.X509Certificate and java.security.cert.X509Extension because they
contain methods to extract information encoded in a certificate, but we were not able to get
access to the specific object identifier (OID) that would identify the piece of information we
needed (1.2.840.113549.1.1.1). This OID did not appear either when we called the methods
to list all the critical and non-critical extension OIDs. We also tried searching for ASN.1
parsers or Java class generators on the Web, but the work required to integrate them to our
code or to generate classes from the ASN.1 encoding would have been harder than converting
the existing parser code. It is only used once and is very specific in the search of this
particular OID.

Finally, the PrivateKeyUtility class extracts and decrypts private key information and builds
private key records.

!����� �$#��$�����	����
�������&#�����#�&�(��	����

NDBS 2.0 uses any JCE-compliant third-party crypto provider for the algorithms needed to
decrypt these private keys, such as HMAC with SHA-1, and Triple DES with CBC and
Standard Block Padding. SHA-1 is also used, but it is provided by the java.security package.

We first determined if the algorithms used by NDBS 1.0 were based on public crypto
standards, and then proceeded to discover if Java provided equivalent algorithms. Risk
reduction prototyping was done to determine if the crypto routines in the C code in NDBS
1.0 were equivalent to the routines in the crypto classes provided by JCE, as well as the
crypto algorithms provided by a JCE 1.2-compliant crypto provider such as SunJCE.

After verifying that Java provided equivalent crypto routines that could be used for password
checking and private key extraction, we produced the class diagram shown in Figure 3.
Details can be found in Appendix C.

10 CMU/SEI-2001-TN-017

PrivateKeyUtilityPasswordChecker

PBECryptoUtilitySha1

TripleDESCBC

HmacSha1

Figure 3: High-Level UML Class Diagram for Cryptography Routines

The PasswordChecker class and the PrivateKeyUtility class in the keystore management
layer use the PBECryptoUtility class to perform PBE (Password-Based Encryption) based on
the PKCS 12 Standard – PBE with SHA-1 and Triple DES CBC. Unfortunately, Java does
not have direct support for PKCS#12; the PBECryptoUtility class uses the Sha1,
TripleDESCBC, and HmacSha1 classes to implement the PBE algorithm. The Sha1,
TripleDESCBC, and HmacSha1 are façades to the Java Cryptography Extension (JCE)
classes that provide the crypto functionality needed by the PBECryptoUtility class. This is
detailed in Section 4, Extending the Functionality of NDBS 2.0.

We encountered several problems when we ran tests using Entrust as one of the crypto
providers installed in the JRE_HOME/lib/ext directory. Because the Java Runtime checks the
providers in alphabetical order when initializing its crypto classes, it always encountered the
entrust.jar file first and threw an IncompatibleClassChangeError or ClassNotFound
exception. When we moved the file out of that directory, the tests were successful. After
searching on the Internet, we encountered a bulletin board posting that identified a bug in
versions of Entrust previous to 4.1. The bug required calling the method
com.entrust.util.Util.initCiphers() before any of their algorithms can be used. This problem
was fixed and confirmed in the documentation for version 4.1 of Entrust. After requesting
and installing the new version of Entrust, we had no further problems.

CMU/SEI-2001-TN-017 11

!���!� ���"���	����
��������)���&������*+�,��������������������

-��"	���(������#��	�	�&�

Berkeley DB, which was developed by one of the founders of a company called Sleepycat
Software Inc., is the underlying database used by Netscape to store certificates and private
keys. While visiting their Web site,1 we saw that they had a Java API to the database. This
was good news because that meant that we could use the API to access the database without
having to write code for this. Unfortunately, after downloading the code, we discovered that
the API did what NDBS 1.0 does, meaning that it uses JNI to include C code in Java
applications. We wrote to Sleepycat to see if a 100% Java API was in development, and if
not, whether they would be interested in our effort. Company personnel answered that they
had no plans for the 100% Java API, the reason being that it would not offer good
performance. To us this seemed very myopic. They also said that they were not interested in
our effort because we would be developing the API for version 1.85 of their database and not
the current version 3.2.

At that point, we knew we had to convert the hash functionality of the Berkeley DB 1.85 C
API that was used by NDBS 1.0 to Java, because NDBS 2.0 had to be 100% Java. The main
challenge was the lack of clear documentation of the Berkeley DB source code for the hash
structure. We first did some research to figure out what type of hash structure is used by
Berkeley DB 1.85. From information on Sleepycat’s Web site, we discovered that the hash
structure is an extended linear hash. After searching on the Internet for information about
extended linear hashing, we found several useful links that helped us understand the hash
structure while we were trying to understand the code.

The second challenge was that Berkeley DB 1.85 is written in C, a structured language,
which made it harder to redesign the system as an object-oriented system to be coded in Java.
Another challenge during the conversion was the extensive use of pointers in the original C
code.

In this stage, only the functions open, read sequentially, get a specific record, synchronize,
and close were converted. We did not convert the part of the code related to creating new files
because it is not needed by NDBS. The synchronize function was not necessary because we
were not writing data to files, but we converted it at this point because it was necessary for
the write and delete capabilities.

Testing for this part of NDBS 2.0 was difficult because we had to find keystores to exercise
all portions of the code. This part was always considered risky because of the lack of
documentation—portions of the code were converted without understanding the exact
rationale for implementation decisions. The final structure of the Berkeley DB hash
functionality is shown in the high-level UML class diagram in Figure 4 on the following
page. Details can be found in Appendix C.

1 <http://www.sleepycat.com>

12 CMU/SEI-2001-TN-017

DBGlobalConstantsNetscapeKeyStore

HashHeader

BerkeleyDBManager

+keyFile +certificateFile

HashSegment

HashTable

+hashHeader

+hashTable

+directory

HashBufferList

+bufferList

HashBuffer

+currentHashPage

+bufferTree

+bufferHeadSpli tReturn

+oldBuffer

+newBuffer

+nextBuffer

Figure 4: High-Level UML Class Diagram for the Berkeley DB 1.85 Hash Structure

The HashTable class maintains the hash table information used in the hash structure. It has a
reference to the HashHeader class, which contains general information to correctly open and
read data from a file. The HashTable class has a reference to the HashSegment class. This
reference is implemented as an array and represents a directory that is used to index the
HashBuffers so they can be located in the HashBufferList. A HashBuffer is created every time
there is a search for a hash key and the associated buffer is not already in memory. HashTable
also has a direct reference to the HashBuffer class that represents the page being currently
accessed. DBGlobalConstants defines constants used by the other classes in this layer.

!���.� �&���$���������	���

The code from the previous layers is integrated into a Java Keystore SPI. A cryptographic
service provider that wishes to implement a particular keystore must implement all the
abstract methods in the class java.security.KeyStoreSpi. The use of this provider is specified
in the java.security file used by the Java Runtime Environment (JRE).

The design for this part of NDBS is shown in Figure 5. NDBSKeyStore implements the
methods in the abstract class java.security.KeyStoreSpi. NDBSKeyStore uses the services of
the GenericKeyStore class. GenericKeyStore is an interface and therefore contains no code
for methods, only headers. The methods in the GenericKeyStore class correspond to services
that are common for all keystore implementations. Common services provided by this class

CMU/SEI-2001-TN-017 13

are, for example, to open a keystore file, get a certificate/private key, write a
certificate/private key, delete a certificate/private key, and get a certificate chain.

NetscapeKeyStore and CSPKeyStore are specific keystore implementations of
GenericKeyStore for Netscape and Microsoft CSP respectively. The decision to instantiate
either one can be decided at run-time. This is further explained in Section 4, Extending the
Functionality of NDBS 2.0.

When all the code was finished it was bundled in a package and eventually into a JAR file
(Java Archive). This JAR file has to be placed in the JRE_HOME/lib/ext directory and
installed as a provider in the java.security file for the Java Runtime Engine (JRE) to
recognize it as a keystore service provider.1

NetscapeKeyStore CSPKeyStore

NDBSKeyStore

GenericKeyStore
<<Interface>>

java.security.KeyStoreSpi
<<Interface>>

+keyStore

Figure 5: High-Level UML Class Diagram for the Keystore Service Provider
Interface

During system testing, we discovered that NDBS 2.0 failed with certain certificates. After
tracing the code, we noticed that the Java method CertificateFactory.generateCertificate()
was throwing a non-declared NullPointerException and returning a null certificate. A close

1 Details for implementing a provider can be found at

<http://java.sun.com/j2se/1.3/docs/guide/security/HowToImplAProvider.html>.

14 CMU/SEI-2001-TN-017

look at the certificates where it failed showed that these were cases where the X.509v3
alternative name extension SubjectAlternativeNameExtension or
IssuerAlternativeNameExtension had an empty GeneralNames Sequence. The X.509v3
specification clearly states that this is not allowed.1 Nevertheless, there are several reports on
OpenSSL newsgroups stating that there are Certificate Authorities (CAs) generating
certificates with empty general names. This problem was reported to Sun because even
though it is not their fault, their code is generating a problem when this situation is
encountered.

!���+� ���	�	����
�����/�	����������������#��	�	�	���

The addition of write and delete capabilities required an effort as large as the conversion to
100% Java. The Java KeyStoreSpi class has the following specification for the methods
related to writing and deleting keystore entries:

• Writing a certificate to a keystore requires the certificate to be in a variable of type
java.security.Certificate.

• Writing a private key to a keystore requires the private key to be in a variable of type
java.security.Key or in a byte array where it has been protected; and the certificate chain
that certifies the corresponding public key to be in an array of type
java.security.Certificate, if the private key is of type java.security.PrivateKey.

• Deleting an entry from a file (certificate or private key) requires only an alias.

Given these requirements, the first step was to find available source code that performed this
functionality.

Netscape Personal Security Manager (PSM) was the first product we considered. PSM is a
Mozilla open source project that is included as part of Netscape 6.x. It is a set of libraries that
performs cryptographic operations on behalf of a client, including writing and deleting
certificates and private keys. We looked at the source code for PSM and found it overloaded
due to its message-based communication between the PSM Client Library and the PSM
Daemon, as shown in Figure 6. Following the code was difficult because instead of making
direct calls, it embedded the calls in messages.2

1 The X.509v3 document RFC (2459) is located at

<http://www.ipa.go.jp/security/rfc/RFC2459EN.html>.
2 More information about PSM can be found at <http://www.mozilla.org/projects/security/pki/psm/>.

CMU/SEI-2001-TN-017 15

Application links with
PSM Client Library

PSM

Application

PSM Client
Library

PSM
Daemon

RPC-like protocol over
local socket connection

Network Security Services (NSS)

 Netscape Portable Runtime (NSPR)

Figure 6: PSM Architecture

In searching for more information about PSM, we found another Mozilla open source project
called Certutil, a command-line tool to manage Netscape certificate and key databases. The
Certutil source code was much easier to follow and had the functionality that we needed.1 It
was also documented using LXR,2 a hypertext cross-referencing tool, making it very easy to
just click on a link to access the source code for the function.

Looking at the code in detail, it did a lot more than what we actually needed. It creates
certificates by loading them from a file that is sent by a CA in response to a certificate
request. The information from this file is stored in a number of internal structures that are
transferred to the keystore. Certutil was very useful because even though we would not
convert the exact code because it didn’t match what we needed, it did guide us on what had to
be done and identified the functions in the Berkeley DB source code that had to be converted:
hashDelete() to delete a record from the database and hashPut() to write a record to the
database.

Writing a certificate to a keystore requires adding three records to the certificate database:

1. a subject record that contains the general certificate information and the database keys to
the actual certificate and to the certificates in its certificate chain

1 More information on Certutil and other Mozilla open source projects can be found at

<http://www.mozilla.org/projects/security/pki/nss/tools/index.html>.
2 More information on LXR can be found at <http://lxr.linux.no/>.

16 CMU/SEI-2001-TN-017

2. a certificate record that corresponds to the first certificate in the chain and contains the
actual certificate information

3. either a nickname record, or a MIME profile record, depending on whether the
certificate is identified by its nickname or its e-mail address, respectively

Writing a private key to the keystore requires

• writing the private key record to the key database

• creating a certificate, subject, and nickname record for the first certificate in the chain

Deleting a certificate requires

• deleting the three records mentioned when adding a certificate

• deleting the associated private key if it is not the private key for any other certificate in
the keystore

Deleting a private key explicitly is not necessary because the KeyStoreSpi only has a method
called engineDeleteEntry() that deletes the entry associated with the alias given as a
parameter. In this case, NDBS 2.0 deletes a private key indirectly when deleting the
certificate that corresponds to the given alias.

This information was all obtained by examining the Certutil source code. To become familiar
with the database structure, we started by implementing engineDeleteEntry() because it
seemed simpler. First of all, the internal structure where the certificate information is stored
inside NetscapeKeyStore was changed so that the database key to the subject record,
nickname record, and MIME profile record were saved along with the rest of the certificate
information, and set when opening the keystore. With this change, deleting only required
calling the hashDelete() method in the BerkeleyDBManager with each of the database keys
stored along with the certificate information.

Writing records to the keystore required researching the information needed to build the
key/data pairs for the database. The sources that provided the most information for writing
certificates were [Plakosh 99] and a URL on the Mozilla Web site that contained the structure
of the certificate database. The information on the Web site was accurate except for the
structure of the certificate record database key. In this case, the serial number goes before the
issuer distinguished name and not after. Also, the nickname and email do not have at least a
length equal to one when they are empty. Fortunately the certificate contained all the
information necessary to build the database keys and records. Additional ASN.1 parsing
functionality was added to the ASN1CertificateParser to be able to extract this information
from the certificate [Larmouth 00]. The problem appeared when building the subject record
because it requires a KeyID for each certificate in the chain and there was no information on
what this meant. Searching on the Internet with keywords like “keyid,” “Netscape,” and
“cert7.db,” we found that there were many interpretations of what a KeyId was: the modulus
of the RSA key, the public key hash, the subject issuer distinguished name hash, the SHA-1
fingerprint, and unfortunately none of these were true. After looking at the actual information

CMU/SEI-2001-TN-017 17

stored in the keystore we noticed that these KeyIDs always had length 20. This was the hint
that it was probably a SHA-1 hash of some information inside the certificate, so we started
creating SHA-1 hashes for all the information that could be extracted from the certificate, and
finally discovered that it was the hash of the Distinguished Encoding Rules (DER)-encoded
public key.

For writing the private key record to the key database, the information on
<http://www.drh-consultancy.demon.co.uk/key3.html> was sufficient. The private key was
encrypted using the database password and a secure random salt as input to the same PBE
routines that were used to decrypt the private key [Plakosh 99].

!��� ����	��������
����������

Even though NDBS 2.0 currently supports only Netscape keystores, the architecture is
designed to provide extensibility features that will allow it to support other keystores such as
Microsoft Crypto Service Provider (CSP keystores).

Based on this architecture, the NDBS system extracts certificate and encrypted key
information from the Netscape or Microsoft Crypto Service Provider, and then uses standard
algorithms to decrypt the keys, provided the user has entered the correct password for the
keystore file. The runtime diagram for NDBS 2.0 is shown in Figure 7.

NDBS KeyStore

Netscape/CSP
KeyStore

Netscape/CSP
Encryption
Algorithms

Object

Database Access

Method Invocation

(4) Keystore object
calls Encryption

method to decrypt
key information
extracted from

database

(2) Keystore object
calls Database

Manager to retrieve
encrypted key

information from
keystore database

(1) NDBS Keystore
object calls a method
on a specific Keystore
object to retrieve key

information

Netscape/CSP
Database

Netscape/CSP
Database

Manager Object

System
Component

Database

(3) Database
Manager uses

Database-specific
interface to access
keystore database

Figure 7: Runtime Architectural Diagram for NDBS 2.0

18 CMU/SEI-2001-TN-017

A layered architecture best represents NDBS 2.0 because the system is organized
hierarchically, with each layer providing service to the layer above it. This layered system
has several desirable properties, such as providing different levels of abstraction and
supporting enhancement. The layered architecture is shown in Figure 8. The decision to
instantiate either the Netscape KeyStore or the CSP KeyStore (Cryptographic Service
Provider) is decided at run-time.

KeyStore Manager

KeyStoreSPI

CSP KeyStore

Crypto
Façade

Storage
Manager

Crypto
Façade/
Manager

Storage
Manager

Netscape KeyStore

Legend

layerno
communication

Figure 8: NDBS 2.0 Architecture

The following describes the individual layers:

• KeyStoreSPI – KeyStore Service Provider Interface: This layer implements the Java
KeyStore Service Provider Interface (KeyStoreSpi). The use of this provider is specified
in the java.security file.

• KeyStore Manager: This layer is an interface that specifies the main keystore
functionality required by the KeyStoreSPI.

• Netscape KeyStore: This layer implements the functionality required by the KeyStore
Manager layer as well as the specific functionality required by Netscape keystores.

• CSP KeyStore: This layer would implement the functionality required by the KeyStore
Manager layer as well as the specific functionality required by the Microsoft
Cryptographic Service Provider (CSP). This structure is specified for future extensibility
of NDBS 2.0 to access Microsoft keystores. More details will be presented in Section 4,
Extending the Functionality of NDBS 2.0.

• Crypto Façade: This layer contains the crypto functionality used in accessing Netscape
keystores. It hides the complexity and possible differences in parameters and output
format of the provider crypto algorithms.

• Storage Manager: This layer carries out the operations of accessing information from the
databases for Netscape keystores or from a registry or a database for Microsoft keystores.

CMU/SEI-2001-TN-017 19

• Crypto Façade/Manager: This layer will contain the crypto functionality used in
accessing Microsoft keystores and will manage the dll files that support the crypto
services.

Figure 9 provides further insight into the role of each layer and the Java classes that fulfill
these roles in NDBS 2.0. Details can be found in Appendix B.

CSP KeyStore

CSP KeyStore Layer

Netscape
KeyStore

HMac
Sha1

Triple
Des
CBC

Berkeley 1.85
Database
Manager

Netscape KeyStore Layer

NDBSKeyStore

GenericKeyStore

KeyStoreSPI Layer

KeyStore Manager Layer

Storage Manager
Layer

Crypto Façade/
Manager Layer

Storage Manager
Layer

Crypto Façade
Layer

RSA Registry
Key
DB

Sha1

KeyStoreSpi

Legend

implements class interfaceuses
no

communication

Figure 9: Mapping of Components to the NDBS 2.0 Architecture

The development of the NDBS 2.0 architecture was based primarily on the need to support
Microsoft key and certificate databases. Specifically, the team examined the Microsoft
Crypto API and Crypto SPI that support the Microsoft security architecture. This examination
revealed the following constraints:

20 CMU/SEI-2001-TN-017

• The MS Crypto API does provide the majority of the functions required of the CSP
Keystore layer, but does not provide the ability to extract private keys.

• The MS Crypto API and MS Crypto SPI do not support Java.

• The MS Crypto SPI defines standard interfaces and data formats, but everything below
the SPI is dependent upon the service provider implementation.

The Microsoft Security Architecture (Appendix A) describes several Cryptographic Service
Providers, and each keystore database (whatever format) is encapsulated by the
Cryptographic Service Provider. This structure is needed because Microsoft supports
different types of keystores for Smartcard, Web Browser, and so on. To extract the data from
the keystore, it uses procedural calls to the operating system accessing the Cryptographic
Service Providers [Microsoft 00].

CMU/SEI-2001-TN-017 21

.� 01����	�����������	����	�&��
����������

The following possible scenarios represent extensibility requirements in NDBS 2.0:

• Netscape upgrades the version of Berkeley DB used to store its keystore information.

• NDBS is extended to support Microsoft CryptoAPI keystores.

• The user can choose any crypto provider that is compliant with the Java Cryptography
Extension (JCE) and provides algorithms for Triple DES with CBC and HMAC with
SHA-1.

NDBS 2.0 provides extensibility features by using design patterns, specifically the Bridge
pattern and the Façade pattern [Gamma 95].

The purpose of the Bridge pattern is to separate the interface of a class from its
implementation, so that the implementation can be varied or replaced without changing the
client code. The use of the Bridge pattern in NDBS 2.0 is shown in Figure 10.

Figure 10: Bridge Pattern in NDBS 2.0

NDBSKeyStore is the class that implements the KeyStoreSPI interface and has a reference to
an object of type GenericKeyStore. Because NetscapeKeyStore and CSPKeyStore implement
GenericKeyStore, the decision to instantiate either one can be decided at run-time. The code
in NDBSKeyStore for this purpose is shown in Figure 11. It assumes that inputStream has
been set to the configuration file and that this file contains a line that says, for example,

Class

Interface

References

Inheritance

UML Notation

NetscapeKeyStore CSPKeyStore

GenericKey
Store

NDBSKeyStore

22 CMU/SEI-2001-TN-017

KEYSTORE_CLASS_NAME = edu.cmu.sei.cbs.ndbs.NetscapeKeyStore. This would set the
class that implements GenericKeystore to edu.cmu.sei.cbs.ndbs.NetscapeKeystore.

 edu.cmu.sei.cbs.ndbs.GenericKeyStore keyStore = null;

 java.util.Properties p = new Properties();

 p.load(inputStream);

 keystoreClassName =

 p.getProperty("KEYSTORE_CLASS_NAME");

 try {

 Object classObj =

 Class.forName(keystoreClassName).newInstance();

 keyStore = (GenericKeyStore) classObj;

 } catch(Exception e) {

 throw new java.io.IOException("Invalid value for

 KEYSTORE_CLASS_NAME.");

 }

Figure 11: Code in NDBSKeystore.java that Implements the Bridge Pattern

We chose to use the bridge pattern because it can be adapted easily if NDBS is extended to
support Microsoft CSP Keystores. Only these changes would have to be made to support the
extension:

• Implement the methods that are described in the GenericKeystore interface in
CSPKeyStore.

• Implement specific methods for the CSP keystore manipulation.

• Change the value of KEYSTORE_CLASS_NAME in the configuration file to
CSPKeystore.

The key architectural tradeoff to be considered is the extent to which the NDBS 2.0
architecture should utilize the MS Crypto API and SPI. The MS Crypto SPI does provide the
ability to encrypt and decrypt messages, as well as create, store, and retrieve certificates.
However, the MS Crypto SPI does not provide the ability to obtain the private keys. This
limitation could be addressed in one of two ways:

1. Wrap the existing MS Crypto SPI and supplement the existing functionality to support
the full NDBS 1.0 functionality. This would reduce the development time, but sacrifice
the 100% Java requirement. The biggest benefit of this option is that the CSP-dependent
certificate database formats are hidden from the NDBS architecture, so only the private
key storage structure will differ across CSPs. This option should not affect portability
because the Netscape Keystore layer would operate in all non-Microsoft platforms.

CMU/SEI-2001-TN-017 23

2. Ignore the existing MS Crypto SPI and create a Java implementation of CSP Keystore
layer that is specific to each CSP. This option adheres to the 100% Java rule, but adds a
risk to the architecture because it exposes the CSP implementation dependency to the
NDBS architecture. This option should not affect portability because the Netscape
Keystore layer would operate in all non-Microsoft platforms.

If Netscape were to upgrade the version of Berkeley DB used to manage its keystores from
1.85 to 3.2, the same bridge pattern, at the same level, would be used. It wouldn’t be
necessary to add an additional bridge for the different implementation of Netscape keystores
because version 2.X of Berkeley DB is interface compatible with 1.85 but not
implementation compatible, and version 3.X changed part of its interface as well as the
database structure. This means that the interface and the underlying keystore implementation
is different, which means that code reuse would probably be small. In this case, an additional
class that implements GenericKeyStore would be added, as well as an additional possible
value for KEYSTORE_CLASS_NAME, as indicated in the previous example.

The Façade pattern supports different crypto providers, as well as hiding the complexity and
possible differences in parameters and output format of the provider crypto algorithms. The
purpose of the Façade pattern is to decrease the complexity of a subsystem by providing a
simplified interface to this subsystem [Gamma 95].

NDBS uses three crypto algorithms: SHA-1, HMAC with SHA-1, and Triple DES with CBC
and Standard Block Padding. SHA-1 is provided by the java.security package, but the other
two have to be provided by a crypto provider. Each of these has a façade class that hides the
implementation details due to differences in crypto providers. An example for the HMAC
with SHA-1 algorithm façade class is shown in Figure 12. The HMACSha1 façade class
implements the methods that would be called if the methods in the javax.crypto.Mac class
were used directly.

24 CMU/SEI-2001-TN-017

Figure 12: Façade Pattern in NDBS 2.0 for HMAC SHA-1

The advantages of the Façade pattern in this context are

• The Java classes javax.crypto.spec.SecretKeySpec and javax.crypto.Mac are hidden,
therefore providing a cleaner implementation because the keystore code only knows the
HmacSha1 class and its methods.

• The selection of the algorithm name is hidden in this class, with the added advantage of
being able to specify a Java property if the default algorithm names do not match the one
in the user’s crypto provider.

• The details of converting the key into a SecretKeySpec that is accepted by the algorithm
are hidden.

• If the code included in HMAC SHA-1 would happen to be incompatible with the
implementation of a given crypto provider, changes could be done in this class without
affecting the rest of the code.

Sample code is shown in Figure 13. The structure and code for the classes that implement the
Triple DES with CBC as well as the Standard Block Padding and SHA-1 façades are very
similar.

A possible scenario that is not supported in NDBS 2.0 is if Netscape decided to use a
different encryption algorithm for its private keys (the algorithm OID – Object Identifier).
This would require replacing the implementation of the PBECryptoUtility class to reflect the
new algorithm. If this is the only change, then code modifications would be limited to this
class.

Class

Interface

References

Inheritance

UML Notation

javax.crypt o.spec .SecretKeySpec javax.crypto.Mac

HmacSha1

- algorithmName : S tring

+ HmacSha1()
+ init()
+ reset()
+ update()
+ doFinal()

JCE - Java
Cryptography
Extension

CMU/SEI-2001-TN-017 25

import javax.crypto.*;
import java.security.*;
import javax.crypto.spec.*;

public class HmacSha1 {

 // HMAC with SHA-1 algorithm name used by crypto provider.
 private String algorithmName = null;

 // Secret key to be used in HMAC with SHA-1 algorithm.
 private javax.crypto.spec.SecretKeySpec secretKey = null;

 // Instance of Mac used for the creation of the message
 // authentication code.
 private javax.crypto.Mac mac = null;

 public HmacSha1() throws java.security.GeneralSecurityException
 {
 // First tries to create an instance of an HMAC object
 // assuming the user has set the java property
 // ndbs.edu.cmu.sei.cbs.hmacAlgorithmName
 String algorithm =
 System.getProperty("edu.cmu.sei.cbs.ndbs.hmacAlgorithmName");
 if (algorithm != null) {
 try {
 algorithmName = algorithm;
 mac = Mac.getInstance(algorithm);
 }
 catch (java.security.NoSuchAlgorithmException e1) {
 throw new java.security.GeneralSecurityException("The
 selected crypto provider does not support the " +
 algorithmName + " algorithm name.");
 }
 }
 else {
 // Tries to create an instance of an HMAC object using
 // HmacSha1 as the algorithm name (SunJCE)
 try {
 algorithmName = "HmacSha1";
 mac = Mac.getInstance(algorithmName);
 }
 catch (java.security.NoSuchAlgorithmException e2) {
 // Tries to create an instance of an HMAC object
 // using HMACwithSHA1 as the algorithm name (JCSI
 // provider)
 try {
 algorithmName = "HMACwithSHA1";
 mac = Mac.getInstance(algorithmName);
 }
 catch (java.security.NoSuchAlgorithmException e3) {
 throw new
 java.security.GeneralSecurityException("The
 selected crypto provider does not support any
 of the default algorithm names.");
 }
 }
 }//if
 }//Constructor

Figure 13: Java Sample Code for Implementing the Façade Pattern for the HMAC
with SHA-1 Algorithm in NDBS (Part 1 of 2)

26 CMU/SEI-2001-TN-017

public void init(byte[] key) throws
 java.security.GeneralSecurityException
 {
 // Converts the key into an HMAC SHA-1 key
 secretKey = new SecretKeySpec(key, algorithmName);

 try {
 mac.init(secretKey);
 }
 catch (java.security.InvalidKeyException e) {
 throw new java.security.GeneralSecurityException("The
 secret key passed is invalid.");
 }
 }

 public void reset()
 {
 mac.reset();
 }

 public void update(byte[] plainText)
 {
 mac.update(plainText);
 }

 public byte[] doFinal()
 {
 return (mac.doFinal());
 }

 public void setAlgorithmName(String name)
 {
 algorithmName = name;
 }
}

Figure 14: Java Sample Code for Implementing the Façade Pattern for the
HMAC with SHA-1 Algorithm in NDBS (Part 2 of 2)

CMU/SEI-2001-TN-017 27

+� �$$��&�

The outcome of the NDBS 2.0 project was an enhanced 100% Java version of NDBS. There
were challenges in the process due to our unfamiliarity with the cryptography domain, and
the differences between a structured language such as C and an object-oriented language such
as Java. NDBS 2.0 was a complete re-design of NDBS 1.0, but all its source code was
converted and used, with the exception of the crypto algorithms that are provided by any JCE
1.2-compliant crypto provider.

Adding write and delete capabilities was an effort equal to converting to 100% Java. It took
longer than expected because the source code for the underlying database manager and the
Netscape keystore structure are not fully documented and some of the code was very difficult
to debug.

There are several lessons learned from this experience that can be applied to other code
conversion efforts.

1. Become familiar with the domain.

When we started this project, our greatest concern was that we were not familiar with
the cryptography domain and all the standards used by Netscape to store information in
its databases. Techniques we used to gain familiarity were building a glossary, reading,
searching for information on the Internet, and conducting question and answer sessions
with experts. Even though now we agree that we spent way too much time in this stage,
we also agree that the project would have been impossible without the knowledge we
gained during those first months.

2. Build prototypes.

The code to be converted had very little documentation. We identified parts of the
project that were critical because of their complexity and uncertainty of its feasibility in
Java: access to the Netscape database from Java, use of crypto algorithms, and the
ASN.1 parser. We built prototypes for each and determined that the first two were not a
problem and that we had to either convert or rewrite an ASN.1 parser because Java did
not provide this functionality. The time spent in this effort paid off in the end because we
became comfortable with parts of the code we had to convert, we didn’t have to write
the crypto algorithm code, and the experience in ASN.1 made the addition of the write
capability much easier.

28 CMU/SEI-2001-TN-017

3. Design, design, design.

NDBS 2.0 required a total re-design because we were converting from a structured
language to an object-oriented language and were adding the extensibility requirement.
The design also had to incorporate the addition of the write and delete capabilities in the
second stage. We developed an architecture for NDBS 2.0 and used a tailored short
version of the Architecture Tradeoff Analysis MethodSM (ATAMSM) to verify the
architecture against requirements and to evaluate design tradeoffs [Kazman 00].

For the detailed design we used Rational Rose and generated the Java code skeletons for
each class with all the documentation, including preconditions and postconditions. Not
only did this save coding time, but it also served as the project specification that was
used by the team during implementation.

4. Search for third-party code and use the Internet as a source for information.

This project used Berkeley DBM, PSM, and Certutil third-party code. The code was
either converted or used as a guideline for the NDBS 2.0 implementation. The crypto
algorithms did not have to be written nor converted because any third-party JCE 1.2-
compliant crypto provider has this functionality. Code for ASN.1 parsers is also
available on the Internet, but unfortunately, either it did not fit our requirements or it was
not available without a fee. This would have also been a problem for distribution as a
part of NDBS 2.0. The third-party code was tested by comparing its output with output
from other tools or from the C code.

The Internet was a valuable source of information, not only to locate the above source
code, but also to find information on general cryptography, Java cryptography, and the
Netscape database structure. Specialized bulletin boards where problems, product
information, and troubleshooting issues were posted turned out to be a very valuable
resource in solving our own problems.

Finally, going “beyond the black box” would further support the observation made in the SEI
Technical Note documenting the NDBS 1.0 experience [Plakosh 99]: “ … building systems
from a commercial software product often requires more, rather than less, technical
sophistication on the part of the software developers …”, and we would add … even if all the
information and source code is available.

�

SM Architecture Tradeoff Analysis Method and ATAM are service marks of Carnegie Mellon University

CMU/SEI-2001-TN-017 29

(�
��������

[Gamma 95] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, MA: Addison-Wesley, 1995.

[Kazman 00] Kazman, R.; Klein, M.; & Clements, P. ATAM: Method for Architecture
Evaluation Tradeoff Analysis Method. (CMU/SEI-2000-TR-004,
ADA382629) Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 2001. Available WWW <URL:
http://www.sei.cmu.edu/publications/documents/00.reports/00tr004.html>

[Larmouth 00] Larmouth, J. ASN.1 Complete. San Francisco, CA: Morgan Kaufmann
Publishers, 2000.

[Microsoft 00] Microsoft CSP Architectural Overview. Available on the Web at <URL:
http://msdn.microsoft.com/library/psdk/cryptcsp/aboutcsp_5rg7.htm>
(2000).

[Plakosh 99] Plakosh, D.; Hissam, S.; & Wallnau, K. Into the Black Box: A Case Study in
Obtaining Visibility into Commercial Software. (CMU/SEI-99-TN-010
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University.
WWW: <URL: http://www.sei.cmu.edu/publications/documents/
99.reports/99tn010/99tn010abstract.html> (1999).

30 CMU/SEI-2001-TN-017

��

CMU/SEI-2001-TN-017 31

�##���	1��2� �����&$���������$��

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

CA Certificate Authority

CBC Cipher Block Chaining

CMU Carnegie Mellon University

CSP Cryptography Service Provider

DB Database

DER Distinguished Encoding Rules

DES Data Encryption Standard

DLL Dynamic Link Library

HMAC Keyed-Hash Message Authentication Code

JAR Java Archive

JCE Java Cryptography Extension

JDK Java Development Kit

JNI Java Native Interface

JRE Java Runtime Engine

LOC Lines of Code

MAC Message Authentication Code

32 CMU/SEI-2001-TN-017

MIME Multipurpose Internet Mail Extensions

MSE Master of Software Engineering

NDBS Netscape Database Keystore

NSS Network Security Services

OID Object Identifier

PBE Password-Based Encryption

PKCS Public Key Cryptography Standards

PKI Public Key Infrastructure

PSM Personal Security Manager

RSA Name given to the crypto system developed by Ronald Rivest,
Adi Shamir, and Leonard Adieman

SHA-1 Secure Hash Algorithm

SPI Service Provider Interface

SSL Secure Socket Layer

X.509v3 International Telecommunications Union (ITU) Standard for
Certificates

UML Unified Modeling Language

CMU/SEI-2001-TN-017 33

�##���	1��2� '	�����
������	�&�����	�������

Figure 15: Microsoft Security Architecture

Application A Application B Application C

CryptoAPI

CryptoSPI

Application
Layer

System
Layer

Service
Provider
Layer

CryptoAPI
Operating System

Cryptographic
Service Provider

(CSP) #1

Cryptographic
Service Provider

(CSP) #2

Cryptographic
Service Provider

(CSP) #3

34 CMU/SEI-2001-TN-017

�##���	1��2� ��������� '���������	����$��

NetscapeKeyStore CSPKeyStore

java.security.
KeyStoreSpi

GenericKeyStore

closeKeyStore()
deleteEntry()
getAlias()
getCertificate()
getCreationDate()
getNumAliases()
getNumberCert ificatesInChain()
getPrivateKey()
hasPrivateKey()
openKeyStore()
storeKeyStore()
writeCertificate()
writePrivateKey ()
writePrivateKey ()

<<Interface>>

NDBSKeyStore

entries : Hashtable = null
hmacSha1AlgorithmName : String = null
keyStoreClassName : String = null
NDBSLocation : String = null
tripleDESAlgorithmName : String = null

engineAliases()
engineContainsAlias()
engineDeleteEntry()
engineGetCertificate()
engineGetCertificateAlias()
engineGetCertificateChain()
engineGetCreationDate()
engineGetKey()
engineIsCertificateEntry()
engineIsKeyEntry()
engineLoad()
engineSetCertificateEntry()
engineSetKeyEntry()
engineSetKeyEntry()
engineSize()
engineStore()
engineGetCertificate()

+keyStore

Figure 16: UML Class Diagram for the Keystore Management Layer

CMU/SEI-2001-TN-017 35

GenericKeyStore
<<Interface>>

KeyDataPair

key : byte[] = NULL
data : byte[] = NULL

PasswordChecker

algorithmInformation : byte[] = new byte[11]
cryptoAlgorithmLength : int = 0
encryptedAccessKey : byte[] = null
entrySalt : byte[] = new byte[16]
CRYPTO_ALGORITHM_LENGTH : byte = 11
KEY_OID_DATA : byte[] = {2A, 86, 48, 86, F7, 0D, 01, 0C, 05, 01, 03}
PASSWORD_CHECK : String = password-check

<<Constructor>> PasswordCheck()
verifyPassword()
passwordCheckDecrypt()

ASN1CertificateParser

state : byte = 0
key : byte[] = null
NONE_STATE : byte = 0
IN_SEQ2_STATE : byte = 1
IN_SEQ3_STATE : byte = 2
IN_RSA_OID : by te = 3
IN_NULL : by te = 4
IN_BITSTR : byte = 5
IN_SEQ4_STATE : byte = 6
IN_INT : byte = 7
rsaOid : byte[] = {2A, 86, 48, 86, F7, 0D, 01, 01, 01}

asn1GetKey()
asn1GetIssuerDN()
asn1GetSerialNumber()
asn1GetSubjectDN()
asn1SearchKey()
compareDataToArray()

PrivateKeyUtility

data : byte[] = null
dataMarker : int = 0
iterator : int = 0
iteratorMarker : int = 0
oid : byte[13] = null
oidMarker : int = 0
salt : byte[8] = null
saltMarker : int = 0
sequenceMarker1 : int = 0
sequenceMarker2 : int = 0
ASN1_SEQUENCE_1 : int = 0x3082
ASN1_SEQUENCE_2 : int = 0x300D
DATA_MARKER : int = 0x0482
ITERATOR_MARKER : int = 0x0201
KEY_HEADER_FIXED_SIZE : byte = 11
KEY_OID_MARKER : int = 0x301C
KEY_OID_DATA : byte[] = {06, 0B, 2A, 86, 48, 86, F7, 0D, 01, 0C, 05, 01, 03}
SALT_MARKER : int = 0x0408

<<Constructor>> PrivateKeyExtractor()
buildASN1PrivateKey()
extractPrivateKey()
isASN1Sequence1()
isASN1Sequence2()
isDataMarker()
isIteratorMarker()
isKeyOID()
isKeyOIDMarker()
isSaltMarker()

PBECryptoUtil ity

CertificateChain

certificateKey : byte[]
keyIDKey : byte[]

CertificateRecord
alias : byte[] = NULL
mimeProfileRecordKey : byte[] = NULL
nicknameRecordKey : byte[] = NULL
subjectRecordKey : byte[] = NULL

addCertificateToChain()
getCertificateKeyFromChain()
getKeyIDKeyFromChain()
getNumberInChain()
setCertificateKeyInChain()
setKeyIDKeyInChain()

+certificateChainLinkedList

NetscapeKeyStore

certificateFileName : String = NULL
keyFileName : String = NULL
logFileName : String = NULL
hasGlobalSalt : boolean = false
globalSalt : byte[16] = NULL
hashedPassword : byte[] = new byte[20]
KEY3_GLOBAL_SALT_KEY : byte[] = global-salt
KEY3_PASSWORD_CHECK_KEY : byte[] = password-check
KEY3_PASSWORD_CHECK_RECORD_TYPE : Byte = 16
KEY3_VERSION_KEY : byte[] = Version
CERT7_VERSION_KEY : byte[] = \0Version\0
CERT7_CONTENT_VERSION_KEY : byte[] = \7ContentVersion\0
CERT7_SUBJECT_TYPE : byte = 3
CERTIFICATE_HEADER_FIXED_SIZE : byte = 10
CERTIFICATE_FILE_NAME : String = cert7.db
KEY_FILE_NAME : String = key3.db
LOG_FILE_NAME : String = ndbs.log
logFile : DataOutputStream = null

closeKeyStore()
deleteEntry()
getAlias()
getCertificate()
getCreationDate()
getNumAliases()
getNumberCertificatesInChain()
getPrivateKey()
hasPrivateKey()
openKeyStore()
storeKeyStore()
writePrivateKey()
writePrivateKey()
createCertificateRecord()
createNicknameRecord()
createSubjectRecordManyInChain()
createSubjectRecordOneInChain()
deleteCertificate()
extractCertificate()
findAlias()
getCertificateRecords()
isCertificateFile()
isKeyFile()
isKeyStoreOpen()
isPasswordCheckRecord()
isSubjectRecord()
readGlobalSaltRecord()
readPasswordCheckRecord()
samePublicKeys()

+certificatesLinkedList

BerkeleyDBManager

+keyFile
+certificateFile

Figure 17: UML Class Diagram for the Netscape Keystore Layer

36 CMU/SEI-2001-TN-017

PrivateKeyUtilityPasswordChecker

PBECryptoUtil ity

initial izationVector : byte[]
key : byte[]

setKeyAndInitializationVector()
tripleDESDecrypt()
tripleDESEncrypt()

Sha1

algorithmName : String = null
messageDigest : java.security.MessageDigest = null

<<Constructor>> Sha1()
doFinal()
reset ()
update()

TripleDESCBC

$ ENCRYPTION_MODE : byte = 0
$ DECRYPTION_MODE : byte = 1
algorithmName : String = null
cipher : javax.crypto.Cipher = null
initializationVector : javax.crypto.spec.IvParameterSpec = null
key : javax.crypto.SecretKey = null

<<Constructor>> TripleDESCBC()
doFinal()
init()

HmacSha1

algorithmName : String = null
secretKey : javax.crypto.spec.SecretKeySpec = null
mac : javax.crypto.Mac = null

<<Constructor>> HmacSha1()
init()
reset()
update()
doFinal()

Figure 18: UML Class Diagram for the Netscape Crypto Façade Layer

CMU/SEI-2001-TN-017 37

DBGlobalConst ants

ALL_SET : int = 0xFFFFFFFF
BITS_PER_MAP : short = 32
BUF_BUCKET : short = 0x0004
BUF_DISK : short = 0x0002
BUF_MOD : short = 0x0001
BUF_PIN : short = 0x0008
BYTE_MASK : short = (1 << INT_BYTE_SHIFT) - 1
BYTE_SHIFT : short = 3
CHARKEY : char[] = "%sniglet &̂"
DEF_BUFSIZE : int = 655361
DEF_FILL_FACTOR : int = 655361
EFTYPE : short = 2000
FULL_KEY : short = 2
FULL_KEY_DATA : short = 3
HASH_MAGIC : int = 0x061561
HASH_VERSION : short = 2
INT_BYTE_SHIFT : short = 5
INT_TO_BYTE : short = 2
MAX_OVERFLOW_HASH_ACCESS_LOOPS : short = 2000
MAX_UGLY_SPLIT_LOOPS : short = 10000
MIN_BUFFERS : short = 6
MIN_FILL_FACTOR : short = 4
MINHDRSIZE : short = 512
O_ACCMODE : short = 3
OLD_HASH_VERSION : short = 1
OVERFLOW_PAGE : short = 0
OVERFLOW_SIZE : short = 4
PARTIAL_KEY : short = 1
REAL_KEY : short = 4
SPLIT_MASK : short = Ox7FF
SPLIT_SHIFT : short = 11

log2()

NetscapeKey Store

HashHeader

bitmaps : short[]
bucke tShif t : int
bucke tSize : int
by teOrder : int
direct ory Size : int
f illFact or : int
hashC harKey : int
highMask : int
lastFreedPage : int
lowMask : int
magic : int
maxBucket : int
numKey s : int
ov erf lowPoint : int
segmentShif t : in t
segmentSize : int
sizeTableH eader : int
spares : int []
v ersion : int
$ NUM_CACHED : short = 32

Berkeley DBManager

FIRST_RECORD : short
NEXT_RECORD : short

hashClose()
hashDelete()
hashGet()
hashOpen()
hashPut()
hashSeq()
hashSy nc()
addDelete()
addOv erf lowPage()
allocateSegment()
bigDelete()
bigInsert()
bigKey Data()
bigReturn()
bigSplit()
by teComparison()
by teComparison()
by tesToInt()
by teToString()
callHash()
clearBit()
collectData()
collectKey ()
deletePair()
expandTable()
f etchBitmap()
f indBigPair()
f indLastPage()
f irstFree()
f lushMeta()
f reeOv erf lowPage()
f reeSpace()
hashAccess()
hashRealloc()
initializeBitMap()
intToBy te()
makeClone()
memory Mov e()
mergeToInt()
mergeToShort()
of f setAddr()
ov erf lowAddress()
ov erf lowPageFunc()
pageMeta()
pairFits()
pairSize()
putPair()
readHeader()
setBit()
splitPage()
squeezeKey ()
ugly Split()
writeHeadertoFile()

+key File +certif icateFile

HashBuf f erList

buf f erInsert()
buf f erLinkRemov e()
headInsert()
tailInsert()

HashSegment

HashTable

currentBucket : short
currentIndex : short
dbFileName : String
dbmErrorNo : short
f ilePointer : FileInputStream
f lag : short
mapNum : short
newFileIndicator : short
numBuf sLef tToAllocate : short
numCached : short = 32
numExtraSegments : short
numMaps : short
numSegments : short
sav eFileIndicator : short

bucketAddrToPageAddr()
buf f erFree()
buf f erRemov e()
getBuf f er()
getPage()
hashFunction()
headInsert()
initializeBuf f er()
isDiskTest()
mergeToNumber()
ov erf lowAddrToPageAddr()
putPage()
reclaimBuf f er()
tailInsert()
newBuf f er()

+hashHeader

+hashTable

+buf f erList

+directory

SplitReturn

nextAddress : int = 0

HashBuff er

bucke tAddress : int
f lag : short
next : HashBuf f er
onDisk : c har
ov erf low : HashBuf f er
pageD at a : by te[]
prev ious : HashBuf f er

+currentHashPage

+buff erTree
+pageMap

+oldBuf f er

+newBuf f er

+nextBuf f er

Figure 19: UML Class Diagram for the Berkeley DB Access Layer

38 CMU/SEI-2001-TN-017

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

August 2001

3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Beyond the Black Box: A Case Study in C to Java Conversion and Product
Extensibility

5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

Pisey Huy, Grace A. Lewis, Ming-hsun Liu
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI 2001-TN-017

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This case study describes the experience of converting and enhancing NDBS 1.0 (Netscape Database Keystore), a
programmatic library to extract private keys and digital certificates from a Netscape database written in C and Java. The
result of this work is NDBS 2.0, a 100% Java version of NDBS 1.0 designed to support other keystores easily. NDBS
2.0 also includes write and delete capabilities, features that were not present in NDBS 1.0. The case study describes
the experience of the conversion and development process, difficulties, and lessons learned.

14. SUBJECT TERMS

data conversion and enhancement

15. NUMBER OF PAGES

49
16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Beyond the Black Box: A Case Study in C to Java Conversion and Product Extensibility
	Contents
	Figures
	Tables
	Abstract
	1 Introduction
	2 NDBS 1.0
	3 NDBS 2.0
	4 Extending the Functionality of NDBS 2.0
	5 Summary
	References
	Appendix A: Acronyms and Terms
	Appendix B: Microsoft Security Architecture
	Appendix C: NDBS 2.0 UML Class Diagrams

