






Note that du/dv = 2((i/h)du/dx + 2(b/h)du/dy + du/dz, in K~ so that

1 d2u f 1 d2u f du Mx,)-u(x3)
J A U ° ' '

f du

= 2\A\p(u).

It remains to bound the terms involving the second derivatives.

where r2 = max(^1^2)€>i({i +( ! )• A similar computation for the lower cone gives

Putting it all together:

\\u - u^\\w < \\u{2) - u{1)\\w =

D

3.3. Numerical Example. We illustrate the implications of our theorem with a numerical
example. Meshes are constructed by dividing the unit cube into a uniform rectangular mesh, and
then randomly perturbing the points by an amount eh. The Delaunay triangulation of such points
will have multitudes of slivers on all of the vertical and horizontal planes where the points are almost
co-circular. While the radius-edge ratio of these slivers will be near unity and their classical aspect
ratio of diameter to inscribed sphere radius (d/r) will be very large when e is small. Figure 3 tabulates
the errors for the solution

u(x, y, z) = enx COS(TT#/\/2) sin(7!\z/\/2)

of — Ait = 0 computed using the finite element and co-volume algorithms. It is clear that for h fixed
the finite element errors increase as c —* 0 and the the co-volume error is independent of c. Also, for
e fixed, the first order rate of convergence for the finite element solution in the HQ(Q) norm is readily
observable (the error decreases in proportion with h). The co-volume scheme achieves a higher rate
of convergence (almost two) for this example since the mesh is almost uniform. On a uniform mesh
the co-volume scheme is, in fact, second order accurate (this can readily be observed in the proof of
Theorem 3.1).
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1/4

1/8

1/16

e

0.01

0.001

0.0001

0.01

0.001

0.0001

0.01

0.001

0.0001

d/r

1126

11125

111296

26230

166051

1621745

14194

105551

1030956

\u-uh\Hi

30.22479

92.97309

291.6406

12.98964

35.1377.5

108.1435

6.023042

15.48025

45.91799

FEM
\\IhU - Uh\\\V

7.696399

8.692323

8.917005

4.344101

6.865007

7.525118

2.262189

4.457009

6.140328

Co-Volume

\\IhU - Uh\\w

0.2425438

0.2411516

0.2410718

0.07616430

0.07531520

0.07538803

0.02155074

0.02005826

0.02007369

FlG. 3. Errors for control volume and finite element methods.

4. Poincare Inequality. The Poincare inequality states that for a bounded domain Q C 3£d

there is a constant C > 0 such that ||tt||L2(n) < C||Vi/||L2(n) for all sufficiently smooth functions
u : U —* 5R vanishing on the boundary dQ. MacNeal [5] has shown that in two dimensions the W
norm (defined in Section 3.2) is equal to the H1 (Q) norm, in the sense that the piecewise linear
extension, u, of it defined on the vertices of a triangulation satisfies ||w||fr = JQ |V«|2. The Poincare
inequality, J^ u2 < C fn |Vit|2 then implies that convergence of a discrete solution in the W norm
implies convergence in L2(Q). In three dimensions the W norm is no longer equivalent to the H1(Q)
norm, so convergence in L2(Q) doesn't follow directly from the Poincare inequality. Below we establish
a discrete Poincare inequality for the W norm which establishes convergence in L2(Q) of the piecewise
constant functions.

DEFINITION 4.1. Given a real valued function u on the mesh vertices, the piecewise constant extension

u : Q —> ?R is defined to be the function equal to ut over the Voronoi cell Vt.

The discrete L2(Q) norm of u is then interpreted to mean ||w||2L2(^) = St Jv u2.

THEOREM 4.2 (DISCRETE POINCARE INEQUALITY). Let u be a function defined on the vertices of a
triangulation of the bounded domain Q c ^ that vanishes on the boundary vertices. Then there exists

C > 0 depending only upon O and the radius edge ratio of the mesh such that ||«||L2(fi) ^ C||tt||w.

The theorem statement can be rewritten explicitly as:

for all mesh functions vanishing on the boundary.

The meshes we consider are Delaunay diagrams, described by a set of vertices X = {xi • • • xn}, a set
of tetrahedra whose 1-skeleton is the edge set E and a set of Voronoi cells V. We define the following
weighted graph associated with the mesh:

DEFINITION 4.3. 1) Let Q = G(X,E,V) denote the graph constructed from the Delaunay diagram

V = (X, £ , V) as follows:

X: the vertex set of the graph is identified with the vertex set of the Delaunay diagram.

E: edges (i,j) in the graph correspond to interior Delaunay edges and have weight kij =

\Aij\/hij. Recall htJ is the length of the Delaunay edge between two vertices, Ai3 is the

area of the Voronoi face shared by Vx and V3.

V: we assign a cell to each graph vertex.
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2) The mass matrix M is a diagonal matrix containing the (truncated) Voronoi volumes on the di-

agonal. (Recall that Voronoi regions on the boundary may be infinite, so we only consider the part

in Q. We treat the areas used for computing the edge weights in a similar fashion. These terms are

inconsequential since we only consider functions vanishing on the boundary.)

3) The Laplacian of the graph Q, denoted by K, is the matrix having off diagonal entries KtJ =

— \Aij\/hij = —ktJ if (i,j) is an edge in Q and zero otherwise and the diagonals are given by Ku —

The discrete Poincare inequality then states that the eigenvalues (on the space of vectors having zero
boundary components) of the generalized eigenvalue problem Ku = XMu are bounded below by a
constant c > 0, or alternatively that there is a constant c > 0 such that K — cM > 0 (positive
semi-definite).

4.1. Geometric Properties. The meshes we consider are Delaunay diagrams V = (X,E,V)
where X C Cl C 3£d. We assume the mesh tetrahedra are of bounded radius-edge ratio.

Delaunay diagrams of bounded radius-edge ratio have several important geometric properties. Below
we recall some of these properties which were established in [6]. Recall that we denote the edge joining
two vertices x, and x3 by x~tXj and the length of such an edge by /*tJ, and that the set of vertices
connected to vertex xt by an edge is is denoted by Afi. Also, we adopt the notation that C and c
are positive constants which may differ from occurrence to occurrence. In general, c will be a lower
bound and C an upper bound, and these constants only depend upon the mesh through the Lipschitz
constant of the for the spacing function, p, appearing in the following theorem.

THEOREM 4.4. Let V = (A", E, V) be a bounded radius-edge ratio Delaunay diagram. The following

is true:

Al) There is a function p : Q —• 9£+ with Lipschitz constant bounded by one and constants c,

C > 0 such that for each internal vertex xt £ X

chu <p(x)<Chij, V i e A/',, x£V,

and for all edges "xjxj

ch,j <p(x)<ChtJ, VxtxTzj.

A 2) There is a constant 0 > 0 such that each region Vt n Q, where Vt 6 V, contains a ball of

radius Op(xi) centered at xt, and is contained in a concentric ball of radius p(xi)/8.

A3) There is a constant C > 0 such that each vertex xt € X has at most C neighbors in the

diagram, i.e. the associated graph has bounded degree.

A4) The area of the Voronoi face shared by vertices xt, x3 € A' is bounded from above by Ch*'1.

The function p is referred to as the spacing function of the mesh, as it describes the typical distance
between vertices. This function plays an important role in the proofs below as it captures many of
the mesh properties.

Our arguments below are graph theoretic and don't use the fact that we're dealing with a Voronoi/Delaunay
triangulation. Any decomposition of Q into volumes Vt and edges connecting them that satisfy the
geometric properties listed in Theorem 4.4 would suffice. We therefore generalize the notion of the
bounded radius-edge ratio Delaunay diagram as follows:

DEFINITION 4.5 (WELL-SHAPED DIAGRAM). A diagram Q = (X,E,V) is a set of vertices X, and a
set of cells V such that vertex xt € Vr

t, and the edge set E corresponds to the neighborhood structure
of the cells. The diagram is well-shaped if properties A1-A4 hold.
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Notation: Since the edges of a well shaped diagram don't necessarily correspond to line segments in
5ftd we will denote an edge connecting xt, x3 £ X by (i,j), and use the notation x~Tx3 to suggest a line
segment in 9£d.

4.2. Comparison. Our proof of the discrete Poincare inequality will parallel the proof of its
continuous counterpart. The continuous proof considers a large cube Q containing Q, and since all
functions defined on Q vanishing on the boundary can be extended by zero to all of Q, a Poincare
inequality on Q will imply a Poincare inequality on Q. We too will embed Q into a large cube,
and in this section we show that any two meshes on Q and Q satisfying the geometric properties of
Theorem 4.4 with the same spacing function p can be suitably compared. The next section will then
show that for each spacing function there exists a canonical mesh on the cube for which the Poincare
inequality holds.

DEFINITION 4.6 (PATH EMBEDDING). (1) The graph Qi - (A' (1 ) ,£ (1 ) ,F (1 )) is path embedded in
C/2 = (X^2\ E^2\ V^) if there exists a function <j> from X^1' to X^ and a mapping p from the edges
of Q\ into paths in $2, such that for each edge (m,n) in Q\, p(m,n) is a path in $2 from <j>(m) to

(2) The embedding has bounded dilation if there is a constant Ck > 0 such that for every edge

/ v

where k^l and k\^ are the edge weights of Q\ and Q2 respectively (i.e. the conductivity of the path is

comparable to the conductivity of the edge).

(3) The embedding has bounded congestion if there is a constant Cp > 0 such that for each edge

(ij) in £2

LEMMA 4.7. Let {<j>,p) be a path embedding of Qi into Q2 with bounded dilation and congestion, and
let u be a real valued function on the vertices of G2 and u 0 <j) be the induced function on the vertices
of Q\. Then there is constant C > 0 such that

(u o <t>)TK{l\u o<j>)< CuTK{2)u

Proof

E
(m,n)(tj)€p(m,n)
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D

Property A4 allows the edge weights AtJ/hij to be arbitrarily small. In particular, a sliver in a
Delaunay diagram corresponds to a small weight. All the paths containing the "light" edge will have
small conductivity. The following lemma states that this situation is not generic, and that each edge
can be replaced by a path of high conductivity, which will be used for the construction of suitable
path embeddings.

We plan to embed a cube Q into Q and need a way of extending functions on Q that vanish on the
boundary to all of Q. A convenient way of doing this is to add a "super" node xo to the vertex set
X of a well shaped diagram Q = (X, E, V) of Q, and to augment the edge set E by connecting every
boundary vertex to the super node, and to assign large (say infinite) weights to these edges so that
they never lower the conductivity of a path. Also, we may put multiple (say infinite) edges between
a boundary node and the super node to guarantee that these edges never increase the congestion. It
is convenient to associate the region Vb = Q \ Q to the super node XQ.

Notation Given a well-shaped diagram Q = (X, E, V) of Q, the augmented diagram is the diagram
formed by adjoining a super node to X and the associated edges and volume to E and V.

L E M M A 4 .8 . Let Q = (Ar, E, V) be an augmented well-shaped diagram of 0 C $Zd'. Then there exists a

path embedding ((j),p) of Q into itself of bounded congestion such that the conductivity of each path in

the image is bounded below by a multiple of hf~2
f i.e. for each edge (i,j) € E

1/kmn <
(m,n)€p(t,.?)

Proof Let us consider a typical edge x~7x3 of length htJ and define U to be the neighborhood of x~7x3

consisting of points whose distance from xtx3 is no more than min(c/2, Bc)htJ where c and 6 are the
constants guaranteed by properties Al and A2 of Theorem 4.4. We first consider the case when U
lies entirely within Q. The Lipschitz hypotheses on p guarantee that chtJ < p(x) < (C + c/2)htJ for
all x € U.

Step 1: The number of cells from V that intersect U is bounded by a constant K > 0.
We use a volume argument. If x 6 Vk O U, property Al shows that c/C < p(xk)/p(x) < C/c. Since
p(x) is bounded above and below by multiples of htJ, property A2 implies that Vk contains a ball
having volume bounded below by chf3 and the diameter of Vk is bounded by ChtJ. If U is the set
of points having distance no more than ChtJ from xTx3, then U contains all of the cells intersecting
U and has volume bounded by a multiple of hfj. It follows that the number of cells meeting U is
bounded by \U\/chf3.

Step 2: There exists a line segment from Vt to V3 in U, parallel to T7x3, that meets Voronoi faces
having areas bounded below by a multiple of hf"1

We use an area argument similar in spirit to the previous volume argument. Consider the collection
of line segments in U that start in Vt and end in Vj, and are parallel to xTx3. By construction, the
cross-sectional area of this collection is bounded below by a multiple of hf"1, say chf~*. Letting 6
be the maximal degree of any vertex guaranteed by property A3, the total number of faces that meet
U is bounded by K8. It follows that some path must encounter faces having areas bounded below
by (c/K6)hf~1 (otherwise every face would be small and their totality wouldn't exhaust the cross
section).

We now observe that these conclusions don't change if a Q is not convex and a portion of U is exterior
to Q. Since the volume of Uf)Q is trivially smaller than that of U, the number of cells meeting U only
reduces in this case. Similar reasoning holds for the area argument. Note that all of the line segments
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FIG. 4. Path constructed in Theorem 4-9.

do begin and end in 0 and that we consider all faces on the boundary to have large (infinite) area.

To establish the theorem we let p(i,j) be the path in E formed by connecting the Voronoi centers

in the order encountered by a segment in U which only intersects "large" Voronoi faces. This path

has length at most K, and since p is bounded above and below by a constant times hij so too are the

lengths of all of edges in p(i, j), which implies a bound the conductivity of the path. Finally, note

that an edge in E will only be on a path p(i,j) for vertices x, and x3 that can be reached along no

more than K edges. Since the degree of each vertex is bounded by the constant 6, the congestion of

any edge is less than 6K. D

THEOREM 4.9. Let Q\ = (A'(1), £ ( 1 M / ( 1 ) ) be a well-shaped diagram for a cube Q containing Q and

Q2 = (X^2\ E^', V*2)) 6e the augmentation of a well-shaped diagram of Q, each having the same

spacing function p. Then the following construction path embeds Q\ into Q2 with bounded congestion

and dilation:

1. 4>(m) = i where Vt
(2) £ ^ ( 2 ) is a cell intersecting the cell v £ ° £ Vr(1). (Note that i is not

uniquely specified as Vm ' can intersect several cells of V^2^)

2. For each edge (m,n) <E Q\ consider the three piecewise linear paths: Si = (x^VyXo,x^)f

S2 = (x&\xW) and S3 = (x{n\xux^n)) where x0 € tf^V^ and Xl € F ^ n V ^

(see Figure 4)- Let £1 = (j>(m), £2, • • • ,£k-i,£k = <Hn) index the cells of V^ encountered

along the three segments S\, S2, 53 in that order. Then p(m,n) is the path in Q2 formed by

the union of the heavily weighted paths from ẑ 2? to x^ constructed in lemma 4-8-

Note that this construction is well defined since the super node has the region Q associated with it, so

that every cell Vm € V^ meets some cell ofV^2\ and paths that leave Q all go to the super node and

can reenter anywhere from the super node.

Proof. Observe that every cell along the path p(m,n) in V^ intersects either Vm\ V^ or the edge

joining them. Property Al shows that chmn < p(x) < C/im n for every x G V^1* U V^\ which implies

(C/C2)hmn < P(X) < C2/C)hmn for X € V%\ 1 = 1 , 2 , . . . , * .

An application of the volume argument used in the first step of Lemma 4.8 gives a bound on the length

of the path p(m, n). Briefly, the distance from any point in one of the cells {V^ }?=! to S2 is bounded

by a multiple of l i m n . This neighborhood of 52 will have volume bounded by C/ i^ n , and since each

of the cells V^2) contains a ball having volume bounded below by a multiple of /*^n, say chmn, it

follows that there are no more than C/c such cells. Since the heavily weighted paths constructed in

Lemma 4.8 are all of bounded length, the length of p(m, n) is bounded by at most a multiple of C/c.
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This immediately leads to bound on the congestion and dilation. Property A3 bounds the degree of
any vertex by a constant 6, so the congestion is bounded by the Lmax, where Lmax is the maximal
length of any path. Similarly, the conductivity on each edge is bounded below by a constant of the
form chm~n aRd putting Lmax edges in series doesn't decrease this by more than a factor of 1/Lmax-
D

COROLLARY 4.10. Let Qi = (X{1\ E(1\ V{1)) and Q2 = (X(1\E{2\V(2)) be as in the theorem, and
suppose that Q is sufficiently large to guarantee that no boundary cell of V^1' meets a boundary cell
of V(2K If Q\ satisfies the Poincare inequality, then so too does Q2

Proof. Let u be a real valued function on X^ that vanishes on the boundary (and, in particular
on the super node xo). When constructing the path embedding of Q\ into Q2 given by the theorem,
select 4>{m) in step 1 to correspond to the vertex having maximal absolute value of u of the available
choices. It follows that

and summing over 1 gives

Since all boundary vertices of A^1) are mapped by <j> to the super node XQ it follows that u 0
-* 9£ vanishes on the boundary vertices, and since Q\ satisfies a Poincare inequality we have

uTM{2)u <(uo <j))TM{1)(u o </>) < C(u 0 4)TK(1){u o <t>)

and the result follows upon application of Lemma 4.7. D

4.3. Construction of a Graph Satisfying a Poincare Inequality. In order to apply the
results of the previous section to establish a Poincare inequality for bounded well-shaped diagrams
it is necessary to exhibit an instance of a canonical mesh satisfying a Poincare inequality. We let
p : Q —* 9?"*" be a specified Lipschitz spacing function, fixed during this discussion, and Q a cube in

Figure 5 exhibits the oct-tree construction for a cononical mesh, and the balanceing step is illustrated
in Figure 6. The oct-tree construction is well known, and the following lemma shows that our
particular contruction generates a well shaped diagram with spacing function p.

LEMMA 4.11. The oct-tree diagram generated by the algorithm 0} Figure 5 is a well-shaped diagram
with spacing function p.

Proof. Properties A3 and A4 follow immediatly from the oct-tree construction. For properties Al and
A2, we only have to show the existance of constants c, C > 0 such that each cube Q in the balanced
oct-tree generated by the algorithm of Figure 5 satisfies

d{Q) < P(x) < Ct(Q), x£Q.

Let Qc be a leaf cube at the end of step l(b), and let Q be its parent cube. Since Q was divided there
is some point x 6 Q such that p(x) < £(Q), and since Qc was not divided, t(Qc) = £(Q)/2 < p(y) for
all y € Qc The distance between x and y is bounded by |x — j / | < y/dC(Q), and since p is a-Lipschitz,
P{y) < p(x) + <*y/d£(Q). In summary, by the end of step l(b),

< p(y) < 2(aVd+ l)t(Qc) yeQc
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Algorithm: Canonical Mesh Construction

Input: p, a spacing function.

Output: A diargram Q = (X, E, V).

Method:

1. Construct a balanced oct-tree:

(a) Let Q be a cube containing 0.

(b) If CQ denotes the side length of a cube Q, while £Q > ming p for any

cube, Q, sub-divide Q into 2d cubes.

(c) While there is a cube Q shareing a (d — 1) face with cube Q having

£Q > 2£Q9 sub-divide Q.

2. Assignment of the diagram Q = (A\ E, V).

(a) The vertices, A', of Q will be idexed by the cubes of the partition,

and the cells, V, are the associated cubes.

(b) Q has an edge between two verticies xt and x3 if and only

if their associated cubes share a d—1 face, and in this instance the

edge weight is ktJ = min(£?~
2,^~2), where £t is the side length of the

cube Qt.

(c) The ''mass'' Mt associated with a particular cell is the volume of

the associated cube.

FlG. 5. Constructing a canonical mesh.

We now show there are constants c and C such that after the balancing step l(c) of the algorithm:
C^(Q) < p(y) ^ C^(Q)i for y £ Q. Since subdividing a cube doesn't affect the lower bound on p, we
set c = 1. To establish the upper bound we use an induction argument. Our induction hypothesis
is that prior to any balancing split, all cubes, Q, satisfy p(y) < C£(Q) for all y € Q (C is explicitly
computed below).

We have shown that step l(b) produces cubes satisfying the inductive assumption provided C >
2(a\/5-f 1), establishing the initial inductive step. Let Q be a cube split during the balancing step,
Qc be one of its children, and Q be a neighbor causing the split. It follows that £(Q) < £(Q)/2, and
if x € Q the induction hypothesis guarantees that p(x) < C£(Q). The distance between x £ Q and
any y £ Q is bounded by

{ ) + £(Q)) <

Since p is Lipschitz with constant a,

p(y) < p(x) +

< (C/4 + o3V5/4) £{QC)

Selecting C such that C/4 + a^y/d/A < C completes the inductive step. D

The construction below mimics the proof of the Poincare inequality for the continuous case which
proceeds by integrating along a path from the boundary to each point in the domain. In the discrete
case these paths must lie in the edge set of our graph and no one path can be used to excess (i.e.
the congestion must be controlled, see Definition 4.6). The following is a generalization of path
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FlG. 6. Balancing a quad tree.

embedding of the previous section, where the edges we embed are from each internal vertex to the
boundary vertices.

DEFINITION 4.12 (BOUNDARY EMBEDDING). Let Q = (A', £, V) be a graph with edge weights denoted
by ktJ. A boundary embedding is a collection of graphs {Qi}x%ex each having the same vertex and
edge structure of Q and having edge weights Wmn > 0.

• The congestion of the boundary embedding is the maximum over all of the edges (m, n) £ E
of the sum ^Pt. Wmn.

• For xt € X the effective conductivity of Qt is the largest constant c = c^ such that

{m,n)

for arbitrary nodal values {um} vanishing on the boundary.

The role of these definitions becomes apparent from the following lemma.

LEMMA 4.13. Let Q = (X,E,V) be a well-shaped diagram of Q with mass matrix M and Laplacian
K. Let {Q,} be a boundary embedding having congestion bounded by C and suppose that for each Qt

the weighted conductivity is bounded below by Mt. Then the Poincare inequality uTMu < CuTKu
holds for all u : X —• 9? vanishing on the boundary.

Proof. The bound on the conductivities guarantees that

uTMu =

(tn,n)

We next construct the subgraphs Qt alluded to in Lemma 4.13. In the balanced oct-tree we define cube
Qi to be above cube Q3 if their projections onto the plane Xd = 0 have non-zero (d — 1) area. The
horizontal faces of a cube are the two faces having Xd constant. The key geometric fact used below
is that if the intersection of the projections of two cubes have non-zero area, then the projection of the
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smaller cube must lie entirely within the projection of the larger cube (and the projections coincide if
the cubes have the same side lengths).

Consider a vertex Xi in Q and define Qt to have the same vertex and edge sets as Q and assign weights
to the edges of Qi as follows: An edge (ra, n) has non-zero weight if and only if it is associated with
a horizontal d — 1 face and if Qi is above Qm and above Qn. Without loss of generality we order the
vertices so that t(Qm) < £(Qn), and assign the edge weights by

-* t(Qi) otherwise

THEOREM 4.14. The graph given by the above construction oct-tree construction satisfies a Poincare

inequality.

Proof. We show that the graphs {(/,} constructed above satisfy the hypotheses of Lemma 4.13.

Step 1: The congestion is bounded by 2L where L is the side length of Q.

A fixed (vertical) edge (xm ,xn) in Q, it has a non-zero weight w\nn if and only if the cube Q, lies
above the cells Vm and Vn. Without loss of generality, assume £(Qm) < C(Qn)- Let I index all the
cells Qt above Qm and Qn- The congestion is then given by

w{t)

wmn

The first summand is bounded by L since the larger cells must be stacked one on top of the other.
The second summand is also less than L since the sum gives the volume of the smaller cells above Qm

divided by the cross sectional area of Qm • •

Step 2: Let L be side length ofQ, then the effective conductivity of Qi is bounded below by Mt = |Vi|.

Let £ be the minimum side length of the cubes below Qt (which may be £(Qt)), and think of the area
of the projection of the cube Qt onto id = 0 to be divided into squares of length £. The oct-tree
construction guarantees that the projection of a cube Q below Qi with £(Q) < £(Qt) will be the union
of such squares, and if Q is below Q, and £(Q) > £{Qi), then the intersection of the projections of Qt

and Q is equal to the projection of Qt.

For each square 5 in the projection, consider the path from the boundary to Qi formed by connecting
the cubes below Qi that meet the cylinder S x 9£. For convenience label the vertices mo, mi , . . . , mi
so that Qm0 is a boundary cube and Qt = Qmj • Then

\S\u2
t =

n = l n=l
I

< L 5^( |5 | /fem n m n .1 )(umn ~ ttmn-x f
n=l

where I is the side length of Q. Multiplying by £(Qt) and summing this inequality over all squares
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gives

S n=l

where hmnmn_1 = min(£(Qmn ),£(Qmn_1)). If we define Amnmn_l = min(/tmnmn_1 ^(Q,-))*'"1, inter-

changing the order of summation gives

where the summation is over all of the horizontal faces below Qt. The weights w\^n were chosen to

satisfy w^nkmn = Z{Qx)Amnmn_1lhrnnTnn_l, hence

(m,n)£Gt
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