
Carnegie Mellon University
Research Showcase @ CMU

Computer Science Department School of Computer Science

5-2009

RAIDE for Engineering Architecture-Based Self-
Adaptive Systems
Shang-Wen Cheng
Carnegie Mellon University

David Garlan
Carnegie Mellon University

Bradley Schmerl
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/compsci

This Conference Proceeding is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been
accepted for inclusion in Computer Science Department by an authorized administrator of Research Showcase @ CMU. For more information, please
contact research-showcase@andrew.cmu.edu.

Published In
Software Engineering - Companion Volume, 2009. ICSE-Companion 2009. 31st International Conference on, 435-436.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fcompsci%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fcompsci%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu


RAIDE for Engineering Architecture-Based Self-Adaptive Systems 
 
 

Shang-Wen Cheng, David Garlan, and Bradley Schmerl 
Carnegie Mellon University 

{zensoul,garlan,schmerl}@cs.cmu.edu 
 

 
Abstract 

 
Rainbow is an approach for engineering self-

adaptive systems, with run-time, closed-loop control 
over target systems to monitor, detect, decide, and act 
on opportunities for system improvement. RAIDE 
enables adaptation engineers to customize the 
Rainbow framework, simulate adaptation behavior, 
and deploy Rainbow run-time components. 
 

1. Introduction 

Imagine a world where a software engineer could 
take an existing software system and specify objectives, 
conditions for change, and strategies for adaptation to 
make that system self-adaptive where it was not before. 
Imagine that this could be achieved in days to weeks, 
rather than months, while maintaining business goals 
and other properties of interest. Imagine further that an 
engineer could reuse and share adaptation expertise and 
quickly apply others’ strategies to her own system. 

Increasingly, systems must have the requirement to 
self-adapt with minimal human oversight. They must 
cope with variable resources, system errors, and 
changing user priorities, while maintaining as best as 
they can the goals and properties envisioned by the 
engineers and expected by the users. However, self-
adaptation in today’s systems is costly to build, often 
taking many man-months to develop or to retrofit 
systems with the capabilities. Moreover, once added, 
the capabilities are difficult to modify and usually 
provide only localized treatment of system errors. 

Broad speaking, several dynamic, architecture-based 
adaptation approaches have been developed to date 
[2],[5], focusing on formal models, mechanisms of 
adaptation, or control distribution and decentralization. 
However, only a few explicitly tackle the engineering 
challenges of making a target system self-adaptive with 
an integrated tool, such as ArchStudio [4], Plastik [1], 
and IBM’s Autonomic Computing Toolkit [6]. 

Our approach, called Rainbow [3], makes it possible 
for engineers to easily define adaptation policies that 

are more global in nature (via an architecture model 
that reflects properties of the executing system) and 
take into consideration business goals and quality 
attributes (using utility theory to inform trade-offs). 
Rainbow enables engineers to augment existing 
systems to be self-adaptive without needing to rewrite 
them from scratch, to reuse adaptation policies across 
similar systems, to synergistically combine multiple 
sources of adaptation expertise, and to do so in ways 
that support maintainability, evolution, and analysis. 

In our research demonstration, we present a general 
and customizable framework with an Eclipse-based 
development environment that supports our adaptation 
engineering process to make a system self-adaptive. 
 

2. Rainbow adaptation engineering process 

 
Figure 1. The Rainbow framework 

The Rainbow approach consists of a framework, an 
adaptation language (not presented here), and an 
adaptation engineering process. The framework (see 
Figure 1) monitors a target system and reasons about 
appropriate adaptations to the system using its 
architecture model. Abstractly speaking, monitoring 
mechanisms – probes and gauges – observe the running 
system to update properties of the model managed by 
the Model Manager. Architecture Evaluator checks 
that the system is operating within acceptable bounds, 
as defined by architectural constraints. Upon constraint 
violation, Adaptation Manager selects the best strategy 
given current system conditions reflected in the model. 



Strategy Executor executes the strategy on the running 
system via system-level effectors. The cycle repeats. 

The adaptation engineering process prescribes how 
to gather the necessary artifacts to tailor the Rainbow 
framework to a target system. Table 1 summarizes the 
customization artifacts. Rainbow supports a number of 
adaptation concepts to allow engineers to focus on 
adaptation-level concerns: strategies, tactics, operators, 
effectors, gauges, and probes. A team of adaptation 
engineers – composed of the adaptation integrator, 
system adapter, style writer, gauge writer, and strategy 
writer – carries out the iterative process to evolve and 
augment a system with self-adaptive capabilities. 

Table 1. Framework customization points 

Framework Component Customization Artifacts 

Translation Infrastructure 
Probes, gauges, effectors; 

Translation mappings 
Model Manager Architecture & Env. models 

Architecture Evaluator Architectural constraints 

Adaptation Manager 
Adaptation strategies; 

Utility preference spec. 
Strategy Executor Style operators 

 

3. The Rainbow Adaptation IDE 

 

To support adaptation engineering, we integrated a 
number of existing tools into a single, Rainbow 
Adaptation Integrated Development Environment 
(RAIDE). RAIDE enables the adaptation engineer to 
edit the Acme architecture models, write Stitch scripts, 
compose customization artifacts, simulate adaptation 
behavior, and deploy the Rainbow run time. A Control 
Console provides central management of the run-time 
infrastructure and allows control of the distributed 
delegates, updates to software, testing of effectors, and 
deploying and undeploying of probes. Rainbow also 

supports dynamic update of customization artifacts, 
including utility preferences and adaptation strategies. 

RAIDE features the following: (1) A navigator 
enables managing the customization artifacts; (2) an 
AcmeStudio plug-in enables visualizing and editing the 
target-system architecture model, including the system 
properties to monitor and the architectural constraints 
to evaluate; (3) a YaML plug-in enables editing the 
specification files for probes, gauges, and effectors; (4) 
a Stitch editor enables composing adaptation strategies, 
with syntax highlighting, simple code completion, on-
save parsing, and an outline view; (5) a Utility editor 
enables specifying preferences and profiles that capture 
business objectives; (6) a configuration editor enables 
overall integration of a customized Rainbow instance; 
and (7) an SDK enables simulating Rainbow adaptation. 

To demonstrate low customization effort with 
Rainbow, we tracked detailed customization activities 
in two case studies [3]. To summarize, customization 
took 40 man-hours in one case and 93 man-hours in the 
other. Note that while the majority of the effort was 
spent developing monitoring capabilities, the resulting 
probes and gauges are reusable artifacts. More 
significant are the orders-of-magnitude of effort: most 
activities required on the order of minutes to a couple 
hours, not days, while incremental changes required on 
the order of tens of minutes, not hours. 

In future work, we aim to simplify customization 
and reduce efforts further using templates, wizards, and 
default configurations. We would enhance the Stitch 
editor with code navigation, incremental build, linkage 
to the architecture and model operators, and adaptation 
debugging. We would also enhance the Console with 
finer-grained control of each Rainbow component. 
 

4. References 
[1] T.V. Batista, A. Joolia, and G. Coulson. Managing 
dynamic reconfiguration in component-based systems. In 
EWSA, LNCS 3527:1-17, Springer, June 13-14, 2005. 
[2] J.S. Bradbury, J.R. Cordy, J. Dingel, and M. 
Wermelinger. A survey of self-management in dynamic 
software architecture specifications. In Proc. WOSS ‘04, pp. 
28-33, ACM, New York, NY, 2004. 
[3] S-W. Cheng. Rainbow: cost-effective software 
architecture-based self-adaptation. Technical Report CMU-
ISR-08-113, Carnegie Mellon U School of CS, May 2008. 
[4] E.M. Dashofy, A. van der Hoek, and R.N. Taylor. 
Towards architecture-based self-healing systems. In Proc. 
WOSS ’02, pp. 21-26, ACM, New York, NY, 2002. 
[5] D. Ghosh, R. Sharman, H.R. Rao, and S. Upadhyaya. 
Self-healing systems—survey and synthesis. Decision 
Support Systems, 42(4):2164-2185, 2007. 
[6] IBM developerWorks. Autonomic computing toolkit. 
http://www.ibm.com/developerworks/autonomic/overview.ht
ml, 2008. [Online; accessed 2-April-2008]. 


	Carnegie Mellon University
	Research Showcase @ CMU
	5-2009

	RAIDE for Engineering Architecture-Based Self-Adaptive Systems
	Shang-Wen Cheng
	David Garlan
	Bradley Schmerl
	Published In


	RAIDE for Engineering Architecture-Based Self-Adaptive Systems

