1996

Modeling magnetostrictive microstructure under loading: and, Simulation of magnetoelastic systems

Richard James
Carnegie Mellon University

David Kinderlehrer

Ling Ma

Follow this and additional works at: http://repository.cmu.edu/math
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.
Modeling Magnetostrictive Microstructure Under Loading

Richard James
University of Minnesota

David Kinderlehrer and Ling Ma
Carnegie Mellon University

Simulation of Magnetoelastic Systems

David Kinderlehrer and Ling Ma
Carnegie Mellon University

Research Report No. 96-NA-004

March 1996

Sponsors

U.S. Army Research Office
Research Triangle Park
NC 27709

National Science Foundation
1800 G Street, N.W.
Washington, DC 20550
Modeling Magnetostrictive Microstructure Under Loading
Richard James
Department of Aerospace Engineering and Mechanics
University of Minnesota
Minneapolis, MN 55455

David Kinderlehrer and Ling Ma

Center for Nonlinear Analysis
Carnegie Mellon University
Pittsburgh, PA 15213-3890

and

Simulation of Magnetoelastic Systems
David Kinderlehrer and Ling Ma

Center for Nonlinear Analysis and Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213-3890
W(RFH,mRT,x) = W(F,m,x) for R \in SO(3) and H \in H_x,

where H_x is the symmetry group of the material at x \in \Omega. In our case, H_x will be the proper cubic group H of order 24 or one of its conjugacy classes.

In Terfenol-D, onset of ferromagnetism is associated with a stretch of the high temperature cubic unit cell along a main diagonal, inducing a magnetization parallel to that diagonal. Thus the energy density W for a single crystal achieves its minimum on the eight pairs of transformation strains (U_j,±m_i) given by

\begin{equation}
U_i = \eta_1 1 + (\eta_2 - \eta_1) m_i \Theta m_i, 0 < \eta_1 < \eta_2, \quad i = 1,2,3,4,
\end{equation}

\begin{equation}
m_1 = \frac{1}{\sqrt{3}}(1,1,1), \quad m_2 = \frac{1}{\sqrt{3}}(-1,1,1), \quad m_3 = \frac{1}{\sqrt{3}}(1,-1,1), \quad m_4 = \frac{1}{\sqrt{3}}(1,1,-1).
\end{equation}

This leads to

\begin{equation}
W(RU_j,mRT) = W(RU_1H,mRT) = \min_{R \in SO(3), H \in H, j = 1,2,3,4} W(RU_j,mRT) = W(F,m,x) \text{ for } x \in \Omega^+
\end{equation}

As suggested in Figure 1, the typical configuration of TbDyFe2 rods is a twinned dendritic structure consisting of lamellar domains separated by grain boundaries or growth twin interfaces. The entire rod is viewed as a composite, that we take here to be one domain \(\Omega^+ \) and a second one \(\Omega^- \). The lower lamellar structure arises as a rotation of 180° about the \(m_1 \) axis of the original upper lattice. Denoting by \(R_0 \) this rotation, we arrive at an energy density of the composite given by

\begin{equation}
W(RU_j,mRT) = W(RU_1H,mRT) = \min_{R \in SO(3), H \in H, j = 1,2,3,4} W(RU_j,mRT) = W(F,m,x) \text{ for } x \in \Omega^+
\end{equation}

\begin{equation}
W(F,m,x) = \begin{cases}
W(F,m) & x \in \Omega^+ \\
W(FR_0,m) & x \in \Omega^-
\end{cases}
\end{equation}

Note that \(R_0 \) is not a symmetry element of the original energy and, although holding invariant the wells of \((U_1,\pm m_1) \), gives a different set of transformation strains and magnetizations \((U_1',\pm m_1') \) = \((R_0U_1R_0^{-1},\pm m_1R_0) \).

We may now investigate the collection of twinned dendritic equilibrium structures corresponding to \(H = 0 \). From theory ([23,24]), we know that a minimizing sequence \((y_k,\pm m_k) \) giving rise to such a configuration must satisfy

\begin{equation}
\int_\Omega W(Vy_k,m_k,x) \, dx + \frac{1}{2} \int_{\mathbb{R}^3} |V y_k|^2 \, dy \to \min W \mid \Omega^1
\end{equation}

For the Young measure \(\nu = (\nu_k)_x \in \Omega \), generated by \((V y_k,m_k) \), we then have that

\begin{equation}
\int_\Omega \int_{M \times \mathbb{S}^2} W(A,\mu,\pm m_1) \, d\nu(A,\mu) \, dx = \min W \mid \Omega^1, \quad m = \int_{M \times \mathbb{S}^2} \mu_1 d\nu(A,\mu)
\end{equation}

\begin{equation}
d\nu(A,\pm m_1) = 0 \text{ where } \mu_1 = \int_{M \times \mathbb{S}^2} \mu_1 d\nu(A,\mu)
\end{equation}

and \(M \) denotes the set of \(3 \times 3 \) matrices. This determines the variational condition for the support of the measure \(\nu \), namely

\begin{equation}
\text{supp } \nu_k \subset \Sigma^+ = \{(RU_j,\pm m_1R): R \in SO(3), i = 1,2,3,4 \} \text{ for } x \in \Omega^+
\end{equation}

The twinned dendritic laminates are the Young Measures with the simple form

\begin{equation}
\begin{cases}
\frac{1}{2}(1 - \lambda)(\delta_{(M,m)} + \delta_{(M,-m)}) + \frac{1}{2\lambda}(\delta_{(N,q)} + \delta_{(N,-q)}) & x \in \Omega^+ \\
\frac{1}{2}(1 - \lambda')(\delta_{(M',m')}) + \frac{1}{2\lambda'}(\delta_{(N',q')}) & x \in \Omega^-
\end{cases}
\end{equation}

where \((M,m), (N,q) \in \Sigma^+ \) and \((M',m'), (N',q') \in \Sigma^- \).

We confine our attention to the deformation gradients alone. It then follows from the minor relations that we are reduced to solving an algebra problem for macroscopic deformation gradients \(F \) composed of matrices \(M \) and \(N \) and \(F' \) composed of matrices \(M' \) and \(N' \) which satisfy

\begin{equation}
F = (1 - \lambda)M + \lambda N \quad \text{and} \quad F' = (1 - \lambda')M' + \lambda N', \quad 0 \leq \lambda, \lambda' \leq 1,
M - N = \alpha \Theta n, \quad M' - N' = \gamma \Theta n', \quad \text{and}
\end{equation}

\begin{equation}
F' - F = b \Theta m
\end{equation}

where \((M,m), (N,q) \in \Sigma^+ \) and \((M',m'), (N',q') \in \Sigma^- \).

The middle line above is the twinning equation for the individual laminates subject to the constraint that (1.5) holds. The transformation strains (1.5) determine a coherent well structure: any pair of wells admits two lamellar configurations, and hence 12 in all for each of \(\Omega^+ \) and \(\Omega^- \). Combining these, there are 144 possible combinations satisfying the middle line of (1.8), but imposing the condition of coherence across the growth twin boundary, which is the last line of (1.8), reduces these to twelve. They must have \(i = k, j \)
and in this case, \(q \) is a normal direction for the interface between the two systems, either coarse or fine phase in our Young Measure sense.

The choice \(q = (0,1,0) \) has the property

\[
Qm_1 = -m_3 \quad \text{and} \quad Qm_2 = m_4.
\]

Note incidentally that since \(n \cdot q = 0 \), \(Qn = -n \) and the normal direction is preserved. Therefore,

\[
QU_1Q = U_3 \quad \text{and} \quad QU_2Q = U_4,
\]

so by choosing \(R^t \) appropriately, we may solve (3.3). Thus a transformation path may be found and moreover, the interface normal is \((0,1,0)\), independent of the volume fraction \(\lambda \). For further discussion of the compatibility between different systems of variants and connections with experiment, see Tickle [36].

![Diagram](image)

Figure 2. Computed hysteresis curves for a laminate (gray lower curve) and for a laminate with constrained growth twin interface and under compression (black upper curve).

Actual device performance under magnetic loading shows hysteretic behavior. Simulations have been employed to capture this phenomena, [27,28,29], and open the issue of the nature of metastable magnetic configurations. For a description of the experimental magnetostrictive curve we refer to Clark [14] and the references there. Metastability from the experimental, computational, and analytical points of view is an active topic of research. The conjugate gradient method, to a nonconvex functional was unanticipated and has led to new ideas for analyzing such curves.

The simulation which gives rise to Figure 2 is based on linear theory in two dimensions but includes the magnetostrictive energy term. The curve corresponding to the constrained growth twin interface more closely resembles the experimental picture, suggesting a role for the growth twin in the magnetostrictive process which to date is not clearly understood.

On the other hand, the width of the hysteresis loop seems to be relatively insensitive to loading or constraints. Indeed, additional simulations under a wide variety of conditions, for example, without magnetic field energy or elasticity or single crystals with magnetic field energy, suggest that the width of the curve is extremely robust. The simulation which gives Figure 2 is the first, to our knowledge, where competition between magnetic and elastic effects is prominent.

![Table](image)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
Simulation of Magnetoelastic Systems

David Kinderlehrer and Ling Ma

Center for Nonlinear Analysis and Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract The simulation of a magnetoelastic system subjected to magnetic field loading gives rise to hysteresis. Examples related to Terfenol-D are presented and some methods of analysis discussed.

KEYWORDS magnetoelastic system, Terfenol-D, simulation, magnetostriction, metastability, micromagnetic theory

1. Introduction

We discuss the simulation of the behavior of a magnetoelastic system under magnetic field loading. Our principle objective is to understand the magnetostrictive curve of Terfenol-D, Tb(Dy,Fe)\textsubscript{x}, x = 0.3, from the viewpoint of micromagnetic theory, [3,4,9,14,15-19]. Simulations of magnetic, magnetostrictive, and pseudoelastic behavior exhibit hysteresis, [20-23]. These systems have a highly nonlinear character involving both short range anisotropy and elastic fields and dispersive demagnetization fields. The hysteretic character of a simple system that moves quasistatically is robust. The energy profile in terms of applied magnetic field, and in particular, the width of the hysteresis loop, is invariant under mesh refinement. This is true even in the absence of an imposed dynamical mechanism, like the Landau-Lifschitz-Gilbert equation. This permits us, for example, to extract useful information by computing on fairly coarse grids.

An important feature of this type of simulation is that computed states are only metastable. Indeed, since the energy of configurations on loading and unloading are different for the same value of the imposed magnetic field, not both and usually neither can be minima. Little is known to guide us about metastability in this context. In addition, Terfenol displays a complicated lamellar microstructure whose role in the magnetostrictive process remains under investigation, [26]. Although confirming our ability to determine general features of the magnetization and magnetostriction, our results do not accurately describe the microstructure. So there is much room for improvement. However, we would like to point out that in our attempts to account for behavior of the growth twin midrib in our laminate, we witness a wave of magnetization reversal propagate across the domain. This is first evidence that we are able to achieve some progress here.

We have developed a model to understand the metastability in the computation. Let us explain the basis of this model with the comment that we have attempted to confine ourselves to what we perceived the strategic essentials: a stored energy of deformation and magnetization, a demagnetization or induced magnetic field energy, and a simple magnetic loading program intended to represent behavior when a device is subjected to a slowly oscillating field, e.g., 60 Hz. If there were no demagnetization field, one would anticipate the evolution of the system to resemble that of a single magnetic particle, as described by Stoner and Wohlfarth [25]. Our idea is to derive a shadow energy that will accumulate the effects of the oscillatory behavior resulting from the demagnetization field. Although the mathematics involved here is elementary, beyond some knowledge of modern partial differential equations, the idea is that the shadow energy serves as a model of the complex simulation, just as formulating balance laws or energy principles serves as model for a physical process.

We introduce a two dimensional energy density based on a three dimensional linear elastic density with magnetic easy axes parallel to the (111) directions. The three dimensional density is projected onto the (0-11) plane containing the [-211] rod axis. Then we ignore out of plane strains and magnetizations. Note that the [111] and [-111] easy axes lie in the plane of projection. After performing these computations, we relabel axes in our two dimensional configuration so that \(e_1 = (1,0) \) and \(e_2 = (0,1) \) correspond to the [111] and [-211] directions. In these coordinates, the [111] easy axis becomes \(e_1 \) and the [-111] easy axis becomes \(e_2 = \left(\frac{\sqrt{2}}{3}, -\frac{1}{3} \right) \). Set
(ii) single crystal with demagnetization energy The configuration destabilizes from the precursor prior to H_{cr} and descends gradually through the shoulder regime achieving absolute minimum slightly after H_{cr}.

(iii) growth twin laminate with demagnetization energy The configuration destabilizes from the precursor subsequent to passing the field value H_{cr} achieving absolute minimum slightly beyond H_{cr}.

(iv) growth twin laminate with demagnetization energy and constrained growth twin boundary The general features are the same as in (iii) with a somewhat smoother ascent to H_{cr}. The magnetostrictive strain is diminished.

We are able to provide a qualitative comparison with experiment. Material parameters useful for a more detailed comparison are not available. The computed curves in Figure 2 bear a strong resemblance to the experimental curve [6]. The strain increases with increasing positive and negative applied field and has the butterfly structure characteristic of this material. The λ-jumping described in [2] is evident in the steep section of the curve, although this is less pronounced in the experimental picture. In [7], an unbiased rod achieves about 66% of its maximum magnetostrictive strain according to one of the authors. In our simulation we achieve about 50%, which leads us to believe that our choices of parameters are reasonable.
Let \(\alpha^° \) be a given magnetization, perhaps depending on \(H \) or other parameters, and let
\[
\alpha^° = \alpha^°_D + (\xi - \alpha^°)\chi_D, \quad 1 \xi = 1, \quad D = (0,h) \times (0,1) \cup (L-h,L) \times (0,1),
\]
where \(h > 0 \), be a variation of \(\alpha^° \). We shall interpret \(\alpha^° \) as a suitably stable precursor.

The energy of the system is given by
\[
E(H,\alpha) = E(H,\alpha^°) + \frac{1}{2} D_1 \frac{E(H,\alpha) - E(H,\alpha^°)}{D_1}.
\]

Our shadow energy \(E_\alpha \) is given by
\[
E_\alpha(H,\alpha^°,\xi) = E(H,\alpha^°) + \Psi(H,\alpha^°,\xi) |D_1|,
\]
where
\[
\Psi(H,\alpha^°,\xi) = \lim_{h \to 0} \frac{E(H,\alpha) - E(H,\alpha^°)}{D_1} = \lim_{h \to 0} \Psi(H,\alpha^°,\xi).
\]

The essence of the problem is to evaluate with care the demagnetization term. Note that from the differential equation we obtain that
\[
\int |\nabla u - |\nabla u^°| |^2 \, dx = \int (u + u^°)(\xi - \alpha^°) \, dx,
\]
where \(\Delta u = \nabla^2 \alpha^°_D \) in \(R^2 \) and \(\Delta u^° = \nabla^2 \chi_D \) in \(R^2 \).

We suppose \(\alpha^° \) and \(\xi \) to be independent of \(x \in D \). Introduce the auxiliary functions \(\psi_j \) and \(\phi_j \) as the solutions of the equations
\[
\Delta \psi_j = \frac{\partial \alpha^°_D}{\partial x_j} \text{ and } \Delta \phi_j = \frac{\partial \chi_D}{\partial x_j} \text{ in } R^2, \quad j = 1,2.
\]

Moreover, we shall need explicit representations for \(\partial \psi_j / \partial x_j \) and \(\partial \psi_j / \partial x_j \). These are given by the classical Plemelj formulas [24]. Namely, in the case at hand, if \(\psi \) denotes the solution of
\[
\Delta \psi = \frac{\partial \alpha^°_D}{\partial x_1} \text{ in } R^2, \quad \alpha \text{ a rectangle with sides } \parallel \text{ to the axes,}
\]

then \(\xi = x_1 + ix_2 \),
\[
\frac{\partial \psi}{\partial x_1}(z) = \frac{1}{2\pi i} \int_{\Gamma_1 - \xi} \frac{dt}{t - z}, \quad \text{where } \Gamma_1 \text{ and } \Gamma_2 \text{ are the vertical sides.}
\]

So
[26] Tickle, R. Observations of the microstructure of Tb1Dy1-xFe2, x = 0.3, under applied field and stress, MS. Thesis, University of Minnesota, in progress