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Abstract—We consider the problem of heuristic evalua-
tion of given hypotheses based on limited observations, in 
situations when available data are insufficient for rigor-
ous statistical analysis. 
 

Keywords—Uncertainty, hypothesis evaluation, Bayesian 
reasoning, artificial intelligence. 

I. INTRODUCTION 
HEN estimating the likelihood of given hypotheses, we 
sometimes need to base our analysis on very limited 

data. Such situations are common in the fields where collec-
tion of statistically significant evidence is prohibitively ex-
pensive or impossible. For example, when an astrophysicist 
compares alternative cosmological theories, she may have 
data on a limited number of related astronomical objects, as 
there may be no other such objects within the observable 
range. Similarly, when a physician diagnoses a patient’s 
illness, she may have a limited number of available tests. 

Researchers have long realized the importance of tech-
niques for hypothesis evaluation based on limited data, and 
accumulated much evidence that the humans apply such 
techniques in their reasoning. Bayes studied this problem 
back in the eighteenth century and derived his famous rule for 
updating probabilities [Bayes, 1763]. Modern scientists have 
extended his results and developed Bayesian-network tools 
[Pearl, 1988]. Recently, researchers have investigated related 
challenges in business and military intelligence [Heuer, 1999; 
Elsaesser and Stech, 2006]. 

We have addressed several related problems and built a 
suite of tools for representation of insufficient and partially 
inaccurate data [Bardak et al., 2006a; Fu et al., 2008]; rea-
soning under uncertainty [Fink et al., 2006; Gardiner et al., 
2008]; and targeted data gathering [Bardak et al., 2006b]. 

We report one of the developed approaches to evaluating 
hypotheses based on limited evidence. We give an example 
that illustrated this problem (Section III), formalize the gen-
eral problem (Section IV), describe a technique for solving it 
(Section IV–VIII), and give initial experiments (Section IX). 

A closely related complementary problem is to construct 
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plans for targeted information gathering when available data 
are insufficient. Examples of such situations include collect-
ing astronomical observations and ordering medical tests. We 
have addressed this complementary problem in another pub-
lication [Gershman et al., 2009]. 

II. EXAMPLE 
We consider the task of a business analyst who is observing a 
small company and trying to infer the plans of its manage-
ment. The company has recently released a new product and 
announced that its main focus is on expanding its sales. The 
analyst however suspects that it is also working on a second 
new product, which has a potential for greater sales. If she is 
right, the company is developing the second product in 
secrecy, as it does not want to reveal its plans to competitors. 
The analyst has to distinguish between two hypotheses: 
 

• The company focuses exclusively on expanding the sales of 
the announced product. 

• The company puts significant resources into the develop-
ment of another product. 

 

She also has to account for the possibility that neither of 
her hypotheses is correct, and something entirely different is 
in the offing. For instance, the company may be sold to a 
competitor or file for a bankruptcy. While the chances of such 
unexpected outcomes are low, they are not negligible. 

The analyst has some idea of prior probabilities from her 
past experience with similar situations. For instance, she may 
believe that the prior for the first hypothesis is 0.6, for the 
second is 0.3, and for unexpected developments is 0.1. If she 
had no other information, she would use these probabilities; 
however, she has other data, which include public accounting 
records provided by the company, statements of its president, 
announced contracts, and so on. While a lot of these data are 
irrelevant, some may be “gold nuggets” that greatly help the 
analyst in her task. She has to (1) identify relevant data and 
(2) evaluate posterior probabilities of her hypotheses. 

While the last two tasks may sound similar to the stan-
dard Bayesian reasoning, there are two important differences. 
 

• Available data may correlate in complex ways, and the 
analyst may not know about these correlations. For in-
stance, several news articles may come from different 
sources (making them near-independent) or from the same 
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source (making them highly dependent), and the analyst 
may not know which is the case. 

• The analyst has to evaluate the chances that none of her 
hypotheses is correct, which cannot be directly addressed 
by the Bayesian rule. 

III. GENERAL PROBLEM 
To formalize this problem, suppose that the analyst has to 
distinguish among n mutually exclusive hypotheses, denoted 
H1, H2,…, Hn. She bases her analysis on m observable fea-
tures of the company, denoted obs1, obs2, …, obsm, where 
each observation is a variable that takes one of several dis-
crete values. Suppose further that she has the following in-
formation about prior probabilities, likely observations under 
different hypotheses, and actual observed values. 
 

• Prior probabilities: For each hypothesis, the analyst knows 
its prior probability; thus, she has an array of n priors, de-
noted prior[1..n]. The sum of its elements may be less 
than 1.0, which means that none of the hypotheses may be 
correct. Intuitively, the “no correct hypothesis” situation is 
a surprise that does not match the analyst’s expectations. 

• Possible observations: For every observation obsa, the 
analyst knows the number of its possible values, denoted 
num[a]. Thus, she has the array num[1..m] that represents 
the number of possible values for each of the m observa-
tions. We assume without loss of generality that the values 
of obsa are the integers from 1 to num[a]. In real-world 
situations, they may be nominals, strings, and so on, but of 
course we can always enumerate them with integers. 

• Observation distributions: The likelihood of specific ob-
served values depends on which hypothesis is correct. For 
every hypothesis, the analyst knows the related probability 
distribution of each observation. Thus, she has a matrix 
with n · m elements, denoted chance[1..n, 1..m], where 
each element is a probability-density function of possible 
observed values. Every element chance[i, a] of this array is 
itself a one-dimensional array with num[a] elements, 
representing the probabilities of possible values of obsa. 
That is, chance[i, a][b] is the likelihood of observing the 
bth value of obsa in case if hypothesis Hi is correct. 

• Actual observations: The analyst also knows a specific 
value of each observation, which represents the available 
data about the company. Thus, she has an array of m ob-
served values, denoted val[1..m]. 

 

The analyst has to use this knowledge in evaluating the 
posterior probabilities of the given hypotheses. 

IV. USE OF ONE OBSERVATION 
We begin with a simple special case, in which (1) the analyst 
can observe only one feature obsa of the company, and (2) the 
given hypotheses completely cover all possibilities, leaving 
no room for any surprises. 
 

• Problem 1: Suppose that we have one observed value, 
val[a], and that the sum of the prior[1..n] probabilities is 

exactly 1.0. We have to determine the posterior probabili-
ties of the n given hypotheses. 

 

In this case, the analyst can directly apply the Bayesian rule. 
First, she finds the integrated likelihood (also called marginal 
likelihood) of observing val[a], by summing the chances of 
observing it under all hypotheses: 
 

likelihood(val[a]) 
= chance[1, a][val[a]] · prior[1] 

+ … + chance[n, a][val[a]] · prior[n]. 
 

Then, she calculates the posterior for each hypothesis Hi: 
 

post[i] = prob(Hi | val[a]) 
= chance[i, a][val[a]] · prior[i] / likelihood(val[a]). 

 

Note that the resulting posteriors depend on the value of obsa. 
Formally, it means that the array post[1..n] is a function of 
val[a], and we can write this function as post(val[a]). 

V. REJECTION OF ALL HYPOTHESES 
We next consider the situation when the given hypotheses do 
not cover all possibilities, and the analyst has to evaluate the 
chances of a surprising situation that fits no hypothesis. 
 

• Problem 2: Suppose that we have one observed value, 
val[a], and that the sum of the prior[1..n] probabilities is 
less than 1.0. We have to estimate the posterior probability 
that none of the hypotheses is correct. 

 

The analyst thus considers an additional hypothesis H0, which 
represents the belief that all n given hypotheses are incorrect; 
its prior is 
 

prior[0] = 1.0 − prior[1] − … − prior[n]. 
 

If we reuse the expression for likelihood(val[a]) from 
Section IV, we can write the following Bayesian rule for the 
H0 posterior: 
 

post[0] = prior[0] · prob(val[a] | H0) 
/ (prior[0] · prob(val[a] | H0) 

+ likelihood(val[a])). 
 

Unfortunately, the analyst cannot directly calculate this 
posterior because she has no knowledge of prob(val[a] | H0). 

She can get its upper bound by observing that the above 
expression for post[0] monotonically increases on 
prob(val[a] | H0); hence, it reaches its maximal possible value 
when prob(val[a] | H0) = 1.0, which implies that 
 

post[0] ≤ prior[0] / (prior[0] + likelihood(val[a])). 
 

We next derive a lower bound for post[0], which is based 
on the following intuitive principle. 
 

• General plausibility principle: If a theoretical model in-
dicates that some event is very unlikely, but we have ob-
served this event in the real world, then we should reject the 
model or at least strongly doubt its validity. 

 

Informally, it states that very unlikely events normally do not 
happen, and we should explain the world based on the as-
sumption that the observed events were in fact likely to 
happen. Its justification may be analogous to that for the 
famous Ockham’s razor. That is, we may be unable to prove it 



 
 

 

formally, and we can find plenty of counterexamples, but the 
common sense and experience suggest that it usually gives 
good results. 

We use a more specific version of that principle, which is 
directly applicable to the problem stated in Section III. 
 

• Specific plausibility principle: If the analyst has observed 
val[a], then prob(val[a]) must not be very low. 

 

To derive an estimate for post[0], we quantify the notion of 
“very low” by introducing the following constant. 
 

• Plausibility threshold: We use a global constant, denoted 
“plaus,” which must be between 0.0 and 1.0. We assume 
that, if the analyst has observed val[a], then 

 

prob(val[a]) ≥ plaus / num[a]. 
 

Note that we can represent prob(val[a]) as the sum of the 
chances of  val[a] under all hypotheses, including H0: 
 

prob(val[a]) 
= prob(val[a] | H0) · prior[0] 

+ chance[1, a][val[a]] · prior[1] 
+ … + chance[n, a][val[a]] · prior[n] 

= prob(val[a] | H0) · prior[0] + likelihood(val[a]). 
 

We substitute this representation into the plausibili-
ty-threshold inequality: 
 

prob(val[a] | H0) · prior[0] + likelihood(val[a]) 
≥ plaus / num[a], 

 

which implies that 
 

prob(val[a] | H0)  
≥ (plaus / num[a] − likelihood(val[a])) / prior[0]. 

 

Since the dependency of post[0] on prob(val[a] | H0) is 
monotonic, the above inequality immediately leads to a lower 
bound for post[0]: 
 

post[0] = prior[0] · prob(val[a] | H0) 
/ (prior[0] · prob(val[a] | H0) 

+ likelihood(val[a])) 
≥ (plaus / num[a] − likelihood(val[a])) 

/ (plaus / num[a] − likelihood(val[a]) 
+ likelihood(val[a])) 

= 1.0 − likelihood(val[a]) · num[a] / plaus. 
 

We have thus obtained both lower and upper bounds on the 
posterior probability post[0] of H0. 
 

• Probability bounds: The posterior probability that none of 
the n given hypotheses is correct has the following bounds. 
 

Lower: 1.0 − likelihood(val[a]) · num[a] / plaus. 
Upper: prior[0] / (prior[0] + likelihood(val[a])). 

VI. JUDGMENT CALLS 
When the analyst uses the approach of Section V to estimate 
the chances that all given hypotheses are incorrect, she has to 
make two judgment calls. First, she must select a specific 
plausibility threshold, plaus. Second, she needs to decide 
whether to use the lower or the upper bound as the final 
probability estimate. 

The choice of plaus depends on how conservative she 
wants to be. Reducing this threshold leads to more reliable 
conclusions at the expense of getting a looser lower bound. 
The preliminary experiments in several domains suggest that 
setting plaus to 0.1 usually gives good practical results; 
however, we have not investigated the dependency of ap-
propriate thresholds on domain properties, which is an inter-
esting direction for the future work. 

The choice between the lower and the upper bounds 
depends on what constitutes the worse-case scenario; that is, 
the analyst should usually err on the pessimistic side. For 
example, if the n given hypotheses represent positive devel-
opments, whereas H0 means the absence of any positive 
outcome, the analyst should use the upper bound as her pes-
simistic estimate. On the other hand, if H0 would be a pleasant 
surprise, the conservative approach is to use the lower bound. 

After the analyst estimates the posterior of H0, she should 
“prorate” the posteriors of the n given hypotheses, post[1..n], 
obtained using the technique of Section IV. That is, she 
should multiply all post[1..n] values by the same constant so 
that their sum becomes (1 − post[0]). She thus obtains the 
array post[0..n] of estimates that sum to 1.0. 

VII. INFORMATION UTILITY 
If the analyst has multiple observations, she may need to 
decide which of them are most relevant, which poses the 
problem of quantifying their information utility. 
 

• Problem 3: Suppose that we know the prior[1..n] proba-
bilities of the given hypotheses. Suppose further that we 
have used some observation to estimate their posteriors, 
post[0..n], including the probability post[0] that none of 
them is correct. We have to evaluate the utility of this es-
timate, which represents the value of the used observation. 

 

This problem is somewhat “philosophical”; it has no specific 
mathematical solution and the choice of an appropriate utility 
measure may depend on an application domain [Lin, 1991; 
Grünwald and Dawid, 2004]. 

We review two classical measures; in Section IX, we 
give empirical results of using them. While they are appro-
priate in most practical situations, they are not perfect and 
may occasionally lead the evaluation procedure astray. We 
have suggested a more general framework for constructing 
utility functions and analyzed its relation to these two clas-
sical measures in another publication [Gershman et al., 2009]. 
 

Shannon’s entropy: The first measure of the observation 
utility is the negation of Shannon’s entropy of the posterior 
probabilities [Shannon, 1948]: 
 

entropy-util(post) 
= post[0] · log post[0] + … + post[n] · log post[n]. 

 

This measure rewards “high certainty,” that is, situations in 
which the posteriors clearly favor one hypothesis over all 
others. In other words, the utility is high when the probability 
of one specific hypothesis is close to 1.0; it is low when all 
hypotheses are about equally likely. 

Its main drawback is that it may reward unwarranted 
certainty. If an application domain is highly nondeterministic 
and the true probabilities of all hypotheses are about the same, 



 
 

 

this measure may give preference to observations that falsely 
create the impression of certainty. Intuitively, the evaluation 
procedure may prefer the illusion of certainty over the truth. 
 

Kullback-Leibler divergence: The second measure is the 
KL-divergence between the priors and the posteriors [Kull-
back and Leibler, 1951; Kullback, 1987]: 
 

KL-util(post) 
= post[0] · log (post[0] / (1.0 − prior[1] − … − prior[n])) 

+ post[1] · log (post[1] / prior[1]) 
+ … + post[n] · log (post[n] / prior[n]). 

 

This measure rewards situations in which the posteriors are 
very different from the priors. Thus, it gives preference to 
observations that have the potential for “paradigm shifts.” 

Its main drawback is that it may encourage unwarranted 
departure from the right conclusions. If the priors are already 
accurate, it may give preference to observations that falsely 
change probabilities. Intuitively, the evaluation procedure 
may prefer sensation seeking to fact checking. 

VIII. USE OF MULTIPLE OBSERVATIONS 
We now consider the general problem of evaluating hypo-
theses based on multiple observations. 
 

• Problem 4: Suppose that we have multiple observed values, 
val[1..m]. We have to determine the posterior probabilities 
of the n given hypotheses. 

 

If the analyst were to use all available observations in the 
standard Bayesian reasoning, she would need data on their 
joint distribution. Unfortunately, obtaining even rough esti-
mates of joint probabilities is impractically difficult in most 
real-world situations. Furthermore, the analyst usually cannot 
assume that her observations are independent. For instance, 
when she hears similar facts from multiple sources, she 
cannot reliably determine whether these sources corroborate 
or just repeat each other. The history of business analysis and 
military intelligence is full of spectacular mistakes due to 
inappropriate uses of the independence assumption. 

To avoid this pitfall, we use a conservative approach that 
never overestimates the value of available data. Specifically, 
we identify the highest-utility observation and do not use 
other observations to corroborate it. In other words, we as-
sume the worst-case correlation among available data. On the 
upside, it never leads to excessive confidence; on the down-
side, it may underestimate the value of observations. 

To formalize it, suppose that the analyst has selected an 
appropriate utility function, util(post), which may be Shan-
non’s entropy, KL-divergence, or some other measure 
[Grünwald and Dawid, 2004; Gershman et al., 2009]. 

For each available observation, val[a], the analyst can 
compute the respective posteriors, post(val[a]), using the 
technique in Sections IV and V, and then evaluate its utility, 
util(post(val[a])). She selects the single “most relevant” ob-
servation that maximizes this utility. She uses it in computing 
the posteriors and ignores all other observations. 

If the analyst happens to have a joint distribution for 
some subset of observations, she can improve her evaluation, 

by using this subset as a single “unified” observation and each 
entry in the joint-distribution table as its possible value. 

IX. EXPERIMENTS 
We have evaluated the described technique in the context of 
the PAINT architecture, built by teams from several institu-
tions under the PAINT program of IARPA. This architecture is a 
suite of tools for modeling a partially observable organiza-
tion; evaluating the accuracy of models and related observa-
tions; analyzing possible future developments; and planning 
the collection of additional data. It supports modeling of the 
organization’s management, decision processes, projects, and 
resources. We have been responsible for uncertainty-analysis 
tools in PAINT, including hypothesis evaluation. 

We have experimented with tasks of determining 
whether an observed company is secretly working on a new 
product, similar to the example in Section II. We describe the 
hypotheses and observations in these experiments, and give 
the results of applying the system to several specific tasks. 
 

• Hypotheses: We have considered four hypotheses, which 
give rise to four different organizational models in PAINT. 
H1: The company focuses exclusively on the sales of its 

current product and has no secret agenda. 
H2: The company puts limited resources into its secret 

development of a new product, but its main focus is the 
sales of the current product. 

H3: The company puts major resources into its 
new-product development, but also focuses on the 
current sales. 

H4: The company focuses almost exclusively on its new 
product; its current sales are just a smokescreen to 
mislead its competitors. 

• Observations: We have considered eighty-four observable 
features of the modeled company, which represent public 
data about its sales and known projects. The observables do 
not include any direct data about the new product, since 
these data are “invisible” to the public. 

• Observation distributions: To obtain probability distribu-
tions for observations, we have simulated the company 
behavior under different scenarios. For every hypothesis, 
we have run the PAINT models to predict the likelihood of 
each possible observed value. 

 

We have applied the system to distinguishing between H1 
and one other hypothesis at a time. We have run this expe-
riment with two different priors of H1, specifically, 0.5 and 
0.7. We have tested the following three techniques for se-
lecting the most relevant observation. 
 

• Shannon’s entropy: We select the observation that mini-
mizes the expected entropy of the posteriors, as described 
in Section VII. 

• Kullback-Leibler divergence: We select the observation 
that maximizes the expected divergence between the priors 
and the posteriors, which is also described in Section VII.  

• Randomly chosen observation: We pick a “relevant” ob-
servation at random among the n available observations. 
Clearly, it is a very ineffective method; we have included it 



 
 

 

in order to show that the developed technique is at all 
useful, that is, far better than a trivial approach. 

 

Since we have three techniques to be evaluated, two 
different priors, and three hypotheses that can be alternatives 
to H1, we have experimented with all 3 · 2 · 3 = 18 possible 
settings. For every setting, we have run 2000 Monte Carlo 
simulations of the PAINT models and applied the system to 
evaluate hypothesis H1 based on the simulated observations. 
The hypothesis evaluation has included the following steps. 
 

• Pick an observation using the specified selection strategy. 
• Evaluate the posterior of H1 based on this observation. 
• If it is at least 0.5, report that H1 is correct; else, H1 is wrong. 
 

We have computed the percentage of the right answers among 
the 2000 runs, which is the final performance measure.  

In Table I, we show this percentage for each of the 
eighteen settings. Unsurprisingly, the performance based on 
the random choice of an observation is poor. It is slightly 
better than the direct random guessing of a hypothesis, which 
would be 50% accurate, because the system occasionally 
picks an observation that is indeed relevant, and then uses it to 
identify the correct hypothesis. 

The other two techniques give much better results. The 
accuracy of distinguishing H1 from H2 or H3 ranges from 75% 
to 80%, whereas the accuracy of distinguishing H1 from H4 is 
100%. The reason is that the observed sales are similar under 
hypotheses H1, H2, and H3, which makes them hard to diffe-
rentiate based on available data. On the other hand, H1 and H4 
are very different, and thus they are easier to distinguish. 

If the prior of H1 is 0.5, the Kullback-Leibler divergence 
is mathematically equivalent to Shannon’s entropy of the 
posteriors, so the two techniques give the same results. On the 
other hand, when the prior is 0.7, the Kullback-Leibler di-
vergence gives slightly better results, although the difference 
is not statistically significant. 
TABLE I: DIFFERENTIATION BETWEEN HYPOTHESES. WE HAVE 
EXPERIMENTED WITH TWO DIFFERENT PRIORS AND THREE TECHNIQUES 
FOR SELECTING RELEVANT OBSERVATIONS. FOR EACH PRIOR AND EACH 
TECHNIQUE, WE HAVE RUN 2000 EXPERIMENTS, AND WE GIVE THE 
PERCENTAGES OF CORRECT HYPOTHESIS EVALUATIONS. 

 

Prior 
of H1 

Accuracy of hypothesis 
selection (%) 

Shannon’s 
Entropy 

Kullback– 
Leibler 

Random 
Observ. 

Differentiating H1 from H2 
0.5 79 79 51 
0.7 74 76 50 

Differentiating H1 from H3 
0.5 81 81 52 
0.7 74 78 51 

Differentiating H1 from H4 
0.5 100  100  59 
0.7 100  100  54 

 

X. CONCLUDING REMARKS 
We have investigated the problem of (1) evaluating hypo-
theses based on limited data and (2) estimating the chances 
that all given hypotheses are incorrect. We have developed a 
heuristic solution, which combines the Bayesian reasoning 
with the plausibility principle and a method for selecting the 
most relevant observation. 

The initial experiments have demonstrated a reasonable 
accuracy of this technique, which ranges from 75% when 
hypotheses are hard to distinguish to 100% in easier cases; 
however, the context of these experiments has been limited. 
We plan to test the system with more complex scenarios, 
which will include a large number of alternative hypotheses. 

We have not yet done a rigorous comparison of the 
manual hypothesis selection with the automated evaluation, 
but informal pilot tests suggest that the system performs much 
better than human subjects recruited among the project 
members. This result is unsurprising, since people are known 
to be poor Bayesian reasoners [Heuer, 1999], and automated 
“number crunchers” usually outperform human experts on the 
tasks that require probabilistic analysis of complex evidence. 
We aim to run a formal comparison of the manual and the 
automated analysis as part of the future work. 
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