
Carnegie Mellon University
Research Showcase @ CMU

Computer Science Department School of Computer Science

9-2009

Analysis of Uncertain Data: Smoothing of
Histograms
Eugene Fink
Carnegie Mellon University, e.fink@cs.cmu.edu

Ankur Sarin
Carnegie Mellon University

Jaime G. Carbonell
Carnegie Mellon University, jgc@cs.cmu.edu

Follow this and additional works at: http://repository.cmu.edu/compsci

This Conference Proceeding is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been
accepted for inclusion in Computer Science Department by an authorized administrator of Research Showcase @ CMU. For more information, please
contact research-showcase@andrew.cmu.edu.

Published In
Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, 2549- 2555.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fcompsci%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fcompsci%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

Abstract—We consider the problem of converting a set of
numeric data points into a smoothed approximation of
the underlying probability distribution. We describe a
representation of distributions by histograms with vari-
able-width bars, and give a greedy smoothing algorithm
based on this representation.

Keywords—Probability distributions, smoothing, com-
pression, visualization, histograms.

I. INTRODUCTION
HEN analyzing a collection of numeric measurements,
we often need to represent it as a histogram that shows

the underlying distribution. For example, consider the set of
5000 numeric points in Figure 9(a) on the next-to-last page of
the paper. We may convert it to a fine-grained histogram in
Figure 9(b), to a coarser version in Figure 9(c), or to a very
coarse histogram in Figure 9(d). This conversion helps to
visualize data, and it also serves as lossy data compression,
since it allows replacing a large point set with a compact
approximation of the underlying distribution.

We describe a mechanism for constructing an approx-
imate probability density function based on a given point set,
which represents this function by a generalized histogram
with variable-width bars. It also supports lossy compression
of a fine-grained histogram into a coarser version. We for-
malize the problem of smoothing a histogram (Section II),
give algorithms for solving it (Sections III–V), discuss their
extensions (Section VI), and present initial empirical results
(Section VII).

This work has been part of a project aimed at develop-
ment of techniques for automated reasoning under uncer-
tainty, including representation of insufficient and approx-
imate data [Bardak et al., 2006a; Fu et al., 2008]; optimiza-
tion and hypothesis evaluation based on limited data [Fink et
al., 2006; Gershman et al., 2009a]; and planning of additional
data gathering [Bardak et al., 2006b; Gershman et al.,
2009b].

The manuscript was received on March 31, 2009. The described work

was supported by the Air Force Research Laboratory (AFRL) under Contract
No. FA8750-07-2-0137.

II. PROBLEM
We consider the task of smoothing a probability distribution.
Specifically, we need to develop a procedure that inputs a
point set or a fine-grained histogram, and constructs a
coarser-grained histogram. We explain the representation of
probability distributions in the developed system and then
formalize the smoothing problem.

Representation: We encode an approximated probability
density function by a histogram with variable-width bars,
which is called a piecewise-uniform distribution and abbre-
viated as PU-distribution. This representation is a set of dis-
joint intervals, with a probability assigned to each interval, as
shown in Figure 1 [Bardak et al., 2006a; Fu et al., 2008]. We
assume that all values within a specific interval are equally
likely; thus, every interval is a uniform distribution, and the
histogram comprises multiple such distributions.

Note that a standard histogram is a special case of a PU-
distribution, where all intervals have the same width and the
distances between adjacent intervals are zero. Furthermore, a
set of numeric points is also a special case of such a distri-
bution, where all intervals have zero width.

Inputs: The smoothing procedure accepts a PU-distribution
and generates a version with fewer intervals, which should be
“close” to the initial distribution according to a given dis-
tance function. The inputs of this procedure are as follows.

• Initial distribution: We input a PU-distribution with m
intervals, which may represent a point set or a generalized
histogram, encoded by three real-valued arrays:

initial-prob[1..m] interval probabilities
initial-min[1..m] left endpoints of intervals
initial-max[1..m] right endpoints of intervals

• Distance function: We provide a two-argument function,
denoted dist-func, which determines distances between
distributions. It inputs two PU-distributions and returns a
numeric distance between them. We may use the Kull-
back-Leibler divergence [Kullback and Leibler, 1951;
Kullback, 1987], the Jensen-Shannon divergence [Lin,
1991], or any other distance measure.

• Target size: We specify the required number of intervals in
the smoothed distribution, denoted k, which must be
smaller than the size m of the initial distribution.

Analysis of Uncertain Data:
Smoothing of Histograms

Eugene Fink
 e.fink@cs.cmu.edu

www.cs.cmu.edu/~eugene

Ankur Sarin
asarin@andrew.cmu.edu

Jaime G. Carbonell
jgc@cs.cmu.edu

www.cs.cmu.edu/~jgc

Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, United States

W

Problem: The goal is to produce a PU-distribution, with the
given number of intervals, that is as close as possible to the
initial distribution according to the given distance function.

III. GREEDY ALGORITHM
We now describe a smoothing procedure; we summarize its
main data structures in Figure 2 and give its pseudocode in
Figure 3. It gradually reduces the number of intervals in a
PU-distribution by merging adjacent intervals. At each step, it
considers all possible merges and selects the merge that leads
to the smallest “change,” as measured by the distance func-
tion. It stops upon reaching the target number of intervals.

This algorithm is greedy, and it does not guarantee
finding the k-interval PU-distribution that is globally closest
to the initial distribution; however, it gives good results in
practice and usually constructs a near-optimal smoothing.

The procedure performs (m − k) merging steps, and
considers O(m) candidate merges at each step (see the
SMOOTH subroutine in Figure 3). For each candidate merge, it
computes the distance between the current and the af-
ter-merge distributions (see the MERGE-DIST subroutine in
Figure 3), which takes O(m) time for standard distance
functions. Thus, a straightforward implementation of the
smoothing procedure would have O(m3) running time. For-
tunately, most distance functions have a “local-computation”
property, discussed in Section IV, which allows the reduction
of the running time to O(m · log m).

IV. FASTER ALGORITHM
The main inefficiency of the algorithm in Figure 3 comes
from the MERGE-DIST subroutine, which takes O(m) time to
evaluate a potential merge by computing the distance be-
tween the current and the after-merge distributions. For most
distance measures, we may perform this computation “lo-
cally,” by looking only at the two merged intervals, rather
than applying the distance function to the entire
PU-distribution.

For example, consider a simple measure of the distance
between two probability density functions, p(x) and q(x),
defined as the mean absolute difference:

simple-dist(p, q) = ∫ | p(x) − q(x) | dx.

If we use it, we can compute the distance between the current
and the after-merge PU-distributions locally, using the
SIMPLE-MERGE-DIST subroutine in Figure 4. Its running time
is constant, which reduced the overall time of the smoothing
algorithm to O(m2).

We can further improve the efficiency by arranging the
potential merges in a priority queue. Specifically, we define
the merge distance of an interval, denoted m-dist[bar] in the
pseudocode, which is the distance between the current
PU-distribution and the distribution that would result from
merging the given interval, bar, with the next one, next[bar].
We compute these distances for all intervals except the last
one, and put them in a priority queue. At each step, we extract
the smallest-distance interval from the queue and merge it
with the next interval. We give this fast smoothing procedure
in Figure 5; its running time is O(m · log m).

Note that the only logarithmic-time operations within
the main loop of the fast smoothing procedure are the prior-
ity-queue operations. The other computations within the
main loop take constant time. In practice, however, the
priority-queue operations are very fast even when the queue
size is in hundreds of millions, and they take less than 10% of
the overall time. Thus, the “practical” running time of the
computations within the main loop is near-constant, which
means that the “practical” time of the overall smoothing
procedure is near-linear, that is, close to O(m).

V. ALTERNATIVE DISTANCE MEASURES
We review two other standard distance functions that allow
fast computation of merge distances. For both functions, the
theoretical complexity of the smoothing procedure is O(m ·
log m), but the practical smoothing time is near-linear.

Kullback–Leibler: This distance function is a standard
measure of divergence between two distributions, also called
information gain or relative entropy:

KL-dist(p, q) = ∫ p(x) · log (p(x) / q(x)) dx.

In Figure 4, we give a constant-time subroutine, called
KL-MERGE-DIST, for computing the related merge distances.

Jensen–Shannon: It is another standard divergence meas-
ure, also called information radius, which is defined through
the Kullback-Leibler divergence:

JS-dist(p, q) = (KL-dist(p, (p+q)/2) + KL-dist(q, (p+q)/2)) / 2.

In Figure 4, we show the related distance-computation sub-
routine, called JS-MERGE-DIST.

VI. EXTENSIONS
We discuss extensions to the smoothing technique, which
allow adapting it to a wider range of practical problems.

Termination conditions: We have described an algorithm
that stops only upon reaching the target number of intervals,
but we have included two additional termination conditions
in the implemented system. The user may optionally specify
an upper bound on the distance between the initial and the
smoothed distribution, and she may also set an upper bound
on a single-step merge distance. When the system reaches
either bound, it stops even if the PU-distribution has more
than the target number of intervals. These bounds allow the
user to limit the accuracy loss due to the smoothing.

Spline fitting: When presenting a PU-distribution to the user,
we may display a smooth curve rather than a histogram
[Parzen, 1962; Boneva et al., 1971], which is a better visual
aid. We generate it by fitting a spline over the PU-distribution
in such a way that, for each interval, the area under the spline
is equal to the interval’s probability (Figure 6). We use
standard spline tools; for example, see the “smoothing a
histogram” demo for Spline Toolbox 3.3.6 at
www.mathworks.com/products/splines/demos.html.

Piecewise-uniform distribution

We describe a probability density function by multiple intervals,
and we specify each interval by its probability along with its mi-
nimal and maximal values:

prob1: from min1 to max1
prob2: from min2 to max2

…
probm: from minm to maxm

The intervals do not overlap, and the sum of their probabilities
is 1.0, which means that we impose the following constraints:

 min1 ≤ max1 ≤ min2 ≤ max2 ≤ …≤ minm ≤ maxm;
 prob1 + prob2 + … + probm = 1.0.

Important special cases

• Standard histogram:
max1 − min1 = max2 − min2 = … = maxm − minm;
max1 = min2, max2 = min3, …, maxm−1 = minm.

• Set of numeric data points:
min1 = max1, min2 = max2, …, minm = maxm.

Figure 1: Encoding of a PU-distribution, which is a generalized
histogram with variable-width bars.

Interval

We represent an interval (also called a bar) of a PU-distribution by a
structure that includes its probability, left and right endpoints,
pointers to the previous and next intervals, and the related merge
distance, defined in Section IV. We use the word bar to name the
variables of this type in the pseudocode, and refer to the following
fields of such variables:

prob[bar] probability of the interval
min[bar] left endpoint
max[bar] right endpoint
prev[bar] previous interval in the PU-distribution
next[bar] next interval in the PU-distribution
m-dist[bar] merge distance, defined in Section IV

PU-distribution

We represent a PU-distribution (also called a histogram) by a
structure that includes a doubly linked list of intervals in the sorted
order. We use the word hist to name the variables of this type, and
refer to the following fields of such variables:

size[hist] number of intervals in the list
first[hist] pointer to the first interval
last[hist] pointer to the last interval

Figure 2: Main data structures in the smoothing procedure.

The subroutine inputs three arrays that represent an initial distribu-
tion (see Section II) and constructs the respective PU-distribution
structure, which is a doubly linked list of m interval structures.

INITIAL-HIST(initial-prob, initial-min, initial-max, m)
hist = new PU-distribution
first[hist] = new interval; prob[first[hist]] = initial-prob[1]
min[first[hist]] = initial-min[1]; max[first[hist]] = initial-max[1]
prev[first[hist]] = NIL; last[hist] = first[hist]
for i = 2 to m do

bar = new interval; prob[bar] = initial-prob[i]
min[bar] = initial-min[i]; max[bar] = initial-max[i]
prev[bar] = last[hist]; next[last[hist]] = bar; last[hist] = bar

next[last[hist]] = NIL
size[hist] = m
return hist

The subroutine inputs an interval, bar. It merges this interval with
the next, and returns the resulting merged interval.

MERGED-BARS(bar)
new-bar = new interval
prob[new-bar] = prob[bar] + prob[next[bar]]
min[new-bar] = min[bar]; max[new-bar] = max[next[bar]]
prev[new-bar] = prev[bar]; next[new-bar] = next[next[bar]]
return new-bar

The subroutine inputs a PU-distribution, hist, and a pointer to one of
its intervals, bar. It merges this interval with the next, and replaces
the two original intervals with the merged interval.

MERGING(hist, bar)
new-bar = MERGED-BARS(bar)
if first[hist] = bar

then first[hist] = new-bar; else next[prev[bar]] = new-bar
if last[hist] = next[bar]

then last[hist] = new-bar; else prev[next[next[bar]] = new-bar
delete next[bar]; delete bar
size[hist] = size[hist] − 1

The subroutine inputs a PU-distribution, hist; a pointer to one of its
intervals, bar; and a distance function, dist-func. It computes the
distance between hist and the new distribution that would result
from merging bar with the next interval.

MERGE-DIST(hist, bar, dist-func)
create a new PU-distribution, copy-hist, which is a copy of hist;

this operation includes copying all intervals of hist
let copy-bar be the copy of bar in the new distribution
MERGING(copy-hist, copy-bar)
dist = dist-func(hist, copy-hist)
delete the PU-distribution copy-hist and all its intervals
return dist

The procedure inputs an initial PU-distribution, represented by the
arrays initial-prob, initial-min, and initial-max, along with their
size m; a distance function, dist-func; and a target distribution size k.
It generates a smoothed distribution with k intervals.

SMOOTH(initial-prob, initial-min, initial-max, m, dist-func, k)
hist = INITIAL-HIST(initial-prob, initial-min, initial-max, m)
while size[init] > k do

bar = first[hist]; best-dist = +∞
while next[bar] ≠ NIL do

dist = MERGE-DIST(hist, bar, dist-func)
if dist < best-dist

then best-bar = bar; best-dist = dist
bar = next[bar]

MERGING(hist, best-bar)
return hist

Figure 3: Smoothing of a PU-distribution. The procedure inputs
an initial distribution and produces its smoothed version.

Auxiliary subroutine for calculating the height of an interval, which
corresponds to the visual height of the respective histogram bar.

HEIGHT(bar)
return prob[bar] / (max[bar] − min[bar])

Computation of the simple distance, which is the mean absolute
difference between probability density functions (Section IV).

SIMPLE-MERGE-DIST(bar)
new-bar = MERGED-BARS(bar)
dist = | HEIGHT(new-bar) − HEIGHT(bar) | · (max[bar] − min[bar])

+ HEIGHT(new-bar) · (min[next[bar]] − max[bar])
+ | HEIGHT(new-bar) − HEIGHT(next[bar]) |

· (max[next[bar]] − min[next[bar]])
delete new-bar
return dist

Computation of the Kullback-Leibler divergence (Section V).

KL-MERGE-DIST(bar)
new-bar = MERGED-BARS(bar)
dist = HEIGHT(bar)

· log (HEIGHT(bar) / HEIGHT(new-bar))
· (max[bar] − min[bar])

+ HEIGHT(next[bar])
· log (HEIGHT(next[bar]) / HEIGHT(new-bar))
· (max[next[bar]] − min[next[bar]])

delete new-bar
return dist

Computation of the Jensen-Shannon divergence (Section V).

JS-MERGE-DIST(bar)
new-bar = MERGED-BARS(bar)
left-mean-height = (HEIGHT(bar) + HEIGHT(new-bar)) / 2
right-mean-height = (HEIGHT(next[bar]) + HEIGHT(new-bar)) / 2
kl-dist1 = HEIGHT(bar)

· log (HEIGHT(bar) / left-mean-height)
· (max[bar] − min[bar])

+ HEIGHT(next[bar])
· log (HEIGHT(next[bar]) / right-mean-height)
· (max[next[bar]] − min[next[bar]])

kl-dist2 = HEIGHT(new-bar)

· (log (HEIGHT(new-bar) / left-mean-height)
· (max[bar] − min[bar])

+ min[next[bar]] − max[bar]
+ log (HEIGHT(new-bar) / right-mean-height)

· (max[next[bar]] − min[next[bar]]))
delete new-bar
return (kl-dist1 + kl-dist2) / 2

Figure 4: Constant-time distance computation. These subrou-
tines are efficient versions of MERGE-DIST, given in Figure 3, for
three specific distance functions. They calculate the distance be-
tween the current distribution and the new one that would result
from merging two adjacent intervals.

The subroutine inputs an interval, bar, and a distance function,
dist-func. It calls the appropriate code in Figure 4 for the local
computation of the merge distance. Note that we have to implement
a specialized subroutine for each distance function.

FAST-MERGE-DIST(bar, dist-func)
if dist-func is the simple distance from Section IV

then return SIMPLE-MERGE-DIST(bar)
if dist-func is the Kullback-Leibler divergence

then return KL-MERGE-DIST(bar)
if dist-func is the Jensen-Shannon divergence

then return JS-MERGE-DIST(bar)

The subroutine inputs an initial PU-distribution, hist, and a distance
function, dist-func. It creates a priority queue of intervals, priori-
tized by the merge distance.

INITIAL-QUEUE(hist, dist-func)
create an empty priority queue, denoted queue,

which prioritizes intervals by the merge distance
bar = first[hist]
while next[bar] ≠ NIL do

m-dist[bar] = FAST-MERGE-DIST(bar, dist-func)
add bar to queue, prioritized by m-dist
bar = next[bar]

return queue

The subroutine inputs a PU-distribution, hist; a pointer to one of its
intervals, bar; a distance function, dist-func; and a priority queue of
intervals, queue. It merges the given interval with the next, replaces
these two intervals with the merged interval, and updates the queue.

FAST-MERGING(hist, bar, dist-func, queue)
new-bar = MERGED-BARS(bar)
remove bar from queue
if first[hist] = bar

then first[hist] = new-bar
else next[prev[bar]] = new-bar

m-dist[prev[bar]] = FAST-MERGE-DIST(prev[bar], dist-func)
update position of prev[bar] in queue, prioritized by m-dist

if last[hist] = next[bar]
then last[hist] = new-bar
else prev[next[next[bar]] = new-bar

remove next[bar] from queue
m-dist[new-bar] = FAST-MERGE-DIST(new-bar, dist-func)
add new-bar to queue, prioritized by m-dist

delete next[bar]; delete bar
size[hist] = size[hist] − 1

The procedure inputs an initial PU-distribution, represented by the
arrays initial-prob, initial-min, and initial-max, along with their
size m; a distance function, dist-func; and a target distribution size k.
It generates a smoothed distribution with k intervals.

FAST-SMOOTH(initial-prob, initial-min, initial-max, m, dist-func, k)
hist = INITIAL-HIST(initial-prob, initial-min, initial-max, m)
queue = INITIAL-QUEUE(hist)
while size[init] > k do

set best-bar to the lowest-distance interval in queue,
and remove it from queue

FAST-MERGING(hist, best-bar)
return hist

Figure 5: Fast smoothing of a PU-distribution. The procedure
arranges potential merges in a priority queue. It works only when
we can use the local distance computation, described in Section IV.

Figure 6: Fitting a spline over a PU-distribution. We use splines
to provide a better visualization of the underlying probability den-
sity function.

Figure 7: Difference between integer and real-valued
PU-distributions. The meaning of a specific PU-encoding depends
on whether it describes discrete or continuous values.

Figure 8: Efficiency of smoothing. We show the dependency of
the running time on the number of points in the input set. For m
points, the time is (2.5 ± 0.5) · 10−3 · m milliseconds.

Integer PU-distributions: We have described
PU-distributions of real values, but we can also use this re-
presentation for integers. Note however that the meaning of a
specific PU-encoding for integers is different from the
meaning of the same encoding for reals.

For example, consider the two-interval PU-encoding in
Figure 7. If it refers to reals, then it represents a probability
density function that consists of two uniform distributions
(Figure 7, left). On the other hand, if it is integer, the distri-
bution comprises four discrete values (Figure 7, right).

When using a PU-distribution of integers, we do not al-
low intervals to have common endpoints; thus, the related
restriction is somewhat different from that for real values:

• Real-valued PU-distributions:
min1 ≤ max1 ≤ min2 ≤ max2 ≤ …≤ minm ≤ maxm.

• Integer PU-distributions:
min1, max1, min2, max2, …, minm, maxm are integers;
min1 ≤ max1 < min2 ≤ max2 < …< minm ≤ maxm.

The distance computations in Figure 4 do not work di-
rectly for integer PU-distributions, but we can adapt them
using a simple trick. We convert an integer distribution to a
real-valued version with similar mathematical properties,
which involves extending each interval by 0.5 on both sides:

Given integer distribution:

prob1: from min1 to max1
prob2: from min2 to max2

…
probm: from minm to maxm

Respective real-valued distribution:

prob1: from (min1 − 0.5) to (max1 + 0.5)
prob2: from (min2 − 0.5) to (max2 + 0.5)

…
probm: from (minm − 0.5) to (maxm + 0.5)

We apply the smoothing procedure to this real-valued ver-
sion and then convert the output PU-distribution back to in-
tegers, which involves trimming all its intervals by 0.5 on
each side.

This conversion preserves the correctness of all ma-
thematical computations in Figure 4. Thus, it allows the
application of the described algorithms to integer
PU-distributions without loss of accuracy.

VII. INITIAL EXPERIMENTS
We have applied the smoothing procedure to point sets
drawn from several standard distributions, including normal,
geometric, Poisson, uniform, and binomial. It has produced
reasonable, visually appealing results in all cases; we have
not observed any difference in its effectiveness among dif-
ferent distributions. We show examples of smoothing for the
normal distribution and the geometric distribution (Figures 9
and 10).

0.01

0.1

1

10

100

1000

10000

10 100 1000 10000 100000 1000000

number of points

time
(msec)

0.2
0.4
0.6

2 4

0.2
0.4
0.6

2 4

PU-distribution:
0.6: from 1 to 2
0.4: from 3 to 4

Meaning for
real values

Meaning for
integers

(a) Initial set of 5000 points.

(b) Smoothing to 200 intervals.

(c) Smoothing to 50 intervals.

(d) Smoothing to 10 intervals.

Figure 9: Smoothing for the normal distribution. We have ran-
domly selected 5000 points based on the normal distribution with
the mean 0.0 and standard deviation 1.0 (a), and generated three
smoothed PU-distributions with different number of intervals (b–d).

(a) Initial set of 5000 points.

(b) Smoothing to 200 intervals.

(c) Smoothing to 50 intervals.

(d) Smoothing to 10 intervals.

Figure 10: Smoothing for the geometric distribution. We have
randomly selected 5000 points based on the geometric distribution
with p = 0.02 (a), and generated smoothed PU-distributions (b–d).

We have measured the speed of the smoothing proce-
dure, implemented in C++, on a 3.4GHz Pentium computer.
We give the results in Figure 8, which confirm that the
“practical” running time is O(m), more specifically, between
2 · 10−3 · m and 3 · 10−3 · m milliseconds. For example, the
smoothing of 500,000 points takes 1.4 seconds. We have not
observed any speed difference among different distributions.

VIII. CONCLUDING REMARKS
We have described a greedy procedure for constructing an
approximate probability density function based on a given
point set or a fine-grained histogram. It allows control over
(1) the smoothing level, specified by the target number of
intervals in the compressed histogram, and (2) the distance
function that defines similarity between the original and the
compressed histogram. A related future challenge is to pro-
pose a more robust representation for approximating proba-
bility density functions, which would still support efficient
smoothing. Another challenge is to address the problem of
constructing globally optimal smoothed distributions.

ACKNOWLEDGMENTS
We are grateful to Bin Fu for his help with implementing the
described technique. We also thank Helen Mukomel for her
detailed comments, which helped to focus the presentation.

REFERENCES
[Bardak et al., 2006a] Ulas Bardak, Eugene Fink, and Jaime

G. Carbonell. Scheduling with uncertain resources: Re-
presentation and utility function. In Proceedings of the
IEEE International Conference on Systems, Man, and Cy-
bernetics, pages 1486–1492, 2006.

[Bardak et al., 2006b] Ulas Bardak, Eugene Fink, Chris R.
Martens, and Jaime G. Carbonell. Scheduling with uncer-
tain resources: Elicitation of additional data. In Proceed-
ings of the IEEE International Conference on Systems,
Man, and Cybernetics, pages 1493–1498, 2006.

[Boneva et al., 1971] Liliana I. Boneva, David Kendall, and
Ivan Stefanov. Spline transformation: Three new diagnos-
tic aids for the statistical data analysis. Journal of the Royal
Society, 33, pages 1–17, 1971.

[Fink et al., 2006] Eugene Fink, P. Matthew Jennings, Ulas
Bardak, Jean Oh, Stephen F. Smith, and Jaime G. Carbo-
nell. Scheduling with uncertain resources: Search for a
near-optimal solution. In Proceedings of the IEEE Interna-
tional Conference on Systems, Man, and Cybernetics,
pages 137–144, 2006.

[Fu et al., 2008] Bin Fu, Eugene Fink, and Jaime G. Carbo-
nell. Analysis of uncertain data: Tools for representation
and processing. In Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics, pages
3256–3260, 2008.

[Gershman et al., 2009a] Anatole Gershman, Eugene Fink,
Bin Fu, and Jaime G. Carbonell. Analysis of uncertain
data: Evaluation of given hypotheses. In Proceedings of
the IEEE International Conference on Systems, Man, and
Cybernetics, 2009.

[Gershman et al., 2009b] Anatole Gershman, Eugene Fink,
Bin Fu, and Jaime G. Carbonell. Analysis of uncertain
data: Selection of probes for information gathering. In
Proceedings of the IEEE International Conference on Sys-
tems, Man, and Cybernetics, 2009.

[Kullback, 1987] The Kullback–Leibler distance. The
American Statistician, 41, pages 340–341, 1987.

[Kullback and Leibler, 1951] Solomon Kullback and Richard
A. Leibler. On information and sufficiency. Annals of
Mathematical Statistics, 22, pages 79–86, 1951.

[Lin, 1991] Jianhua Lin. Divergence measures based on the
Shannon entropy. IEEE Transactions on Information
Theory, 37(1), pages 145–151, 1991.

[Parzen, 1962] Emanuel Parzen. On estimation of a proba-
bility density function and mode. Annals of Mathematical
Statistics, 33(3), pages 1065–1076, 1962.

	Carnegie Mellon University
	Research Showcase @ CMU
	9-2009

	Analysis of Uncertain Data: Smoothing of Histograms
	Eugene Fink
	Ankur Sarin
	Jaime G. Carbonell
	Published In

