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Abstract—We consider the problem of converting a set of 
numeric data points into a smoothed approximation of 
the underlying probability distribution. We describe a 
representation of distributions by histograms with vari-
able-width bars, and give a greedy smoothing algorithm 
based on this representation. 
 

Keywords—Probability distributions, smoothing, com-
pression, visualization, histograms. 

I. INTRODUCTION 
HEN analyzing a collection of numeric measurements, 
we often need to represent it as a histogram that shows 

the underlying distribution. For example, consider the set of 
5000 numeric points in Figure 9(a) on the next-to-last page of 
the paper. We may convert it to a fine-grained histogram in 
Figure 9(b), to a coarser version in Figure 9(c), or to a very 
coarse histogram in Figure 9(d). This conversion helps to 
visualize data, and it also serves as lossy data compression, 
since it allows replacing a large point set with a compact 
approximation of the underlying distribution. 

We describe a mechanism for constructing an approx-
imate probability density function based on a given point set, 
which represents this function by a generalized histogram 
with variable-width bars. It also supports lossy compression 
of a fine-grained histogram into a coarser version. We for-
malize the problem of smoothing a histogram (Section II), 
give algorithms for solving it (Sections III–V), discuss their 
extensions (Section VI), and present initial empirical results 
(Section VII). 

This work has been part of a project aimed at develop-
ment of techniques for automated reasoning under uncer-
tainty, including representation of insufficient and approx-
imate data [Bardak et al., 2006a; Fu et al., 2008]; optimiza-
tion and hypothesis evaluation based on limited data [Fink et 
al., 2006; Gershman et al., 2009a]; and planning of additional 
data gathering [Bardak et al., 2006b; Gershman et al., 
2009b]. 
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II. PROBLEM 
We consider the task of smoothing a probability distribution. 
Specifically, we need to develop a procedure that inputs a 
point set or a fine-grained histogram, and constructs a 
coarser-grained histogram. We explain the representation of 
probability distributions in the developed system and then 
formalize the smoothing problem. 
 

Representation: We encode an approximated probability 
density function by a histogram with variable-width bars, 
which is called a piecewise-uniform distribution and abbre-
viated as PU-distribution. This representation is a set of dis-
joint intervals, with a probability assigned to each interval, as 
shown in Figure 1 [Bardak et al., 2006a; Fu et al., 2008]. We 
assume that all values within a specific interval are equally 
likely; thus, every interval is a uniform distribution, and the 
histogram comprises multiple such distributions. 

Note that a standard histogram is a special case of a PU- 
distribution, where all intervals have the same width and the 
distances between adjacent intervals are zero. Furthermore, a 
set of numeric points is also a special case of such a distri-
bution, where all intervals have zero width. 
 

Inputs: The smoothing procedure accepts a PU-distribution 
and generates a version with fewer intervals, which should be 
“close” to the initial distribution according to a given dis-
tance function. The inputs of this procedure are as follows. 
 

• Initial distribution: We input a PU-distribution with m 
intervals, which may represent a point set or a generalized 
histogram, encoded by three real-valued arrays: 

initial-prob[1..m]  interval probabilities 
initial-min[1..m]  left endpoints of intervals 
initial-max[1..m]  right endpoints of intervals 

• Distance function: We provide a two-argument function, 
denoted dist-func, which determines distances between 
distributions. It inputs two PU-distributions and returns a 
numeric distance between them. We may use the Kull-
back-Leibler divergence [Kullback and Leibler, 1951; 
Kullback, 1987], the Jensen-Shannon divergence [Lin, 
1991], or any other distance measure. 

• Target size: We specify the required number of intervals in 
the smoothed distribution, denoted k, which must be 
smaller than the size m of the initial distribution. 
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Problem: The goal is to produce a PU-distribution, with the 
given number of intervals, that is as close as possible to the 
initial distribution according to the given distance function.  

III. GREEDY ALGORITHM 
We now describe a smoothing procedure; we summarize its 
main data structures in Figure 2 and give its pseudocode in 
Figure 3. It gradually reduces the number of intervals in a 
PU-distribution by merging adjacent intervals. At each step, it 
considers all possible merges and selects the merge that leads 
to the smallest “change,” as measured by the distance func-
tion. It stops upon reaching the target number of intervals. 

This algorithm is greedy, and it does not guarantee 
finding the k-interval PU-distribution that is globally closest 
to the initial distribution; however, it gives good results in 
practice and usually constructs a near-optimal smoothing. 

The procedure performs (m − k) merging steps, and 
considers O(m) candidate merges at each step (see the 
SMOOTH subroutine in Figure 3). For each candidate merge, it 
computes the distance between the current and the af-
ter-merge distributions (see the MERGE-DIST subroutine in 
Figure 3), which takes O(m) time for standard distance 
functions. Thus, a straightforward implementation of the 
smoothing procedure would have O(m3) running time. For-
tunately, most distance functions have a “local-computation” 
property, discussed in Section IV, which allows the reduction 
of the running time to O(m · log m). 

IV. FASTER ALGORITHM 
The main inefficiency of the algorithm in Figure 3 comes 
from the MERGE-DIST subroutine, which takes O(m) time to 
evaluate a potential merge by computing the distance be-
tween the current and the after-merge distributions. For most 
distance measures, we may perform this computation “lo-
cally,” by looking only at the two merged intervals, rather 
than applying the distance function to the entire 
PU-distribution. 

For example, consider a simple measure of the distance 
between two probability density functions, p(x) and q(x), 
defined as the mean absolute difference: 
 

simple-dist(p, q) = ∫ | p(x) − q(x) | dx. 
 

If we use it, we can compute the distance between the current 
and the after-merge PU-distributions locally, using the 
SIMPLE-MERGE-DIST subroutine in Figure 4. Its running time 
is constant, which reduced the overall time of the smoothing 
algorithm to O(m2). 

We can further improve the efficiency by arranging the 
potential merges in a priority queue. Specifically, we define 
the merge distance of an interval, denoted m-dist[bar] in the 
pseudocode, which is the distance between the current 
PU-distribution and the distribution that would result from 
merging the given interval, bar, with the next one, next[bar]. 
We compute these distances for all intervals except the last 
one, and put them in a priority queue. At each step, we extract 
the smallest-distance interval from the queue and merge it 
with the next interval. We give this fast smoothing procedure 
in Figure 5; its running time is O(m · log m). 

Note that the only logarithmic-time operations within 
the main loop of the fast smoothing procedure are the prior-
ity-queue operations. The other computations within the 
main loop take constant time. In practice, however, the 
priority-queue operations are very fast even when the queue 
size is in hundreds of millions, and they take less than 10% of 
the overall time. Thus, the “practical” running time of the 
computations within the main loop is near-constant, which 
means that the “practical” time of the overall smoothing 
procedure is near-linear, that is, close to O(m). 

V. ALTERNATIVE DISTANCE MEASURES 
We review two other standard distance functions that allow 
fast computation of merge distances. For both functions, the 
theoretical complexity of the smoothing procedure is O(m · 
log m), but the practical smoothing time is near-linear. 
 

Kullback–Leibler: This distance function is a standard 
measure of divergence between two distributions, also called 
information gain or relative entropy: 
 

KL-dist(p, q) = ∫ p(x) · log (p(x) / q(x)) dx. 
 

In Figure 4, we give a constant-time subroutine, called 
KL-MERGE-DIST, for computing the related merge distances. 
 

Jensen–Shannon: It is another standard divergence meas-
ure, also called information radius, which is defined through 
the Kullback-Leibler divergence: 
 

JS-dist(p, q) = (KL-dist(p, (p+q)/2) + KL-dist(q, (p+q)/2)) / 2. 
 

In Figure 4, we show the related distance-computation sub-
routine, called JS-MERGE-DIST. 

VI. EXTENSIONS 
We discuss extensions to the smoothing technique, which 
allow adapting it to a wider range of practical problems. 
 

Termination conditions: We have described an algorithm 
that stops only upon reaching the target number of intervals, 
but we have included two additional termination conditions 
in the implemented system. The user may optionally specify 
an upper bound on the distance between the initial and the 
smoothed distribution, and she may also set an upper bound 
on a single-step merge distance. When the system reaches 
either bound, it stops even if the PU-distribution has more 
than the target number of intervals. These bounds allow the 
user to limit the accuracy loss due to the smoothing. 
 

Spline fitting: When presenting a PU-distribution to the user, 
we may display a smooth curve rather than a histogram 
[Parzen, 1962; Boneva et al., 1971], which is a better visual 
aid. We generate it by fitting a spline over the PU-distribution 
in such a way that, for each interval, the area under the spline 
is equal to the interval’s probability (Figure 6). We use 
standard spline tools; for example, see the “smoothing a 
histogram” demo for Spline Toolbox 3.3.6 at 
www.mathworks.com/products/splines/demos.html. 
 



 
 

 

                         
                        
  

Piecewise-uniform distribution 
 

We describe a probability density function by multiple intervals, 
and we specify each interval by its probability along with its mi-
nimal and maximal values: 
 

prob1: from min1 to max1 
prob2: from min2 to max2 

… 
probm: from minm to maxm 

 

The intervals do not overlap, and the sum of their probabilities 
is 1.0, which means that we impose the following constraints: 
 

 min1 ≤ max1 ≤ min2 ≤ max2 ≤ …≤ minm ≤ maxm; 
 prob1 + prob2 + … + probm = 1.0. 
 

Important special cases 
 

• Standard histogram:  
max1 − min1 = max2 − min2 = … = maxm − minm;  
max1 = min2, max2 = min3, …, maxm−1 = minm. 

• Set of numeric data points:  
min1 = max1, min2 = max2, …, minm = maxm. 

                        
  

Figure 1: Encoding of a PU-distribution, which is a generalized 
histogram with variable-width bars. 
 
 
                         
  

Interval 
 

We represent an interval (also called a bar) of a PU-distribution by a 
structure that includes its probability, left and right endpoints, 
pointers to the previous and next intervals, and the related merge 
distance, defined in Section IV. We use the word bar to name the 
variables of this type in the pseudocode, and refer to the following 
fields of such variables: 
 

prob[bar]  probability of the interval 
min[bar]  left endpoint 
max[bar]  right endpoint 
prev[bar]  previous interval in the PU-distribution 
next[bar]   next interval in the PU-distribution 
m-dist[bar] merge distance, defined in Section IV 
 

PU-distribution 
 

We represent a PU-distribution (also called a histogram) by a 
structure that includes a doubly linked list of intervals in the sorted 
order. We use the word hist to name the variables of this type, and 
refer to the following fields of such variables: 
 

size[hist] number of intervals in the list 
first[hist] pointer to the first interval 
last[hist] pointer to the last interval 
                         
 

Figure 2: Main data structures in the smoothing procedure.

                         
 

The subroutine inputs three arrays that represent an initial distribu-
tion (see Section II) and constructs the respective PU-distribution 
structure, which is a doubly linked list of m interval structures. 
 

INITIAL-HIST(initial-prob, initial-min, initial-max, m) 
hist = new PU-distribution 
first[hist] = new interval; prob[first[hist]] = initial-prob[1] 
min[first[hist]] = initial-min[1]; max[first[hist]] = initial-max[1] 
prev[first[hist]] = NIL; last[hist] = first[hist] 
for i = 2 to m do 

bar = new interval; prob[bar] = initial-prob[i] 
min[bar] = initial-min[i]; max[bar] = initial-max[i] 
prev[bar] = last[hist]; next[last[hist]] = bar; last[hist] = bar 

next[last[hist]] = NIL 
size[hist] = m 
return hist 
                         
 

The subroutine inputs an interval, bar. It merges this interval with 
the next, and returns the resulting merged interval. 
 

MERGED-BARS(bar) 
new-bar = new interval 
prob[new-bar] = prob[bar] + prob[next[bar]] 
min[new-bar] = min[bar]; max[new-bar] = max[next[bar]] 
prev[new-bar] = prev[bar]; next[new-bar] = next[next[bar]] 
return new-bar 
                         
 

The subroutine inputs a PU-distribution, hist, and a pointer to one of 
its intervals, bar. It merges this interval with the next, and replaces 
the two original intervals with the merged interval. 
 

MERGING(hist, bar) 
new-bar = MERGED-BARS(bar) 
if first[hist] = bar 

then first[hist] = new-bar; else next[prev[bar]] = new-bar 
if last[hist] = next[bar] 

then last[hist] = new-bar; else prev[next[next[bar]] = new-bar 
delete next[bar]; delete bar 
size[hist] = size[hist] − 1 
                         
 

The subroutine inputs a PU-distribution, hist; a pointer to one of its 
intervals, bar; and a distance function, dist-func. It computes the 
distance between hist and the new distribution that would result 
from merging bar with the next interval. 
 

MERGE-DIST(hist, bar, dist-func) 
create a new PU-distribution, copy-hist, which is a copy of hist; 

this operation includes copying all intervals of hist 
let copy-bar be the copy of bar in the new distribution 
MERGING(copy-hist, copy-bar) 
dist = dist-func(hist, copy-hist) 
delete the  PU-distribution copy-hist and all its intervals 
return dist 
                         
 

The procedure inputs an initial PU-distribution, represented by the 
arrays initial-prob, initial-min, and initial-max, along with their 
size m; a distance function, dist-func; and a target distribution size k. 
It generates a smoothed distribution with k intervals. 
 

SMOOTH(initial-prob, initial-min, initial-max, m, dist-func, k) 
hist = INITIAL-HIST(initial-prob, initial-min, initial-max, m) 
while size[init] > k do 

bar = first[hist]; best-dist = +∞ 
while next[bar] ≠ NIL do 

dist = MERGE-DIST(hist, bar, dist-func) 
if dist < best-dist 

then best-bar = bar; best-dist = dist 
bar = next[bar] 

MERGING(hist, best-bar) 
return hist 
                         
 

Figure 3: Smoothing of a PU-distribution. The procedure inputs 
an initial distribution and produces its smoothed version. 



 
 

 

                         
 

Auxiliary subroutine for calculating the height of an interval, which 
corresponds to the visual height of the respective histogram bar. 
 

HEIGHT(bar) 
return prob[bar] / (max[bar] − min[bar]) 
                         
 

Computation of the simple distance, which is the mean absolute 
difference between probability density functions (Section IV). 
 

SIMPLE-MERGE-DIST(bar) 
new-bar = MERGED-BARS(bar) 
dist = | HEIGHT(new-bar) − HEIGHT(bar) | · (max[bar] − min[bar]) 

+ HEIGHT(new-bar) · (min[next[bar]] − max[bar]) 
+ | HEIGHT(new-bar) − HEIGHT(next[bar]) | 

· (max[next[bar]] − min[next[bar]]) 
delete new-bar 
return dist 
                         
 

Computation of the Kullback-Leibler divergence (Section V). 
 

KL-MERGE-DIST(bar) 
new-bar = MERGED-BARS(bar) 
dist = HEIGHT(bar) 

· log (HEIGHT(bar) / HEIGHT(new-bar)) 
· (max[bar] − min[bar]) 

+ HEIGHT(next[bar]) 
· log (HEIGHT(next[bar]) / HEIGHT(new-bar)) 
· (max[next[bar]] − min[next[bar]]) 

delete new-bar 
return dist 
                         
 

Computation of the Jensen-Shannon divergence (Section V). 
 

JS-MERGE-DIST(bar)  
new-bar = MERGED-BARS(bar) 
left-mean-height = (HEIGHT(bar) + HEIGHT(new-bar)) / 2 
right-mean-height = (HEIGHT(next[bar]) + HEIGHT(new-bar)) / 2 
kl-dist1 = HEIGHT(bar) 

· log (HEIGHT(bar) / left-mean-height) 
· (max[bar] − min[bar]) 

+ HEIGHT(next[bar]) 
· log (HEIGHT(next[bar]) / right-mean-height) 
· (max[next[bar]] − min[next[bar]]) 

kl-dist2 = HEIGHT(new-bar) 

· (log (HEIGHT(new-bar) / left-mean-height) 
· (max[bar] − min[bar]) 

+ min[next[bar]] − max[bar] 
+ log (HEIGHT(new-bar) / right-mean-height) 

· (max[next[bar]] − min[next[bar]])) 
delete new-bar 
return (kl-dist1 +  kl-dist2) / 2 
                         
 

Figure 4: Constant-time distance computation. These subrou-
tines are efficient versions of MERGE-DIST, given in Figure 3, for 
three specific distance functions. They calculate the distance be-
tween the current distribution and the new one that would result 
from merging two adjacent intervals. 

                         
 

The subroutine inputs an interval, bar, and a distance function, 
dist-func. It calls the appropriate code in Figure 4 for the local 
computation of the merge distance. Note that we have to implement 
a specialized subroutine for each distance function. 
 

FAST-MERGE-DIST(bar, dist-func) 
if dist-func is the simple distance from Section IV 

then return SIMPLE-MERGE-DIST(bar) 
if dist-func is the Kullback-Leibler divergence 

then return KL-MERGE-DIST(bar) 
if dist-func is the Jensen-Shannon divergence 

then return JS-MERGE-DIST(bar) 
                          
 

The subroutine inputs an initial PU-distribution, hist, and a distance 
function, dist-func. It creates a priority queue of intervals, priori-
tized by the merge distance. 
 

INITIAL-QUEUE(hist, dist-func) 
create an empty priority queue, denoted queue, 

which prioritizes intervals by the merge distance 
bar = first[hist] 
while next[bar] ≠ NIL do 

m-dist[bar] = FAST-MERGE-DIST(bar, dist-func) 
add bar to queue, prioritized by m-dist 
bar = next[bar] 

return queue 
                          
 

The subroutine inputs a PU-distribution, hist; a pointer to one of its 
intervals, bar; a distance function, dist-func; and a priority queue of 
intervals, queue. It merges the given interval with the next, replaces 
these two intervals with the merged interval, and updates the queue. 
 

FAST-MERGING(hist, bar, dist-func, queue) 
new-bar = MERGED-BARS(bar) 
remove bar from queue 
if first[hist] = bar 

then first[hist] = new-bar 
else next[prev[bar]] = new-bar 

m-dist[prev[bar]] = FAST-MERGE-DIST(prev[bar], dist-func) 
update position of prev[bar] in queue, prioritized by m-dist 

if last[hist] = next[bar] 
then last[hist] = new-bar 
else prev[next[next[bar]] = new-bar 

remove next[bar] from queue 
m-dist[new-bar] = FAST-MERGE-DIST(new-bar, dist-func) 
add new-bar to queue, prioritized by m-dist 

delete next[bar]; delete bar 
size[hist] = size[hist] − 1 
                         
 

The procedure inputs an initial PU-distribution, represented by the 
arrays initial-prob, initial-min, and initial-max, along with their 
size m; a distance function, dist-func; and a target distribution size k. 
It generates a smoothed distribution with k intervals. 
 

FAST-SMOOTH(initial-prob, initial-min, initial-max, m, dist-func, k) 
hist = INITIAL-HIST(initial-prob, initial-min, initial-max, m) 
queue = INITIAL-QUEUE(hist) 
while size[init] > k do 

set best-bar to the lowest-distance interval in queue, 
and remove it from queue 

FAST-MERGING(hist, best-bar) 
return hist 
                         
 

Figure 5: Fast smoothing of a PU-distribution. The procedure 
arranges potential merges in a priority queue. It works only when 
we can use the local distance computation, described in Section IV. 



 
 

 

 
 

 
 
Figure 6: Fitting a spline over a PU-distribution. We use splines 
to provide a better visualization of the underlying probability den-
sity function. 
 
 
 

 
Figure 7: Difference between integer and real-valued 
PU-distributions. The meaning of a specific PU-encoding depends 
on whether it describes discrete or continuous values. 

 
 
 

 
Figure 8: Efficiency of smoothing. We show the dependency of 
the running time on the number of points in the input set. For m 
points, the time is (2.5 ± 0.5) · 10−3 · m milliseconds. 

Integer PU-distributions: We have described 
PU-distributions of real values, but we can also use this re-
presentation for integers. Note however that the meaning of a 
specific PU-encoding for integers is different from the 
meaning of the same encoding for reals. 

For example, consider the two-interval PU-encoding in 
Figure 7. If it refers to reals, then it represents a probability 
density function that consists of two uniform distributions 
(Figure 7, left). On the other hand, if it is integer, the distri-
bution comprises four discrete values (Figure 7, right). 

When using a PU-distribution of integers, we do not al-
low intervals to have common endpoints; thus, the related 
restriction is somewhat different from that for real values: 
 

• Real-valued PU-distributions:  
min1 ≤ max1 ≤ min2 ≤ max2 ≤ …≤ minm ≤ maxm. 

• Integer PU-distributions: 
min1, max1, min2, max2, …, minm, maxm are integers;  
min1 ≤ max1 < min2 ≤ max2 < …< minm ≤ maxm. 

 

The distance computations in Figure 4 do not work di-
rectly for integer PU-distributions, but we can adapt them 
using a simple trick. We convert an integer distribution to a 
real-valued version with similar mathematical properties, 
which involves extending each interval by 0.5 on both sides: 
 

Given integer distribution: 
 

prob1: from min1 to max1 
prob2: from min2 to max2 

… 
probm: from minm to maxm 

 

Respective real-valued distribution: 
 

prob1: from (min1 − 0.5) to (max1 + 0.5)  
prob2: from (min2 − 0.5) to (max2 + 0.5) 

… 
probm: from (minm − 0.5) to (maxm + 0.5) 

 

We apply the smoothing procedure to this real-valued ver-
sion and then convert the output PU-distribution back to in-
tegers, which involves trimming all its intervals by 0.5 on 
each side. 

This conversion preserves the correctness of all ma-
thematical computations in Figure 4. Thus, it allows the 
application of the described algorithms to integer 
PU-distributions without loss of accuracy. 

VII. INITIAL EXPERIMENTS 
We have applied the smoothing procedure to point sets 
drawn from several standard distributions, including normal, 
geometric, Poisson, uniform, and binomial. It has produced 
reasonable, visually appealing results in all cases; we have 
not observed any difference in its effectiveness among dif-
ferent distributions. We show examples of smoothing for the 
normal distribution and the geometric distribution (Figures 9 
and 10). 
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(a) Initial set of 5000 points. 

 
 

    
(b) Smoothing to 200 intervals. 

 
 

    
(c) Smoothing to 50 intervals. 

 
 

 
(d) Smoothing to 10 intervals. 

 

Figure 9: Smoothing for the normal distribution. We have ran-
domly selected 5000 points based on the normal distribution with 
the mean 0.0 and standard deviation 1.0 (a), and generated three 
smoothed PU-distributions with different number of intervals (b–d). 
 

 
(a) Initial set of 5000 points. 

 
(b) Smoothing to 200 intervals. 

 
(c) Smoothing to 50 intervals. 

 
(d) Smoothing to 10 intervals. 

 

Figure 10: Smoothing for the geometric distribution. We have 
randomly selected 5000 points based on the geometric distribution 
with p = 0.02 (a), and generated smoothed PU-distributions (b–d). 



 
 

 

We have measured the speed of the smoothing proce-
dure, implemented in C++, on a 3.4GHz Pentium computer. 
We give the results in Figure 8, which confirm that the 
“practical” running time is O(m), more specifically, between 
2 · 10−3 · m and 3 · 10−3 · m milliseconds. For example, the 
smoothing of 500,000 points takes 1.4 seconds. We have not 
observed any speed difference among different distributions. 

VIII. CONCLUDING REMARKS 
We have described a greedy procedure for constructing an 
approximate probability density function based on a given 
point set or a fine-grained histogram. It allows control over 
(1) the smoothing level, specified by the target number of 
intervals in the compressed histogram, and (2) the distance 
function that defines similarity between the original and the 
compressed histogram. A related future challenge is to pro-
pose a more robust representation for approximating proba-
bility density functions, which would still support efficient 
smoothing. Another challenge is to address the problem of 
constructing globally optimal smoothed distributions. 
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