A Multi-Population Genetic Algorithm and Its Application to Design of Manipulators

Jin-Oh Kim
Carnegie Mellon University

Pradeep Khosla
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/isr

This Conference Proceeding is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been accepted for inclusion in Institute for Software Research by an authorized administrator of Research Showcase @ CMU. For more information, please contact research-showcase@andrew.cmu.edu.
A Multi-Population Genetic Algorithm and Its Application to Design of Manipulators

Jin-Oh Kim and Pradeep K. Khosla

The Robotics Institute
Carnegie-Mellon University
Pittsburgh, PA, 15213

Abstract. In this paper, we introduce a new algorithm called Multi-Population Genetic Algorithm (MPGA) as an efficient implementation technique for highly nonlinear problems. Our MPG A is a parallel implementation of a GA and shows its robustness for our problem domain (Task Based Design: TBD) where we design a manipulator which is best suited for a given task. The MPG A has the same number of optimization functions as the number of task points and maintains almost constant complexity and does not depend on the number of task points. In addition, we develop a framework called Progressive Design, in which we design progressively based on coarse-fine approach.

1. Introduction

In this paper, we introduce a multi-population genetic algorithm (MPGA) to solve the highly nonlinear optimization problem of task based design (TBD). Genetic Algorithm (GA) is an adaptive search technique and has been used for a variety of problems [5]. GA is based on mechanics of natural genetics and natural selection. The selection of the fittest is combined with genetic operators which are abstracted from nature. Our MPG A is a parallel implementation of GA and works very well for our problem domain (Task Based Design: TBD) where we design a manipulator which is best for a given task. TBD puts forth the idea of designing manipulators based on the given task. The CMU RMMS (reconfigurable modular manipulator system [19]), which utilizes a stock of assembleable joint and link modules of different size and performance specifications, is an ideal application domain of TBD. We however, do not limit the application of TBD to the RMMS and believe that it can be used for design of general manipulators.

If we use a traditional approach of optimization where one optimization function is defined as a sum of an objective function and several constraints, the complexity of TBD increases exponentially as a function of the number of task points (which approximates a given trajectory). The number of variables increases linearly as the number of task points. Thus, traditional optimization techniques with one optimization function are not suited for large number of task points due to the huge search space and nonlinearity. To overcome this problem, we use MPG A, which has the same number of optimization functions as the number of task points. Each optimization function has an objective function and all of them are connected by connecting constraints. The major advantage of this MPG A is that each optimization function maintains almost constant complexity and does not depend on the number of task points.

A framework called Progressive Design is proposed wherein we design progressively based on coarse-fine approach. The design variables are dimension (link length), pose (joint angle) and base position of a manipulator. Progressive Design is composed of four steps (design, prototype, planning and control). As we go from design (the first step) to control (the last step), the number of variables decreases, the search spaces for the variables are reduced, and the size of task space increases. For example, we design all variables for finite number of task points in the first step. Task points are sampled from a given trajectory or a task space and include, typically, the closest and the furthest points from the base space. In the last step of control, the task space to be reached is continuous through the given trajectory, but only variable is a set of joint angles, and dimension of base position is determined in previous steps.

This paper is organized as follows: In Section 2, we briefly describe our example problem and discuss a dexterity measure and constraints for TBD. In Section 3, we introduce simple genetic algorithm and in Section 4, we show the structure of our Multi-Population Genetic Algorithm (MPGA). In Section 5, optimization functions are formulated. Details of Progressive Design are presented in Section 6. An example of the Progressive Design is presented in Section 7 and finally, we summarize this paper in Section 8.

2. Problem Description

Task Based Design (TBD) selects an optimal manipulator which satisfies a given task description. The optimality is based on the use of a dexterity measure. In general, tasks can be formulated as constraints. A dexterity measure and some task constraints are discussed in this section. As an example of TBD, we consider a design of a 3 DOF planar manipulator in Fig. 1 for clamping task where the trajectory is a circle in a plane as shown in Fig. 2. Since we are concerned with only the position of the end-effector (for the example task), the 3 DOF planar manipulator is redundant with respect to this task. The base position is, for simplicity, assumed to be given at the origin of the global coordinate frame.

The design variables for this design include dimension (link length) and pose (joint angle). There are four design variables for each task point: l1, l2, l3 and θ1 as shown in Fig. 1. Other joint variables of θ2 and θ3 can be determined by the inverse kinematics. An alternative between elbow up and down configurations from θ2 and θ3 is another variable to decide. In this paper, instead of using the above variables, we use (x1, y1) for the second joint and (x2, y2) for the third joint. By this formulation, we can avoid the elbow up and down problem. If (x2, y2) is given, the link length l3 is automatically
decided by the line connecting the last joint and the corresponding task point as shown in Fig. 1. Thus, we don’t need to solve inverse kinematics for this design. Even better, we are not bothered by the periodicity of point variables. To summarize, a task point has four design variables \((x_1, y_1, x_2, y_2)\). The total number of design variables for traditional optimization techniques and for our parallel implementation of GA are computed in Section 4.

The crank is shown in Fig. 2(a) and its circular trajectory is approximated by four task points as in Fig. 2(b). These task points are used in the first step (design). In the remainder of this section, we discuss dexterity measure and constraints for design.

![3 DOF Planar Manipulator](image)

Fig. 1.3 DOF Planar Manipulator

![Crank Turning Task](image)

Fig. 2 Crank Turning Task

21 Dexterity Measure (DM)

The main role of a dexterity measure in design is to choose one optimal design from the candidates which satisfy given constraints. For a dexterity measure to be used for design, it must be independent of the scale of a manipulator. In this paper, we use the relative manipulability as a dexterity measure. The relative manipulability is a dimensionless scale independent measure of manipulability and is defined as

\[M_r = \frac{m}{\sqrt{\det(J^TJ)}} \]

where \(M\) is the order independent manipulability and \(m\) is a function of dimension \((\text{length})^m\). The measure \(M\) is obtained as

\[M = \frac{\sqrt{\det(J^TJ)}}{\sqrt{\det(J^TJ)}} \]

where \(J\) is the Jacobian matrix of instantaneous kinematics and \(m\) is the order of task space. For a 3 DOF planar manipulator with 2 dimensional task space, \(m = 2\). For this case, this measure \(M\) is equal to the measure of manipulability in [20]. For \(m > 2\), however, this \(M\) has an advantage since its order is always equal to 2 without depending on the order of task space. We use \(M\) for \(f_M\), where \(I\) is a total length of a manipulator. The total length of a manipulator is defined as a sum of link lengths. In general, link length is defined as

\[l = d_1^2 + d_2^2 \]

where \(d_1\) and \(d_2\) are D-H parameters [7].

23 Constraints

The design constraints considered in this paper are:

1. Reachability constraint (RC)
2. Heuristic constraint (HC)
3. Joint limit constraint (JLC)
4. Joint angle change between two adjacent task points (JAC)
5. Task specific constraint (TC).

The RC is the most important constraint that must be satisfied by a designed manipulator. Every task point must be reached by the designed manipulator. The important role of the RC is to solve inverse kinematics implicitly. For our design problem of a planar manipulator, we don’t need this RC because of the formulation where we use the position of the first two points as design variables and the third link is expressed by a line connecting position of the second joint and the corresponding task point. When a manipulator is given, however, we need to use RC to avoid the inverse kinematics.

The HC, as the name implies, can take many different forms. The HC that we use is that the inner link is always longer than the outer link. This constraint is based on the observation that the outer link is more appropriate for fine motion and the inner link for gross motion. This HC also helps eliminate an awkward design such as zero link length for redundant manipulator [9]. However, for tasks that include obstacle avoidance, we may choose to turn off this HC. The JLC is included to take into account the fact that the total range of each actuator is limited. The JAC is based on the fact that the joint angle change between two adjacent task points must be kept small. We don’t want a drastic change in the pose. Like from elbow up to down, between two adjacent task points. The TC depends on a given task and may include bracing, obstacle avoidance, singularity avoidance, dexterity, and so on. Among them, we consider singularity avoidance and dexterity [2][3][15].

3. Simple Genetic Algorithm (SGA)

Genetic Algorithms (GAs) are adaptive search procedures based on mechanics of natural genetics and natural selection and have been used for a variety of sea-ch problems. GAs have proven to be
more efficient than other search algorithms for highly nonlinear and complex problems [4]. GAs have no requirement for continuity in the
derivatives, so virtually any fitness function can be selected for optimizing.
In contrast to conventional methods, GA use population in which many
individuals are selected based on the fitness value.
In this section, we briefly review one GA called Simple Genetic
Algorithm (SGA) [5]. SGA is used as a basis for building the Multi-
Population Genetic Algorithm (MPGA) structure in the following section.

SGA starts by generating a random population and continues to
generate subsequent populations until some halting condition is
met. Each individual of a population represents a possible solution
with different fitness and is coded by a binary string. One string
called "genotype"
is matched to a set of variables called "phenotype". Each variable corresponds to a gene. When evaluating
each gene, we decode the binary string called "chromosome"
into a real value (called "delete") by using a linear mapping. After
evaluation of all individuals, the next population is obtained by using
gene operators. The genetic operators used in SGA are:

1. Reproduction,
2. Crossover, and
3. Mutation.

Reproduction realizes the survival of the fittest within the SGA.
There are many ways to achieve effective reproduction. One simple proportionate scheme selects individuals for reproduction
according to their fitness. Where fitness is defined as the nonnegative
figure of goodness being maximized. Individuals with higher fitness
values have a higher probability of being selected for mating (crossover)
and subsequent genetic action (mutation).

In crossover, two individual strings, selected using the reproduction
operator, create two new individuals by exchanging partial strings
with each other. A crossover site along the string length as shown in
Fig. 3 is selected uniformly at random, and position values are
swapped between the two strings following the crossover site. This
allows combination of advantageous substrings into individuals more fit than either parent. Fig. 3 shows how crossover works for two individuals selected by reproduction.

In a binary-coded GA, mutation is the occasional (low probabil-
ity) alteration of a bit position (the changing of a 1 to a 0, and a 0 to
a 1). By itself, mutation is a simple random walk through the string
space. When used sparingly in combination with reproduction and
crossover, mutation is an insurance policy against the loss of impor-
tant genetic material at a particular position. This mutation helps
avoid local minima.

For our design problem, there are four design variables
\((x_1, y_1, x_2, y_2)\). Each variable is called a "gene". These are represented
by string of binary digits. For example, if each gene is of 5-bit string
(chromosome) as in Fig. 3, then each real number is represented by
a 20-bit string (genotype). A genotype is mapped onto 4 unsigned
integers which in turn are mapped onto real values of 4 alleles by a
linear function based on the respective maximum and minimum values
of \((x_1, y_1, x_2, y_2)\). A set of real values (phenotype) for an individual
is used to obtain the fitness value of each individual.

Based on the fitness value, reproduction selects two mating
genes for crossover. Assume that the 4th and 6th individuals are
selected as shown in Fig. 3. The fitness values are chosen arbitrarily
for explanation. Between genotype and phenotype, there are implic-
it mapping functions different for all genes \((x_1, y_1, x_2, y_2)\). For this
example, the crossover site is chosen randomly after the 6th binary
digit. New individuals \((I_1 \text{ and } I_2)\) of the next generation are obtained
by crossover. When there are \(n\) individuals (genes), we need \((n/2)\times\)
times of reproduction and crossover for obtaining the next genera-
tion. Mutation is applied bit by bit at a low rate (1 or 2 times per ev-
every 100 binary bits after crossover.

4. Multi-Population Genetic Algorithm

Different from simple GA (SGA) in previous section and other
GAs, MPGAs use multiple populations. Each population works on
one optimization function corresponding to one task point. The advantage
of MPGAs is that the complexity does not increase much as
the number of task points increases. MPGAs are different from GAs
for multi-optimization function problems [18], since our MPGAs
solve problems with single complex optimization function and di-
vides the complexity into multi-optimization functions.

For TBD, the number of variables increases linearly as the number
of task points \((TP)\). If we use one optimization function, the total
number of variables is equal to

\[(n-2)\times TP + n + 2\]

for a planar manipulator.

where \(n\) is equal to \(DOF\) and \(t\) is the total number of task points. This
is computed assuming that \(I_t\) (link length) and \(\theta_t\) (joint angles) are
used as design variables because these provide the minimum
number of variables. For the first task points, there are 2 variables for a
base position, \(n\) variables for \(n\) link lengths and \((n-2)\) joint variables
assuming the use of inverse kinematics. That is, there are totally \(2n\)
variables for the first task point. The remaining \((t-1)\) task points have
\((n-2)\) pint variables, respectively. Therefore, the total number of variables is

\[2n + (t-1)\times (n-2) = (n-2)\times TP + n + 2\]

The search space increases exponentially as the number of variables
increases. This implies that the quality of the solution decreases
rapidly as the search space increases. To avoid this, we use optimization functions corresponding to task points. They are
optimized simultaneously and modified depending on the optimal manipulators for other task points. This is how if we are designing \(t\) manipulators for \(t\) task points. The advantage of this parallel implement-
ation is that the number of variables for each optimization function
is fixed \((n=1\text{ in } (3))\). This advantage is obtained at the cost of inclusion of two additional constraints: link constraint (\(LC\); the \(t\)
manipulators must have the same link lengths) and base position
constraint (\(BP\); all manipulators must have the same base position).
These are necessary because we want a single manipulator, which
satisfies all constraints.
The dexterity measure (DM) in Section 2.1. all constraints in Section 2.2 and two additional constraints (LC and BPC) form constraint functions and determine the fitness value of all individuals in all populations. Among these, LC, BPC and JAC serve as constraints connecting all populations and modify fitness values of all individuals as shown in Fig. 4. Objective functions compute fitness values of individuals for the corresponding task points, whereas connecting constraints controls optimization function based on the designs for other task points. For each task point, there are m individuals. A MPG for a task with t task points has m populations.

Suppose that for some task point has high fitness value of objective function and its link length is much different from the average of (t-1)*m individuals of the other populations. Then, the effect of LC (connecting constraint) to that specific individual is negative. This negative value of LC neutralizes the high fitness of the objective function. The fitness value for that optimization function is adjusted this way and used for reproduction of the next generation. That is, the final fitness of an individual is a summation of the value from the corresponding objective function and the adjusting value from connecting constraints which is obtained by comparison with individuals in the other populations. The CC is to connect all task points and to result m single manipulator as a solution. The BPC works in the same way. The JAC adjusts the fitness value based on the average poses of populations for the two adjacent task points.

The MPG is similar to having many SGA’s operating in parallel as shown in Fig. 5. For each task point (population), there are m individuals and each of these has variables corresponding to dimension (D), pose (P) and base position (B). As an optimal solution, we request that all manipulators on the right side of Fig. 5 have the same dimension (link length) and base position, and smooth change of poses along the given trajectory. The connecting constraints (CC) enable to satisfy these requirements, which are satisfied progressively as the number of generations increases.

Fig. 6 shows the data structure for MPG where we see populations and m individuals for each population. D, P and B represent dimension, pose and base position, respectively. The advantage of MPG is not only to maintain complexity of design constant, but also to be applied for subproblems of design. One of the subproblems of design is called path placement where we seek an optimal use of a given manipulator for a given task [6][14][15]. This kind of problem is called an analysis problem in contrast to our design problem. Our TBD with MPG can be used to solve this path placement just by fixing variables corresponding to dimension (D) and turning off LC and HC, since a manipulator is given. Another advantage of the MPG is its ability to be extended to solve design problem of a manipulator with a mobile base. If the mobile base is omnidirectional, we need just turn off the BPC in Fig. 6. Otherwise, the BPC can be used to task into account its mobility constraint. A prismatic joint can be included in design by modifying the link length constraint (LC).

In summary, parallel implementation of optimization provides a general technique for design of manipulators with or without a prismatic joint, or mobile base, and for design problem as well as analysis problem such as path placement with a given manipulator. Furthermore, it is not necessary to solve inverse kinematics because we use the RC. The complexity of each optimization function remains almost constant without depending on the number of task points, which is a main advantage of our MPG formulation.

5. Optimization Function

The optimization (fitness) function \(F_i \) for the \(i \)-th individual of the \(i \)-th population is

\[
F_i = DM_i + TC_i + RC_i + HC_i + JLC_i + LC_i + BPC_i + JAC_i \quad (4)
\]
We assume the above functions are added using some weights implicitly. SGA creates a new generation by using genetic operators based on fitness values of all individuals and the fitness is defined as a nonnegative value. An individual with higher fitness value has a higher probability of being selected for mating (crossover) and mutation. The first five functions on the right side of (4) are calculated from each individual, whereas the last three functions (CC) are constraints connecting all populations.

Dexterity Measure DM_{ij} allows a choice of one optimal manipulator among various candidates that satisfy all constraints. One of dexterity measures that can be used for design is the relative manipulability [9]. This is a scale-independent measure and is defined as

\[\text{DM}_{ij} = \left(\frac{\sqrt{J_{ij}^T J_{ij}}}{\sum_{k=1}^{n} l_{ijk}} \right)^2 \]

where \(J_{ij} \) is the Jacobian matrix the \(j \)-th individual of the \(i \)-th population and \(l_{ijk} \) is the \(k \)-th link length of the \(j \)-th individual of the \(i \)-th population.

Task Constraint TC_{ij} is a constraint to take into account specific task requirements that cannot be satisfied by the other constraints in this paper. Any task which can be expressed by dimension, pose and base is a candidate for TC. For example, all features of velocity/force ellipsoids can be a powerful tool to guarantee dexterity of a manipulator [2]. In this paper, we do not use these features for our example (crank turning). However, for a complicated task DM alone is not enough to define dexterity over the whole trajectory and more detailed task specifications such as features of velocity/force ellipsoids are desirable. A simple obstacle avoidance constraint can be a TC.

Reachability Constraint RC_{ij} is a constraint used as a substitute of the inverse kinematics. When the \(i \)-th task point is at \(X_i \) and the end-effector of the \(j \)-th individual at \(E_{ij} \), the penalty for this individual is

\[\text{RC}_{ij} = |X_i - E_{ij}| \]

Heuristic Constraint HC_{ij} may be turned off for special tasks such as obstacle avoidance in which an outer link can be longer than an inner link to avoid obstacles close to the base. Since for spatial manipulations, some link length may become zero, HC does not compare this link, but compares the other nonzero links. HC can be expressed as

\[\text{HC}_{ij} = \sum_{k=1}^{n-1} \max(0, l_{ijk} - l_{ij(k+1)}) \]

Joint Limit Constraint JLC_{ij} takes into account joint range availability. When the maximum \(\theta_{k,\text{max}} \) and the minimum \(\theta_{k,\text{min}} \) joint limits are given, a simple formulation of JLC can be expressed as

\[\text{JLC}_{ij} = \sum_{k=1}^{n} \max(0, \theta_{ijk} - \theta_{k,\text{max}}) + \max(0, \theta_{k,\text{min}} - \theta_{ijk}) \]

when \(\theta_{ijk} \) is the \(k \)-th joint angle of the \(j \)-th individual of the \(i \)-th population.

Link Length Constraint LC_{ij} compares the \(k \)-th link length of the \(j \)-th individual of the \(i \)-th population with the average \(k \)-th link length of the other populations and can be written as

\[\text{LC}_{ij} = \sum_{k=1}^{n} \left| l_{ijk} - \left(\sum_{k=1}^{n} l_{ik} \right) / (t-1) \right| \]

where \(l_{ik} = \left(\sum_{j=1}^{n} l_{ijk} \right) / m \) is the average of the \(k \)-th link length for the \(i \)-th population.

Base Position Constraint BPC_{ij} compares base position of the \(j \)-th individual of the \(i \)-th population with average base position of the other populations and can be written as

\[\text{BPC}_{ij} = \left| X_{0,j} - \left(\sum_{k=1}^{n} X_{0,k} \right) / (t-1) \right| \]

where \(X_{0,i} = \left(\sum_{j=1}^{n} X_{0,j} \right) / m \) is the average base position of the \(i \)-th population.

Joint Angle Change Constraint JAC_{ij} is to prevent an abrupt change of joint angles between two adjacent task points. The first order continuity condition, where we consider two neighboring (before and next) joint angles, can be expressed as

\[\text{JAC}_{ij} = \sum_{k=1}^{n} \left| \theta_{ijk} - \left(\theta_{(i-1)k} + \theta_{(i+1)k} \right) / 2 \right| \]

where \(\theta_{ik} = \left(\sum_{j=1}^{n} \theta_{ijk} \right) / m \) is the average of the \(k \)-th joint angle for the \(i \)-th population.

6. Progressive Design

In this section, we introduce a framework called Progressive Design where we find an optimal solution based on coarse-fine approach. Progressive Design reduces the number of variables and the search space progressively, while its task space increases from finite number of task points in the beginning of design to the whole task space in the last step of control. Progressive Design consists of the following four steps:

(1) Kinematic Design

(2) Prototype

(3) Planning and

(4) Kinematic Control.

In the first step, we derive an optimal value of design variables corresponding to dimension, pose and base position. During this first step, we don't need to include the RC for design of planar manipulator since the reachability is satisfied automatically by connecting the last joint (design variable) and the corresponding task point.
The second step is composed of two stages. The first stage is to choose link modules from a stock of the RMMS based on the result of the first step of design. When building a real manipulator, we may have to choose a slightly different dimension due to the limited number of available dimensions. In the second stage, therefore, we need to optimize pose and base position as variables at the same task points with a manipulator chosen in the first stage. The search space for pose and base position can be reduced considerably without losing possible optimal values by using the results of the first step as center points for these variables. We need RC but don't need LC and HC since the dimension of a manipulator is decided in the first stage of the second step. The result of the second step is used for fine planning (third step) with more task points (sub-task points) as shown in Fig. 7.

![Fig. 7. Progressive Design](image)

The third step is to interpolate two adjacent task points while satisfying the given trajectory at finite number of sub-task points. BPC is not necessary at any more since we use the optimal base position from the second step. The only remaining variable is the pose (joint angles), whose search space can be reduced drastically. As a center point of the search space for each joint angle at all sub-task points, we use the linear interpolation of two boundary poses determined in the second step. We check any possible violations of constraints at sub-task points. If a violation is detected at some sub-task points, we return to the first step. This time, a set of task points for design is modified to reflect the regions where violations are detected. This step corresponds to the fine planning, with the second step to the coarse planning. Fig. 8 shows when a COND.int is applied at each step of the Progressive Design.

<table>
<thead>
<tr>
<th>DM</th>
<th>TC</th>
<th>RC</th>
<th>HC</th>
<th>JLC</th>
<th>LC</th>
<th>BPC</th>
<th>JAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2: Prototype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3: Planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4: Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Fig. 8. Constraints](image)

The last step (kinematic control) is to interpolate continuously between two adjacent sub-task points and to justify design and planning of the first three steps. Here again, by connecting two adjacent sub-task points, we check any possible violation of constraints such as JLC along the given trajectory. If violation is detected at some points, then we go back to the first step with a new set of task points reflecting regions where violations are detected. We do not use the MPGA in this step. This step is pure trajectory following problem where initial and final poses are determined in the previous step. Assume that \(\theta_i \) and \(\theta_{i+1} \) are joint angles at two adjacent task points (including sub-task points) and we want to move through this interval by \(n_1 \) steps. For non-redundant manipulators, this step is straightforward because we can use the RMPC (resolved motion rate control). However, for redundant manipulators, we need to control the null motion (null motion to \(\theta \)) boundary conditions. One of the simplest control algorithms for redundant manipulators is to use the pseudoinverse approach. Our pseudoinverse approach is different from others [12][13], since our problem is a two point boundary value problem. For small displacement \(dx \) at the end-effector, the desired point displacement is obtained as

\[
\hat{d} \theta = J^+ dx + (I - J^+ J) k
\]

where \(\bar{J} = (J^T J)^{-1} \) is the Moore-Penrose pseudoinverse[20], \(J \) the identity matrix, and \(k \) an arbitrary vector. The magnitude of net motion is determined by the first term of (12) and the magnitude of null motion is determined by the vector \(k \). We have to choose this vector such that the final joint angle is satisfied at the \(n_1 \)-th step. In addition, a desirable behavior of the null motion is that the magnitude is continuous and almost constant as the end-effector approached the end boundary. The vector \(k \) is determined by

\[
k_i = k_j j/n_1 \quad (j = 1, \ldots, n_1)
\]

where \(k_j = (-V \{\theta - \theta_{i+1}\}/2 \) is the vector \(k_j \) approaches 0 and \(j/n_1 \) increases to 1 as \(\theta \) approaches \(\theta_{i+1} \). Thus, the magnitude of \(k \) is almost constant through the trajectory between two boundary joint angles. In the following section, we present results of our MFGA and Progressive Design for the crank turning problem.

7. Results of Progressive Design

Fig. 9 shows the variance of \(F_{1, \text{max}} \) (the best fitness for the first task point) versus generations. Since a GA works only with positive values, the negative fitness in this figure was internally shifted to positive values during computation.
The total link lengths at four task points are not exactly the same even at generation=1000. This can be overcome by trying more generations. Instead of more generations in the first step, we choose the average link lengths in the beginning of the second step (prototype). Therefore, from the first step (design) we decide only dimension (link length) and results for other variables (pose and base position) are used to reduce search space in the second step. The result of prototype is shown in Fig. 11. In general, pose and base position obtained in the second step is better than those of the first step, since the second step has less constraints to be satisfied. We don't need HC and LC, whereas we must include RC in the second step because we have a manipulator determined in the first step. The optimal base position is determined in this step. But, for our example, the base position is assumed to be given at the origin for simplicity.

In the third step, we do the planning based on the result of the second step. Constraints used for the third step are almost the same as those for the second step except BPC as shown in Fig. 8. Four sub-task points are equally spaced between two adjacent task points as in Fig. 7. The result of the third step (planning) is shown in Fig. 12. The poses at 20 task points (4 task points and 16 sub-task points) are shown in configuration space in Fig. 13. Finally, the result of the last step (kinematic control) are obtained by using the pseudoinverse approach and shown in Fig. 14.

8. Summary

In this paper, we introduced the Multi-Population Genetic Algorithm (MPGA) which is a parallel implementation of optimization problem. GAs including our MPGA have no requirement for con-
nuity in the derivatives, so virtually any fitness function can be selected for optimizing. Different from conventional methods, GAS use population in which individuals are selected based on their fitness value. Our MPGA has the same number of optimization functions as the number of task points. Each optimization has its own objective function and they are modified by CC (connecting constraints). Due to this implementation, the complexity of TBD (task based design) was maintained almost constant, independently of the number of task points. In addition, by selecting proper constraints from a set of CC, the same MPGA could be applied for manipulators with mobile bases, or with links with prismatic joint.

In addition, we proposed a framework for TBD called Progressive Design, in which we design progressively by using a coarse-fine approach. The Progressive Design is composed of four steps: design, prototype, planning and control. With a design of an optimal 3 DOF redundant planar manipulator for crank turning, we showed how our MPGA works well and presented results from each step of the Progressive Design. The framework for Progressive Design can also be used for analysis problems such as path placement and workspace design by using the last three steps (prototype, planning and control) since a manipulator is given.

ACKNOWLEDGMENT

This research was funded in part by NASA under grant NAG-1-1075, DOE under grant DE-F002-89ER14042, the Department of Electrical and Computer Engineering, and The Robotics Institute, Carnegie-Mellon University.

REFERENCES

