Uncomputably Noisy Ergodic Limits

Jeremy Avigad
Carnegie Mellon University, avigad@cmu.edu

Follow this and additional works at: http://repository.cmu.edu/philosophy

Published In
UNCOMPUTABLY NOISY ERGODIC LIMITS

JEREMY AVIGAD

Abstract. V'yugin [2, 3] has shown that there are a computable shift-invariant measure on $2^\mathbb{N}$ and a simple function f such that there is no computable bound on the rate of convergence of the ergodic averages $A_n f$. Here it is shown that in fact one can construct an example with the property that there is no computable bound on the complexity of the limit; that is, there is no computable bound on how complex a simple function needs to be to approximate the limit to within a given ε.

Let $2^\mathbb{N}$ denote Cantor space, the space of functions from \mathbb{N} to the discrete space $\{0, 1\}$ under the product topology. Viewing elements of this space as infinite sequences, for any finite sequence σ of 0’s and 1’s let $[\sigma]$ denote the set of elements of $2^\mathbb{N}$ that extend σ. The collection \mathcal{B} of Borel sets in the standard topology are generated by the set of such $[\sigma]$. For each k, let B_k denote the finite σ-algebra generated by the partition $\{[\sigma] \mid \text{length}(\sigma) = k\}$. If a function f from $2^\mathbb{N}$ to \mathbb{Q} is measurable with respect to B_k, I will call it a simple function with complexity at most k.

Let μ be any probability measure on $(2^\mathbb{N}, \mathcal{B})$, and let f be any element of $L^1(\mu)$. Say that a function k from \mathbb{Q}^+ to \mathbb{N} is a bound on the complexity of f if, for every $\varepsilon > 0$, there is a simple function g of complexity at most $k(\varepsilon)$ such that $\|f - g\| < \varepsilon$. If (f_n) is any convergent sequence of elements of $L^1(\mu)$ with limit f, say that $r(\varepsilon)$ is a bound on the rate of convergence of (f_n) if for every $n \geq r(\varepsilon)$, $\|f_n - f\| < \varepsilon$. (One can also consider rates of convergence in any of the L^p norms for $1 < p < \infty$, or in measure. Since all the sequences considered below are uniformly bounded, this does not affect the results below.)

Now suppose that μ is a computable measure on $2^\mathbb{N}$ in the sense of computable measure theory [1, 4]. Then if f is any computable element of $L^1(\mu)$, there is a computable sequence (f_n) of simple functions that approaches f with a computable rate of convergence $r(\varepsilon)$; this is essentially what it means to be a computable element of $L^1(\mu)$. In particular, setting $k(\varepsilon)$ equal to the complexity of $f_{r(\varepsilon)}$ provides a computable bound on the complexity of f. But the converse need not hold: if r is any noncomputable real number and f is the constant function with value r, then f is not computable even though there is a trivial bound on its complexity.

It is not hard to compute a sequence of simple functions (f_n) that converges to a function f even in the L^∞ norm with the property that there is no computable bound on the complexity of the limit, with respect to the standard coin-flipping measure on $2^\mathbb{N}$. Notice that this is stronger than saying that there is no computable bound on the rate of convergence of (f_n) to f; it says that there is no way of

2010 Mathematics Subject Classification. 03F60, 37A25.

Work partially supported by NSF grant DMS-1068829. I am grateful to an anonymous referee for comments and suggestions.
computing bounds on the complexity of any sequence of good approximations to f.

To describe such a sequence, for each k, let h_k be the \mathcal{B}_k-measurable Rademacher function defined by

$$h_k = \sum_{\sigma \mid \text{length}(\sigma) = k} (-1)^{\sigma_k-1}1_{[\sigma]},$$

where σ_{k-1} denotes the last bit of σ and $1_{[\sigma]}$ denotes the characteristic function of the cylinder set $[\sigma]$. Intuitively, h_k is a “noisy” function of complexity k. Finally, let $f_n = \sum_{i \leq n} 4^{-\varphi(i)}h_i$, where φ is an injective enumeration of any computably enumerable set, like the halting problem, that is not computable. Given any n, if n is large enough so that $\varphi(j) > m$ whenever $j > n$, then for every $i > n$ and every x we have $|f_i(x) - f_n(x)| \leq \sum_{j \geq m} 4^{-j} < 1/(3 \cdot 4^m)$. Thus the sequence (f_n) converges in the L^1 norm. At the same time, it is not hard to verify that if f is the L^1 limit of this sequence and g is a simple function of complexity at most n such that $\mu(\{x \mid |g(x) - f(x)| > 4^{-(m+1)}\}) < 1/2$, then m is in the range of φ if and only if $\varphi(j) = n$ for some $j < n$. Thus one can compute the range of φ from any bound on the complexity of f.

The sequence (f_n) just constructed is contrived, and one can ask whether similar sequences arise “in nature.” Letting $A_n f$ denote the ergodic average $\frac{1}{n} \sum_{i \leq n} f \circ T_n$, the mean ergodic theorem implies that for every measure μ on $2^\mathbb{N}$ and f in $L^1(\mu)$, the sequence $(A_n f)$ converges in the L^1 norm. However, V’yugin [2, 3] has shown that there is a computable shift-invariant measure μ on Cantor space such that there is no computable bound on the rate of convergence of $(A_n 1_{[1]})$. In V’yugin’s construction, the limit doesn’t have the property described in the last paragraph; in fact, it is very easy to bound the complexity of the limit in question, which places a noncomputable mass on the string of 0’s and the string of 1’s, and is otherwise homogeneous. The next theorem shows, however, that there are computable measures μ such that the limit does have this stronger property.

Theorem. There is a computable shift-invariant measure μ on $2^\mathbb{N}$ such that if $f = \lim_n A_n 1_{[1]}$, the halting problem can be computed from any bound on the complexity of f.

Proof. If σ is any finite binary sequence, let σ^* denote the element $\sigma\sigma\sigma\ldots$ of Cantor space. For each e, define a measure μ_e as follows: if Turing machine e halts in s steps, let μ_e put mass uniformly on these $8s$ elements:

- all 4s shifts of $(1^s0^{1\bar{s}})^*$
- all 4s shifts of $(1^{3\bar{s}}0^{s})^*$

Otherwise, let μ_e divide mass uniformly between 0* and 1*. Each measure μ_e is shift invariant, by construction. I will show, first, that μ_e is computable uniformly in e, which is to say, there is a single algorithm that, given e, σ, and $\varepsilon > 0$, computes $\mu_e([\sigma])$ to within ε. I will then show that information as to the complexity needed to approximate f in $(2^\mathbb{N}, B, \mu_e)$ allows one to determine whether or not Turing machine e halts. The desired conclusion is then obtained by defining $\mu = \sum_e 2^{-(e+1)}\mu_e$.

If Turing machine e does not halt, $\mu_e([\sigma]) = 1/2$ if σ is a string of 0’s or a string of 1’s, and $\mu_e([\sigma]) = 0$ otherwise. Suppose, on the other hand, that Turing machine e halts in s steps, and suppose $k < s$. Then there are $2(k-1)$ additional strings σ with length k such that $\mu_e([\sigma]) > 0$, each consisting of a string of 1’s followed by a string of 0’s or vice versa. For each of these σ, $\mu_e([\sigma]) = 1/4s$, and if σ is a string
of 0’s or a string of 1’s of length k, $\mu_e(\{\sigma\}) = 1/2 - (k - 1)/4\varepsilon$. Thus when s is large compared to k, the non-halting case provides a good approximation to $\mu_e(\{\sigma\})$ when $\text{length}((\sigma)) \leq k$, even though ε eventually halts. Thus, to compute $\mu_e(\{\sigma\})$ to within ε, it suffices to simulate the eth Turing machine $O(k/\varepsilon)$ steps. If it halts before then, that determines μ_e exactly; otherwise, the non-halting approximation is close enough.

Now consider $f = \lim_n A_n1_{[1]}$ in $(2^\omega, \mathcal{B}, \mu_e)$. Note that $(A_n1_{[1]})(\omega)$ counts the density of 1’s among the first n bits of ω. If Turing machine e does not halt, $f(\omega) = 1$ if ω is the sequence of 1’s, and $f(\omega) = 0$ if ω is the sequence of 0’s. Up to a.e. equivalence, these are all that matters, since the mass concentrates on these two elements of Cantor space. If Turing machine e halts in s steps, then $f(\omega) = 1/4$ on the shifts of $(1^s0^s)^*$, and $f(\omega) = 3/4$ on the shifts of $(1^s0^s)^*$.

Suppose g is \mathcal{B}_k-measurable. If Turing machine e halts in s steps and k is much less than s, then roughly 3/4 of the shifts of $(1^s0^s)^*$ lie in $[0^k]$ and roughly 1/4 lie in $[1^k]$; and roughly 3/4 of the shifts of $(1^30^3)^*$ lie in $[1^k]$ and roughly 1/4 lie in 0^k. But $f(\omega)$ only takes on the values 1/4 and 3/4, and g is constant on $[0^k]$ and $[1^k]$. So if k is much less than s, $\mu_e(\{\omega \mid |f(\omega) - g(\omega)| > 1/8\}) > 1/4$. Turning this around, given the information that $\mu_e(\{\omega \mid |f(\omega) - g(\omega)| > 1/8\}) \leq 1/4$ for some g of complexity at most k enables one to determine whether or not Turing machine e halts; namely, one simulates the Turing machine for $O(k)$ steps, and if it hasn’t halted by then, it never will.

Set $\mu = \sum g 2^{-(e+1)} \mu_e$. Since, for any g,

$$\mu_e(\{\omega | |f(\omega) - g(\omega)| > 1/8\}) \leq \mu(\{\omega | |f(\omega) - g(\omega)| > 1/(8 \cdot 2^{e+1})\}),$$

knowing a k_e for each e with the property that $\mu(\{\omega | |f(\omega) - g(\omega)| > 1/(8 \cdot 2^{e+1})\}) < 1/4$ for some g of complexity at most k_e enables one to solve the halting problem. But such a k_e can be obtained from a bound on the complexity of f. Thus μ satisfies the statement of the theorem.

The proof above relativizes, so for any set X there is a measure μ on 2^X, computable from X, such that no bound on the rate of complexity of f can be computed from X. As the following corollary shows, this implies that $\lim_n A_n1_{[1]}$ can have arbitrarily high complexity.

Corollary. For any $v : \mathbb{Q}^+ \to \mathbb{N}$ there is a measure μ on $2^\mathbb{N}$ such that if $f = \lim_n A_n1_{[1]}$ and $k(\varepsilon)$ is a bound on the complexity of f, then $\limsup_{\varepsilon \to 0} k(\varepsilon)/v(\varepsilon) = \infty$.

Proof. Let μ be such that no bound on the complexity of f can be computed from v. If the conclusion failed for some k, then there would be a rational $\varepsilon' > 0$ and N such that for every $\varepsilon < \varepsilon'$, $k(\varepsilon) < N \cdot v(\varepsilon)$. But then $k'(\varepsilon) = N \cdot v(\min(\varepsilon, \varepsilon'))$ would be a bound on the complexity of f that is computable from v, contrary to our choice of μ.

References

Departments of Philosophy and Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213