1997

Rules and reals

Martin Goldstern
Carnegie Mellon University

Menachem Kojman

Follow this and additional works at: http://repository.cmu.edu/math
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.
RULES AND REALS

by

Martin Goldstern
Department of Mathematics
Technical University of Vienna
Vienna

and

Menachem Kojman
Dept. of Mathematics
Ben Gurian University
Beer Sheva, Israel

and

Carnegie Mellon University
Department of Mathematical Sciences
Pittsburgh, PA 15213

Research Report No. 97-199
September, 1997
RULES AND REALS
MARTIN GOLDSTERN AND MENACHEM KOJMAN

ABSTRACT. A "fc-rule" is a sequence \(A = ((A_n, B_n): n < \omega) \) of pairwise disjoint
sets \(B_n \), each of cardinality \(\leq k \) and subsets \(A_n \subseteq B_n \). A subset \(X \subseteq \omega \) (a "real")
follows a rule \(A \) if for infinitely many \(n \in \omega \), \(X \cap B_n = A_n \).

There are obvious cardinal invariants resulting from this definition: the least
number of reals needed to follow all \(k \)-rules, \(s_k \), and the least number of \(k \)-rules
without a real following all of them, \(t_k \).

Call \(A \) a \(k \)-bounded rule if \(A \) is a \(k \)-rule for some \(k \). Let \(t_{\omega_0} \) be the least cardinality
of a set of bounded rules with no real following all rules in the set.

We prove the following: \(t_{\omega_0} \geq \max(\text{cov}(\mathcal{K}), \text{cov}(\mathcal{L})) \) and \(t = t_1 \geq t_2 = t_4 \) for
all \(k \geq 2 \). However, in the Laver model, \(t_2 < b = t_1 \).

An application of \(t_{\omega_0} \) is in Section 3: we show that below \(t_{\omega_0} \) one can find proper
extensions of dense independent families which preserve a pre-assigned group of
automorphism. The original motivation for discovering rules was an attempt to
construct a maximal homogeneous family over \(\omega \). The consistency of such a family
is still open.

INTRODUCTION

In the present paper we present new cardinal invariants which resulted from
investigations of homogeneous families. These numbers have intrinsic interest (in
fact we regard it as surprising that those numbers have not been discovered earlier).

In Section 1 we introduce "\(k \)-rules" and the notion of when a real \(r \) follows a
\(k \)-rule \(A \). A \(k \)-rules is a sequence \(A = ((A_n, B_n): n < \omega) \) of pairwise disjoint sets
\(B_n \), each of cardinality \(\leq k \), and subsets \(A_n \subseteq B_n \). A subset \(X \subseteq \omega \) (a "real")
follows a rule \(A \) if for infinitely many \(n \in \omega \), \(X \cap B_n = A_n \).

A rule \(A \) is bounded if it is a \(k \)-rule for some \(k \in \omega \).

The obvious cardinal invariants related to rules are the following: the least number
of reals needed to follow all \(k \)-rules, \(s_k \), and the least number of \(k \)-rules with no real
following all of them, \(t_k \). Let \(t_{\omega_0} \) be the least number of bounded rules with no real
following all of them.

We compare the \(t_k \)s and \(t_{\omega_0} \) among themselves and to well known cardinal invariants:
covering of category, covering of Lebesgue measure, \(\tau \), \(b \), \(\mathcal{D} \) and the evasion
numbers \(e_k \) which were studied by Blass and Brendle. We prove:

\(-\) \(\max(\text{cov}(\mathcal{K}), \text{cov}(\mathcal{L})) \leq t_{\omega_0} \);
\(-\) \(\tau = t_1 \geq t_2 = t_4 \) for all \(k \geq 2 \);
\(-\) \(s_k \leq t_k \);
\(-\) \(t_{\omega_0} \leq \min(t_2, b) \).

Date: January 1997.
The first author is supported by the Austrian Science Foundation (FWF).
The second author was partially supported by an NSF grant no. 9622579.
In Section 2 we prove the consistency of $\tau_2 < b$.

In Section 3 we show that below τ_2, one can properly extend an independent family of subsets of ω preserving a prescribed group of automorphisms. This is the relevance of τ_2, to the behavior of homogeneous families under inclusion, which was the original motivation for the discovery of rules.

An open problem which the second author and S. Shelah have tried to tackle in the past is the existence of a maximal homogeneous family of subsets of ω. This problem is still open. Even the consistency of a maximal homogeneous family is not known. However, τ_2 sheds some light of the potential size of a maximal homogeneous family - if one such exists. If one defines ξ as the least cardinality of a dense independent family which is not extendible to a homogeneous family, then if $\tau_2 < \xi$ then any dense independent family of cardinality below τ_2 can be extended to a homogeneous family of size τ_2. The number ξ will be studies elsewhere.

1. RULES

Definition 1.1. • A rule is a sequence $\mathcal{A} = (A_n, B_n : n \in \omega)$, where the sets B_n are disjoint and finite, and for all n, $A_n \subseteq B_n \subseteq \omega$.

• We say that $X \in [\omega]^{\omega}$ follows the rule \mathcal{A} if there are infinitely many n with $X \cap B_n = A_n$; otherwise X is said to avoid \mathcal{A}.

• For $k \in \omega$ we say that \mathcal{A} is a k-rule if all sets B_n have size $\leq k$. We say that \mathcal{A} is a bounded rule if \mathcal{A} is a k-rule for some k.

• More generally, for any function $f : \omega \rightarrow \omega$ we say that \mathcal{A} is a f-rule if for all n, $|B_n| \leq f(n)$. We say that f is a “slow” function if

$$\sum_{n=0}^{\infty} 2^{-f(n)} = \infty,$$

and we say that \mathcal{A} is a slow rule if it is an f-rule for some slow f.

Definition 1.2. 1. For $k \in \omega$ let $t_k := \min\{|\mathcal{A}| : \text{there is no } X \text{ which follows all } k\text{-rules from } \mathcal{A} \}$. (Similarly τ_1, when $f : \omega \rightarrow \omega$).

2. Dually, let $s_k := \min\{|\mathcal{A}| : \text{every rule is followed by some } X \in [\omega]^{\omega} \}$. We say that \mathcal{A} is a “splitting” number s and the “reaping” number t are defined as follows:

3. We let $\tau_2 = \min\{|\mathcal{A}| : \text{there is no } X \text{ which follows all bounded rules from } \mathcal{A} \}$.

We remark that 2^ω trivially bounds the least cardinality of a set of rules with the property that every real follows some rule in the set.

Recall that the “splitting” number s and the “reaping” number t are defined as follows:

Definition 1.3. If $s, X \in [\omega]^{\omega}$, then we say that s “splits” X if s divides X to two infinite parts, i.e., $s \cap X$ and $(\omega - s) \cap X$ are both infinite.

• $s := \min\{|\mathcal{A}| : \mathcal{A} \subseteq [\omega]^{\omega}, \text{every } X \in [\omega]^{\omega} \text{ is split by some } s \in \mathcal{A} \}$

• $t := \min\{|\mathcal{A}| : \mathcal{A} \subseteq [\omega]^{\omega}, \text{there is no } X \in [\omega]^{\omega} \text{ which splits all } r \in \mathcal{A} \}$

Fact 1.4. $s_2 \leq s_3 \leq t_1 = t$, and $s \leq s_2 \leq s_3 \leq \cdots$. However, $s_1 = 2$, witnessed by $\mathcal{G} = \{\emptyset, \omega\}$.

Theorem 1.5. (a) Let (\mathcal{N}, c) be a model of ZFC* (a large enough fragment of ZFC). If a real X follows all rules from \mathcal{N}, then X is Cohen over \mathcal{N}. (Conversely, a Cohen real over \mathcal{N} follows all rules from \mathcal{N}.)
(b) If X is random over N, then X follows all slow rules from N (so in particular, all bounded rules).

c) max(cov(K), cov(L)) < \infty. (cov(K) is the smallest number of first category sets needed to cover the real line. cov(L) is defined similarly using measure zero sets.)

Proof. (a): Assume that X \subseteq \omega follow all rules from N. We claim that \chi_X, the characteristic function of X, is a Cohen real over TV, that is, the set \{\chi_X[n : n \in \omega]\} is generic for the forcing notion <\omega_2.

To verify this claim, consider any nowhere dense tree T \subseteq \omega in N. We have to check that \chi_X is not a branch of T.

Using the fact that T is nowhere dense (and T in N) we can by induction (in N!) find sequences \{n_i : i < \omega\} and \{\eta_i : i < \omega\} such that for all i < \omega we have:

1. n_i < n_{i+1}, \eta_i \in [\omega, \omega+1)^2
2. For all \nu \in \omega, \nu \cup \eta_i \notin T.

Now let B_i := \{n_i, n_{i+1}\}, A_i = \{k : \eta_i(k) = 1\}. Our assumption was that X follows the rule (A_i, B_i : i \in \omega). So for some i we have X \cap B_i = A_i, hence \chi_X \supseteq \nu.

Hence \chi_X is not a branch of T.

This concludes the proof of (a).

The converse to (a) is obvious.

(b) is also easy: Let X_n := \{X : X \cap B_n \neq A_n\}. For n \neq m, the sets X_n and X_m are independent (in the probabilistic sense), and \mu(X_n) = 1 - 2^{-|n|}, where \mu is the Lebesgue measure on \mathcal{P}(\omega) \cong \omega_2. Hence \mu(\bigcap_{n \geq m} X_n) = \prod_{k \geq m}(1 - 2^{-|k|}) = 0.

(c) follows from (a) and (b).}

\[\text{Theorem 1.6 (Shelah). For } k \geq 2, \theta_k = \theta_{k+1} \text{ (and similarly, } \theta_2 = \theta_k).\]

Proof. We will show that \theta_k = \theta_{k+1}: Let N_0 be sufficiently closed (say, a model of ZFC*, but closed under some recursive functions is sufficient) of size < \theta_k; we have to show that there is a real that follows all k + 1-rules from N_0.

We define a sequence \{N_i, C_i : i \leq k\} such that N_i \cup \{C_i\} \subseteq N_{i+1}, each N_i is sufficiently closed and of the same cardinality as N_0, and C_i follows all k-rules from N_i.

Now let C be the “average” of the C_i: m \in C iff m is in “most” of the C_i’s, or formally:

\[C := \{m \in \omega : |\{i \leq k : m \in C_i\}| > (k + 1)/2\}\]

Now we check that C indeed follows all k + 1-rules from N_0.

Let (A_n, B_n : n \in \omega) be a k + 1-rule in N_0. For 0 \leq i \leq k we let (A_{ii}, B_{ii} : n \in \omega) be the k-rule obtained by removing the each ith element of B_n. That is, letting \{k_0, \ldots, k_n\} be the increasing enumeration of B_n we let B_{ii} := B_n \setminus \{k_i\}, A_{ii} := A_n \cap B_{ii}.

Let E_0 := \omega. For 0 \leq i \leq k let

\[E_{i+1} := \{n \in E_i : B_{ii} \cap C_i = A_{ii} \cap B_{ii}\},\]

i.e., E_{i+1} is the set of indices on which C_i follows the rule (A_{ii}, B_{ii} : n \in E_i). Note that E_i \subseteq N_i and C_i \subseteq N_{i+1}. By the choice of C_i we know that each E_{i+1} is infinite.
We conclude the proof by showing that for \(n \in E_{k+1} \) we have \(A_n = B_n \cup C \). Let \(n \in E_{k+1} \) (so also \(n \in E_i \) for all \(i \leq k \)), and \(m \in B_n \). Say \(m = b_{i'} \). Then for \(i \neq j \) we have \(m \in B_i' \), so \(m \in A_i' \Rightarrow m \in C_i \).

Hence the cardinality of the set \(\{ i \leq k : m \in C_i \} \) is either in \(\{0, 1\} \) (iff \(m \notin A_n \)) or in \(\{k, k+1\} \). In any case we get \(m \in C \) iff \(m \in A_n \). So \(A_n = B_n \cup C \).

Theorem 1.7. \(\tau_n \geq \min(\tau_2, \emptyset) \). In particular, if \(\tau_2 \leq \emptyset \) then \(\tau_\infty = \tau_2 \).

Proof. Let \(N \) be a model of cardinality \(< \min(\tau_2, \emptyset) \). We will find a real \(X \) following all bounded rules from \(N \).

Define sequences \((N_i : i < \omega) \), \((X_i : i < \omega) \) satisfying the following conditions:

1. \(N_0 = N \).
2. \(N_i \) is a model of ZFC*, \(N_{i-1} \cup \{X_i\} \subseteq N_i \).
3. \(|N_i| = |N_0| \).
4. \(X_i \) follows all \(i \)-rules (and hence also all \(j \)-rules for \(j < i \)) from \(N_{i-1} \).

Let \(N_\omega \) be a model of size \(N_0 \) containing \((N_i : i < \omega) \) and \((X_i : i < \omega) \). Since \(|N_\omega| < \emptyset \) we can find a strictly increasing function \(f \) that is not dominated by any function from \(N_\omega \).

Define \(X \subseteq \omega \) by requiring \(X \cap (f(i-1), f(i)] = X_i \cap (f(i-1), f(i)] \). We claim that \(X \) follows all bounded rules from \(N \).

To complete the proof, consider an arbitrary \(k \)-rule \((A_n, B_n : n \in \omega) \) from \(N \). We may assume \(\min |J_n| > f(k) \). We define sequences \((E_i : k < i < \omega) \) satisfying the following conditions for all \(i > k \).

1. \(\forall n \in E_i : B_n \cap X_i = A_n \).
2. \(E_i \subseteq N_i \).
3. \(E_{i+1} \subseteq E_i \).

We can carry out this construction, because \((A_n, B_n : n \in E_i) \) is a rule in \(N_i \), so we just choose \(E_{i+1} \) to witness that \(X_{i+1} \) follows this rule.

Now let \(n_i := \min E_i \). Clearly the function \(i \mapsto n_i \) is in \(N_\omega \). So we can find infinitely many \(j \) such that \(f(j) > \max B_{n_j} \).

We claim that for each such \(j \), \(X \cap B_{n_j} = A_{n_j} \). For all \(i \in [k, j] \) we have \(n_i \in E_i \), so \(X_i \cap B_i = A_i \). Note that \(B_j \subseteq [f(k), f(j)] \), so we also have \(X \cap B_j = A_j \).

Problem 1.8. Is \(\tau_\infty < \tau_2 \) consistent?

We remark that in the random real model we have \(\tau_2 = \text{cov}(L) = c = \tau_\infty, \emptyset = R_1 \). So one cannot hope to prove \(\tau_2 \leq \emptyset \).

We now consider the invariant that is dual to \(\tau_2 \), and we compare it with the well-known "evasion" number.

Definition 1.9. \((\pi, D)\) is a \(k \)-predictor, if \(D \) is infinite, \(\pi = (\pi_n : n \in D) \), \(\pi_n \) a function from \(^n k \) to \(k \).

We say that \(f \in \pi \) evades \((\pi, D)\) if there are infinitely many \(\ell \in D \) such that \(f(\ell) \neq \pi_\ell(f(\ell)) \).

\[\epsilon_k := \min \{|N| : \forall \pi \exists f \in N : f \text{ evades } \pi \} \]
Brendle in [1] investigated these and other cardinal invariants and showed [remarked] that all \mathfrak{t}_2 are equal to each other.

The following construction connects rule with predictors.

Definition 1.10. Let $R = (A_n, B_n : n \in \omega)$ be a 2-rule. Define a 2-predictor (π_R, D_R) as follows:

1. $D_R = \{\max B_n : n \in \omega\}$
2. If $\ell = \max B_n$ and $|A_\ell| = 1$, then $\pi_\ell(f) = f(\min B_n)$ for all $f \in \mathcal{F}$2. Otherwise, $\pi_\ell(f) = 1 - f(\min B_n)$.

Lemma 1.11. Let $X \subseteq \omega$. If χ_X evades π_R, then either X or $\omega \setminus X$ follows R.

Proof. Let $\ell_n := \max B_n$, $i_n = \min B_n$ for all n.

X evades π_R, so there are infinitely many n such that $X(\ell_n) \neq \pi_{\ell_n}(X(\ell_n))$.

Case 1: There are infinitely many such n where in addition $|A_{\ell_n}| = 1$.

So for each such n, $X(\ell_n) \neq \pi_{\ell_n}(X(\ell_n)) = X(i_n)$. So $X(\ell_n) \neq X(i_n)$, so $X \cap B_n$ must be either A_n or $B_n \setminus A_n$. One of the two alternatives holds infinitely often. Hence, either there are infinitely many n such that $X \cap B_n = A_n$, or there are infinitely many n such that $(\omega \setminus X) \cap B_n = A_n$.

Case 2: There are infinitely many such n with $X(\ell_n) \neq \pi_{\ell_n}(X(\ell_n))$, where in addition $|A_{\ell_n}| = 2$, i.e., $A_n = B_n$. So for each such n, $X(\ell_n) \neq \pi_{\ell_n}(X(\ell_n)) = 1 - X(i_n)$. So $X(\ell_n) = 1 - X(i_n)$, so $X \cap B_n$ must be either B_n or \emptyset. One of the two alternatives holds infinitely often. So again we either get infinitely many n such that $X \cap B_n = A_n$, or infinitely many n such that $(\omega \setminus X) \cap B_n = A_n$.

Case 3: For infinitely many n as above we have $A_n = \emptyset$. Similar to the above. \qed

Corollary 1.12. $s_2 \leq t_2$

Proof. Let N be a model (of set theory) witnessing \mathfrak{s}_2, i.e., for every 2-predictor π there is a function $f \in N$ evading π.

Let R be any 2-rule. There is $X \in N$ evading π_R, so either X or $\omega \setminus X$ (both in N) follows R. \qed

Remark 1.13. $s \leq t_2$ is known. Brendle showed that $s < s_2$ is consistent (unpublished).

2. **Consistency of $t_2 < \tau$**

We show here in contrast to the result in previous section that τ is not provably equal to t_2. Moreover, whereas $b \leq \tau$ is provable in ZFC (see [6] for a collection of results on cardinal invariants), we show that $t_2 < b$ is consistent with ZFC.

The following definition is standard:

Definition 2.1.

1. S is a slalom iff $\text{dom}(S) = \omega$ and for all $n \in \omega$, $S(n)$ is a finite set of size n.
2. If f is a function with $\text{dom}(f) = \omega$, S a slalom, then we say that S captures f iff $\forall n \in \omega \text{ } f(n) \in S(n)$.
3. Let $M \subseteq N$ be sets (typically: models of ZFC). We say that N has the Lever property over M iff...
For every function \(H \in \omega\cap M \), for every function \(f \in \omega\cap N \) satisfying
\(f \leq H \) there is a slalom \(S \in M \) that captures \(f \).

4. A forcing notion \(P \) has the Laver property iff \(V^P \) has the Laver property
over \(V \).

Before we formulate the main lemma, we need the following easy claim:

Claim 2.2. Let \(k > 2 \). If \(X \subseteq 2^k, |X| = n \) then there are \(i < j \) in \(k \) such that for all \(f \in X \), \(f(i) = f(j) \).

Proof. For \(i < j \), \(f \in X \), define an equivalence relation \(\sim_f \) by:
\(i \sim_f j \iff f(i) = f(j) \). Let \(i \sim_f j \) iff \(i \sim_f j \) for all \(f \in X \). Since each \(\sim_f \) has at most \(2^k \) equivalence classes, \(\sim \) has at most \(2^k \) classes, so there are \(i \neq j, i \sim j \).

Lemma 2.3. Assume that \((N, \varepsilon)\) is a model of (some large fragment of) ZFC, and that \(V \) has the Laver property over \(N \).

Then every real avoids some 2-rule from \(N \).

Proof. Let \(a_0 = 0, a_{n+1} = a_n + 2^n + 1 \). The sequence \((a_n : n \in \omega) \) is in \(N \).

For any \(X \in \mathcal{P}(\omega) \), we will find a rule in \(N \) which \(X \) does not follow.

Let \(x \in 2^\omega \) be the characteristic function of \(X \). Define \(X^* := \{x|a_n, a_{n+1} : n \in \omega\} \). Note that there are only \(2^{2^{n+1}} \) many possibilities for \(x|a_n, a_{n+1} \).

Since \(V \) has the Laver property over \(N \) there is a sequence \(S = (S_n : n \in \omega) \in N \), \(S_n \subseteq [a_n, a_{n+1}) \), \(|S_n| \leq n \), and for all \(n > 0 \), \(x|a_n, a_{n+1} \in S(n) \). By the above claim we can find \(i_n < j_n \) in \([a_n, a_{n+1}) \) such that for all \(z \in S(n) \), \(z(i_n) = z(j_n) \).

Since the sequence \(S \) is in \(N \), we can find such a sequence \((i_n, j_n : n < \omega) \) in \(N \).

Define a 2-rule \((A_n, B_n : n \in \omega) \in N \) by \(A_n = \{z(n)\}, B_n = \{i_n, j_n\} \). Since \(i_n \in X \) iff \(j_n \in X \), \(X \) does not follow this rule.

Lemma 2.4. (a) Let \(P = \{P_i, Q_i : i < R_2\} \) be a countable support iteration of proper forcing notions such that for each \(i \) we have \(\varepsilon_i, Q_i \) has the Laver property." The \(P_{\omega_1} \), the countable support limit of \(P \), also has the Laver property.

(b) Laver forcing is proper and has the Laver property.

(c) Laver forcing adds a real that dominates all reals from the ground model.

Proof. These facts are well known and (at least for the case where each \(Q_i \) is Laver forcing) appear implicitly or explicitly in Laver’s paper [4].

Conclusion 2.5. Let \(P_{\omega_1} \) be the limit of a countable support iteration of Laver forcing over a model \(V_0 \) of GCH. Then \(V_{\omega_1} \models b = \omega_2 \) and \(\tau_2 = \omega_1 \).

Proof. Let \(V_{\omega_1} = V^{P_{\omega_1}} \). \(V_{\omega_1} \models b = \omega_2 \) is well known. (Let \(f_1 \) be the real added by the \(i \)th Laver forcing, then \(f_1 : i < \omega_2 \) is a strictly increasing and cofinal sequence in \(\omega_2 \).

By 2.4, \(V_{\omega_1} \) has the Laver property over \(V_0 \). Hence, by 2.3, every real avoids some rule from \(V_0 \). So \(\tau_2 \leq |\omega \cap V_0| = R_1 \).

3. APPLICATION TO INDEPENDENT FAMILIES

A family \(\mathcal{F} \subseteq \mathcal{P}(\omega) \) of subsets of \(\omega \) is independent iff it generates a free boolean algebra in \(\mathcal{P}(\omega)/\text{fin} \). Equivalently, for any two disjoint finite subsets of \(\mathcal{F} \), the
intersection of all members in the first set with all complements of members in the second set is infinite.

The following is an example of an independent family of size continuum over a countable set: \(\{ A_r : r \in \mathbb{R} \} \) where \(A_r = \{ p \in \mathbb{Z}[X] : p(r) > 0 \} \).

A family \(\mathcal{F} \subseteq \mathcal{P}(\omega) \) is dense iff for any two finite disjoint subsets of \(\omega \) there are infinitely many members of \(\mathcal{F} \) that contain the first set and are disjoint to the second.

An interesting (proper) subclass of the class of dense independent families over \(\omega \) is the class of homogeneous families, which was introduced in [2]. Its study was continued in [3].

While every dense independent family is contained in a maximal dense independent family, this is not obvious (and perhaps false) for homogeneous families. The existence, even the consistency, of a maximal homogeneous family over \(\mathcal{L} \) is still open. In particular, an increasing union of homogeneous families needs not be homogeneous.

In the study of extendibility of homogeneous families, the following notion is fundamental: Let \(\mathcal{G} \subseteq \operatorname{Aut}^+ \). We define \((\mathcal{F}, \mathcal{G}) \leq (\mathcal{F}', \mathcal{G}') \) iff \(\mathcal{F} \subseteq \mathcal{F}' \), \(\mathcal{G} \subseteq \mathcal{G}' \subseteq \operatorname{Aut} \mathcal{F}' \). The usefulness of \(\leq \) is that unions of suitable \(\leq \) chains are homogeneous (see [9] for a detailed account of direct limits in the category of homogeneous families).

We show now that below \(\tau_\omega \) one can get proper \(\leq \)-extensions of independent families. This was our original motivation for discovering \(\tau_\omega \).

Theorem 3.1. Suppose \(\mathcal{G} \subseteq \operatorname{Aut} \mathcal{F}, \mathcal{F} \subseteq \mathcal{P}(\omega) \) is dense independent and \(|\mathcal{G}| + |\mathcal{F}| < \tau_\omega \). Then there exists \(\mathcal{F}' \supseteq \mathcal{F} \) such that \((\mathcal{F}, \mathcal{G}) \leq (\mathcal{F}', \mathcal{G}) \).

Proof. Suppose that \(\mathcal{G} \subseteq \operatorname{Aut} \mathcal{F}, \mathcal{F} \) is dense independent and \(|\mathcal{G}| + |\mathcal{F}| < \tau_\omega \). We shall find a real \(X \subseteq \omega \) such that \(X \notin \mathcal{F} \) and \(\mathcal{F} \cup G[X] \) is independent, where \(G[X] \) is the orbit of \(X \) under \(G \). This will suffice, since clearly \(\mathcal{G} \subseteq \operatorname{Aut} \mathcal{F} \cup G[X] \) for any real \(X \).

It is a priori unclear why such \(X \) should exist. If for example there is some \(\sigma \in G \) with finite support, then for no \(X \subseteq \omega \) even the orbit \(G[X] \) itself is independent. However, the following lemma takes care of this. Let \(\text{supp}(\sigma) = \{ X \in \omega : \sigma(X) \neq X \} \) for a permutation \(\sigma \in \text{Sym}\omega \).

Lemma 3.2. Suppose that \(\mathcal{F} \) is dense independent and \(\sigma \in \operatorname{Aut} \mathcal{F} \) is not the identity. Then there are distinct sets \(B_n \in \mathcal{F} \) such that for all \(n, B_{2n} - B_{2n+1} \subseteq \text{supp}(\sigma) \).

Remark 3.3. In particular, the supports of non-identity automorphisms form a filter base. This is the "strong Mekler condition" for \(\operatorname{Aut} \mathcal{F} \) (see [5]).

Proof. Find \(X \in \omega \) for which \(\sigma(X) \neq X \). Find \(B_{2n}, B_{2n+1} \) by induction on \(n \).

Suppose \(B_n \) is chosen for \(k < 2n \). By density, there are infinitely many \(B \in \mathcal{F} \) for which \(X \in B, f(X) \notin B \). Choose some such \(B \) so that \(B \) and \(f[B] \) are not among \(\{ B_k : k < 2n \} \). Let \(B_{2n} = B \) and \(B_{2n+1} = f[B] \). Since \(X \in B_{2n} - B_{2n+1} \), these sets are indeed distinct.

If \(X \in B_{2n} - B_{2n+1} \) then \(f(X) \in B_{2n+1} \) and therefore \(X \neq f(X) \).

Let \(M \) be a transitive model of a sufficiently large fragment of ZFC with \(\mathcal{F}, \mathcal{G} \in M \) and \(\mathcal{G} \subseteq M, \mathcal{F} \subseteq M \). Let \(X \) be a real that satisfies all bounded rules from \(M \). Clearly, \(X \notin M \), therefore \(X \notin \mathcal{F} \).
We need to show that every boolean combination over $\mathcal{F} \cup G[X]$ is infinite. Suppose that

$$C := A \cap \sigma_0[X] \cap \cdots \cap \sigma_{m-1}[X] \cap (\omega - \sigma_m[X]) \cap \cdots \cap (\omega - \sigma_{m-1}[X])$$

is a boolean combination over $\mathcal{F} \cup G[X]$, where $\sigma_i \in G$ for $i < m$, and A is some boolean combination over \mathcal{F}. Clearly, $A \in M$.

Set $N = \binom{m}{\ell}$ and let $(\tau_i : i < N)$ be a list of all $\sigma_k \circ \sigma^{-1}_k$ for $k < \ell < m$. By induction on $k < N$ find distinct B_{2k}, B_{2k+1} which do not participate in A and so that $B_{2k} - B_{2k+1} \subseteq \text{supp} \tau_i$. This is possible by Lemma 3.2.

The intersection $D = A \cap \bigcap_{k < N} B_{2k} - \bigcup_{k < N} B_{2k+1}$ is infinite and belongs to M. Define by induction an m-rule $(A_i, B_j : j < \omega)$ as follows: suppose $(A_i, B_j : j < k)$ are defined. Find a point $X_n \in D$ such that $X_n = \{\sigma_k(X) : k < m\}$ is disjoint from $\bigcup_{i < \omega} B_i$ and $X_n \not\subseteq \bigcup_{i < \omega} B_i$. Let B_{2k+1} be B and let $A_{2k+1} = (\sigma_k(X) : \ell < n)$. The rule we defined obviously belongs to M. Since X satisfies all bounded rules from M, there are infinitely many n for which $X_n \cap B_n = A_n$. For each such n, $X_n \in C$.

Theorem 3.4. Suppose that every dense independent family of cardinality below τ_m extends to a homogeneous family. Then every dense independent family of cardinality smaller than τ_m can be extended to a homogeneous family of size τ_m.

Proof. Suppose \mathcal{F} is given dense independent family and $|\mathcal{F}| < \tau_m$. Construct a \leq-chain $((\mathcal{F}_i, G_i) : i < \tau_m)$ as follows: $\mathcal{F}_0 = \mathcal{F}$ and $G_0 = \{\text{id}\}$. If i is limit then $\mathcal{F}_i = \bigcup_{j < i} \mathcal{F}_j$ and $G_i = \bigcup_{j < i} G_j$. Let $(\mathcal{F}_{i+1}, G_{i+1})$ be a proper \leq-extension of (\mathcal{F}_i, G_i) for a successor ordinal $i + 1 < \tau_m$, which exists by Theorem 3.1. We may assume without loss of generality that \mathcal{F}_{i+1} is homogeneous and that G_{i+1} acts homogeneously on \mathcal{F}_{i+1} (See [2] or [3] for the definitions).

The union $\bigcup_{i < \tau_m} \mathcal{F}_i$ is a homogeneous extension of \mathcal{F} as required.

References

