














— t = Az.u. The case is easily verified by induction hypothesis.

— t = toty. We first prove H,(t) < oo.

*

ris t. Then t = (Az.ug)t; for some up and ' = [t;/z]ug. By the observation, we
know H(uo) < H(t') < oo, yielding H(to) = 1+H(up) < oo. Since ris a f-redex,
t; is a subterm of t, yielding H(#,) < H(t') < co. Therefore, H,(t) < oo.

7 is not ¢. Since the development is standard and complete, ¢ty must be of form
t%tL;, where t; ~* tiy are standard complete developments for ¢ = 0,1. By
induction hypothesis, H(¢;) < oo for i = 0,1. Hence H,(t) < oo

Let r; be the leftmost 3-redex in ¢, and we show H;(t) < 0.

*

*

ris r. Then H;(t) = H(t') < oco.

r;is not 7. By the definition of residuals, it can be readily verified that ; has only
one residual ry in ¢y, which is the leftmost §-redex in ty. Let ty ~»; t}y, then
H(ty) < H(tn). Consider the standard complete development of (¢, R U {r;}):
t ~p t* ~* t}, where t* ~* t}; is a standard complete development of all the
residuals of the redexes in R. It is a routine verification that all the residuals are

Br-redexes since all the redexes in R are (j-redexes. By induction hypothesis,
Hi(t) = H(t*) < oo.

Therefore, H(t) = 1 + maz{H;(t), Hi(t)} < co.

Theorem 21 (Conservation Theorem) Ift ~»1 t' then strong normalisability of t' implies strong
normalisability of t.

Proof This is just a corollary of Lemma 20, where R is a singleton set. ]

Now it becomes clear that an induction on H makes it sufficient to study only the residuals of
inner redexes generated by H-reductions. The essence of the above proof can be summarised in
one sentence, namely, the residuals of a f;-redex generated by H-reductions are still fr-redexes.
The proof of Lemma 20 would fail if S were used instead of H since the residuals of f;-redexes
are not necessarily Br-redexes after the contraction of an arbitrary (-redex. This is basically
the reason why the proof of the conservation theorem for the AI-calculus in [Bar84] can not be
simply extended to a proof of the conservation theorem for the AK-calculus.

With this observation, we are ready to explore further on this subject.

6. Perpetual Redexes

It is certainly interesting to know what happens if we reduce some [(-redexes which are not

Br-redexes.

Definition 22 (fBk-redez) r = (Az.u)v is a Bx-redex if x does not occur free in u; t ~x t'
is a [k -reduction in which the contracted redex is a B -redez; t ~, 1 stands for a leftmost
reduction in which the contracted redex is a Bx -redez.
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The following lemma can be found in [Bar84] as Lemma 13.4.5.

Lemma 23 (Bg-conservation) Given t ~, t' in which a B -redez r = (Az.u)v gets contracted.
If both t' and v are strongly normalisable, then t is strongly normalisable.

Proof A simple induction on H(¢) yields the result. n

Notice that the contracted Sx-redex must be a leftmost redex in order to apply the above lemma;
otherwise, counterexamples can be found easily. For those who are interested in Sx-conservation,
[BK82] gives a much more detailed analysis on this subject.

Definition 24 A fi-redex v = (Az.u)v is a Pp-redezx if S(u) < oo implies S(v) < o0; a
Bp-redex v in t is t-special if [t/Z]r are Bp-redexes for any list of strongly normalisable terms
{=1t,...,tn, where z is a list of all the variables which are free in r but bound in t; a redex r
is special if it is (Ayy ... Ayp,.7)-special, where y; for 1 < i < m are all the free variables in r.

Evidently, we can use H instead of S in the above definition without changing its meaning. Also
we assume bound variables are chosen distinctly from free variables to make the above definition
hygienic.

Proposition 25 Given t and its leftmost redez r; = (Az.u)v, where H(v) < oo and all the free
variables in v are free in t; if r # r; is a t-special redex in t and t ~» t*, then all the residuals
of r in t* are t*-special.

Proof Let r, be a residual of » in t*.

e 7, is of form 7. This case is trivial.

e 7 is of form [v/z]r. s is a Bp-redex since H(v) < oo. Let & = z1,...,z, be all the free
variables which are free in 7, but bound in ¢*, then no free variables in v are in . With
some property of substitution, it can be easily verified that 5 is a t*-special redex.

Lemma 26 Given t and a set R of t-special redezes in t; If t ~* ty is a standard complete
development of (t,R), then H(tn) < oo implies H(t) < oo.

Proof Assume H(ty) < oo and t ~" ty. We proceed by induction on (H(tx),n), lexicograph-
ically ordered. The following proof is quite similar to the proof of Lemma 20.

e n = 0. This is trivial since t = ty.

e n > 0. Let us conduct a case analysis on the structure of ¢.

— t = Az.u. This case is easily verified by induction hypothesis.
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— t = toty. Let t ~ t' ~* ty, and 7 is the ¢-special redex contracted in the first step.
We first establish H,(t) < oo.

* 7 is t. Then t = (Az.ug)t; and ¢ = up. By induction hypothesis, H(ug) =
H(t') < oo. Since r is t-special, H(ug) < oo implies H(t;) < co. Thus, H(t) =
maz{1 + H(uo), H(t1)} < oco.

* 7 is not t. Then ¢ty must be of form % t},, where ¢; ~* tjv are standard complete
developments for = 0,1. By induction hypothesis, H(t;) < oo for 2 =0, 1.

Thus, Hs(t) = maz{H(to), H(t1)} < oo. It is easy to see that ¢t must be of one of the
following forms.

* t = auy ...u, for some atom a. Since H(u;) < H;(t) < oo, it is obvious that
H(t) < oo.

* t = rjuy ... u, for some leftmost §-redex r; = (Az.u)v. Let ry be the only residual
of r; in ty, then ry is the leftmost B-redex in ty. Let ¢y ~» t}, and we have
H(ty) < H(tn). Consider the standard complete development of (¢, R U {r:}):
t ~ 1 ~* ty, where t* ~»* t}; is the standard complete development of the
residuals of all the redexes in R. Note that all the free variables in v are free in t.
Also v is a proper subterm of ¢, yielding H(v) < H;(t) < oco. By Proposition 25,
all residuals of the redexes in R are t*-special. Hence H;(t) = H(t*) < oo by
induction hypothesis, yielding H(t) = 1 + maz{H,(t), Hi(t)} < oo.

=

To make sure that contracting a fSx-redex 7 in ¢ does not change the strong normalisability of
t, all we really need is that all the residuals of r are Bp-redexes in all the H-reduction sequences
from ¢. Since this is difficult to verify, we require that r be ¢-special. The following corollary is
a slight variation of Corollary 26 in [BK82]

Corollary 27 Given a term t = t[r] where r = (Az.u)v is a t-special redez and t[ ] is a contezt;
if H(t[u]) < oo then H(t[r]) < oo.

Proof The is a special case of Lemma 26, where R is a singleton set. ]

Definition 28 A redex v with contractum c is perpetual if S(t[c]) < co implies S(t[r]) < oo for
any context t[ ].

Theorem 29 A redex v = (Az.u)v is perpetual if and only if r is a B;-redex or r is a special
redez.

Proof If r is a redex in t and 7 is special, then r is ¢-special. Applying Theorem 21 and
Corollary 27, we can see that the only case left is to verify that a perpetual Bi-redex r =
(Az.u)v is special. Suppose there exist ¢ = t1,...,t, such that S(t;) < oo for i = 1,...,n,

S([t/Z]u) < oo and S([{/Z]v) = oo, where & = z;...,z, is a list of all the free variables in r.
Let t[ | = (Az1... Azn.[ )ty .. . 1,, and we have S(t[u]) < co while S(¢[r]) = co. This contradicts
that r is a perpetual redex. Hence the therorem has been justified. L]
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Compared with the proof in [BK82], which uses a perpetual strategy, this proof simply shows
what happens to the residuals of ¢-special redexes in a H-reduction. If one notices that a
term without head normal form implies that any substitution instances of the term have no
head normal forms, this method can be readily adapted to give a syntactic proof of Berry’s
sequentiality theorem, where the standardisation theorem is needed but H plays no role. The
main difference between induction on H and a perpetual strategy lies in that the former brings
out inner redexes using H-reductions while the latter enters a term to find them.

7. Simply Typed A-calculus

In this section, we intend to give a syntactic proof of the strong normalisation theorem for pure
simply typed A-calculus, which exhibits an elegant solution to a crucial lemma in the proof of
the strong normalisation theorem for the labelled A-calculus in [Daa80].

Definition 30 (Simple Types and Simply Typed Terms) Types are formulated in the following
way.
o Atomic types are types.

o IfU and V are types then U — V is a type.
Simply typed terms are defined inductively as follows.

o (variable) For each type U, there are infinitely many variables zV,yY, ... of that type.
o (abstraction) If v is of type V then AzV.v is of type U — V.

o (application) If u is of type U — V and v is of type U, then uv is of type V.

We often omit the type superscript of a variable if this causes no confusion or ambiguity. Also
B-reduction for simply typed A-calculus is essentially the same as 3-reduction for untyped A-
calculus. We intend to prove the next theorem in this section.

Theorem 31 (Strong Normalisation for Simply Typed A-Calculus) Every term in simply typed
lambda calculus is strongly normalisable.

The method used below originates from Turing’s work according to [Gan80]. A detailed account
of it can also be found in [And71]. Though the method produces a straightforward proof of a
weak normalisation theorem for simply typed A-calculus, we have not found a proof of the strong
normalisation theorem for simply typed A-calculus given in this fashion in the literature. The
closest ones are found in [deGr93] and [KW94], where controlling erasure technique is used.

Definition 32 (Head redez and Head Reduction) Givent = Azy...Am.TU1 ... U, where T is a
redez. We call r the head redez in t; t ~», ' stands for a head reduction step in which r gets
contracted; a head normal form is a term without head redez in it.
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Deﬁnit@gn 33 The complezity |T| of a type T is defined as follows. f

(%. . B
%, IT| = if T is atomic; &
4 maa:{l + T, |10} if T =To— Th.
The rank |f| of an’application t = tot; is defined as [Ty| where Ty is the type of i;. e

&
3 f\,;it
Lemma 34 Given a simply typed term t = tot;. If S(t;) < 00 for i = 0,1, then () < oo.
I‘J:I
Proof We proceed to prove ’H(t) < 0o by induction on the lexicographic order (|tj,'H(t0), H(t1))-
The S§-H lemma implies H(t;) < oo for i = 0,1 since S(¢;) < oo for ¢ = 0,1..If ¢ is in normal

)

form, then H(t) < oo. Let us assume t«», t*, and argue that H(t*) < co.

o t* = i3t} where t; ~; t¥ and t;_; = ¢]_; for some 7 € {0,1}. Hence H(t¥) < H(t;) and
H(t3_;) = H(t1-:). By 1nduct10n hypothesis, H(t*) < oo. ‘

o 1o = Az.u. Then t* = [t;/z]u. We have the following subcases.

— u = Ay.up. Since H(Az.up) < 'H(to), by induction hypothesis, H((Az.ug)t1) < oo.
Thus, H(t*) = H(Ay.[t1/z]uo) = 1 + H([t1/z]uo) < H((Az.uo)ty) < o0.

—u = vov;. H((Az.v;)t1) < oo for i = 0,1 by iiduction hypothesis. This yields
H([t1/z]v;) < oo for i = 0,1. Hence H4(t*).< co: Now we show H(t*) < oo.

* u ~p u*. Then t* ~ [t;/z]u*. By in(}ﬁction hypothesis, H((Az.u*)t1) < oo
since H(/\(E u*) < H(tp). Thus, H:(t*) = H([t1/z]u*) < oo. Note H(t*) =
1+ maz{H,(t*), Hi(t*)} < 0. '

* u is of form au, ...u,, where a is a‘'variable. -Let u} = [t1/z]u; fori = 1,...,n.
By induction hypothe51s for i = 1,...,n, H(u') < H((Az.u;)t1) < oo since
'H(A:c u;) < H(to)- :

a is not z. Then t* = a’ul U
H(ul) < H(t*) < oo for'i = 1
- ais z. Then t* = tyuf .. If n = 0 then ’H(t*) = H(t1) < oo. Otherwise,
it is easy to verify. t*| < |t| By induction hypothe31s Hi(t*) < oo. Thus,
H(t*) =1+ max{H (t*), Hi(t*)} < 0. :

!/
ne

It is easy to verify H(t*) < oo since

Therefore, H(t) = 1 +max{H(td),H(t1),'H(t*)} < oo. This yields S(t) < oo7by the H-S lemma.
N % n

'a

It is feasible to give a p;bof of Lemma 34 without using H, but the complexity of«such a proof
increases significantly.. For instance, if we would like to prove §(t*) < oo directly, tﬁen we have
to show S(t*') < o, for all t* ~» t*' The difficulty arises if the contracted redex in & ~» t*/ is
not a residual of some redex in . A solution to this problem is given in [Daa80], whlclg"\;an also
be found as Exe;'c‘lse 15.4.8 in [Bar84].

'k

£ "’*‘
Proof (of t;,heorem 31) We prove every term t is strongly normalisable by induction on “E.pe
structure of t. 8,
¢ R

V.4
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e tis a variable. Then t is strongly normalisable.
e ¢ = Az.u. t is strongly normalisable since u is by induction hypothesis.

e t = tot;. By induction hypothesis, ¢; are strongly normalisable for : = 0,1. Applying
lemma 34, we have §(t) < o0, i.e., t is strongly normalisable.

For those who are familiar with the labelled A-calculi introduced by Hyland, Wadsworth and
Lévy, it is obvious that this proof also works in that setting with a slight twist on the definition
of [t|]. Comparing this proof with the proof of the strong normalisation theorem for labelled A-
calculus in [Daa80], we can notice that the underline strategies resemble each other. Our proof
is very short since the H-S has captured the essential idea in [Daa80]. The major drawback
with the proof is that it can hardly be extended to other stronger systems such as system F.

8. n-reduction

Let Az.tz ~, t be an 7-reduction where z does not occur free in ¢. Since Lemma 10 is obviously
still true in the presence of 7-reduction we conclude that H-S lemma still holds even if 7)-
reduction is taken into consideration. This fact can be used to judge that all results, such as
finiteness of development and the conservation theorem, also hold if S7n-reduction is used. The
only reason that we exclude 7-reduction in our proofs is to enhance the comprehensibility of the
proofs. If a term s = Az.tz itself is an 7-redex, then the contractum ¢ of s can be obtained from
two steps of subterm reduction. In other words, the case of -reduction can simply be handled
by induction hypothesis in the structural induction proofs, yielding virtually unchanged new
proofs.

9. Related Work

H-reduction bears a great resemblance to the reduction strategy used in [Gog94]. The main
difference is that we start our work in the untyped A-calculus while Goguen works in a typed
setting. It is also easy to reveal by a direct comparison that some intimate relation exists between
H-reduction and the perpetual strategies in [Bar76] and [BK82]. A related idea of transforming
strong normalisation into weak normalisation can also be found in [Ned73], [Klo80], [deGr93]
and [KW94].

H-reduction brings out inner redexes or their residuals by leftmost and subterm reductions.
It is usually easier to prove H(t) < oo than S(t) < oo for a given A-term.

Perpetual strategies spot the crucial places where reductions may change the strong normal-
isability of a term. They are often intuitive but can involve too many syntactic details.

Controlling erasure reduces (Az.Ay.u)v to Ay.(Az.u)v so that one can avoid contracting Bx-
redexes while keep reducing Br-redexes. If this method works for a system, one can usually
give a direct proof of the strong normalisation theorem for that system. The proof of
Theorem 31 is such an example.
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We have seen that all the proofs presented are quite short and straightforward. ?-reduction *
is a flexible and helpful tool handling strong normalisations, especially, when it is combined,
with other ideas such as standard reduction sequences. Besides, the H-S lemma is also a clean
presentation of many similar ideas such as perpetual reduction strategies mentioned in the
literature: to make sure if contracting the leftmost redex changes the strong normalisability of
a term.

10. Conclusion

We have seen, through various examples, that the notion of H-reduction establishes a useful
induction measure in the proofs of many theorems related to strong normalisations. The new
proof for the finiteness of developments theorem is quite concise and straightforward, compared
with others in the literature. The new proof of the conservation theorem for AK-calculus really
brings out the essence of the theorem, which enables us to present a much simplified proofs for
the characterisation theorem on perpetual redexes given in [BK]. To demonstrate the versatility
of the method, we also present a proof of the strong normalisation theorem for the simply typed
A-calculus, which can be readily transformed into a proof of the strong normalisation theorem
for labelled A-calculi. Above all, I feel that H-reduction eases thinking to a great extent when
one deals with problems related to strong normalisations. It summarises a key idea used in many
related proofs in the literature. Instead of handling inner redexes directly, H-reduction allows
us to wait until they become leftmost redexes in a reduction sequence. I have also tried this
method on various semantic proofs of strong normalisation theorems for various typed A-calculi,
but the result turns out to be much less satisfactory since the simplification is very minor if there
is any. This should not be surprising since the semantic proofs often treat leftmost redexes and
inner redexes equally with no distinction. Lastly, We expect more applications of H-reduction
coming out.
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