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Abstract

Virtually all methods of learning dynamic models from datarsfrom the same
basic assumption: that the learning algorithm will be pded with a single or mul-
tiple sequences of data generated from the dynamic modeletd, in quite a few
modern time series modeling tasks, the collection of rédidine series data turns
out to be a major challenge, due to either slow progressidineoflynamic process of
interest, or inaccessibility of repetitive measuremeritdhe same dynamic process
over time. In most of those situations, however, we obsdraeit is easier to col-
lect a large amount of non-sequence samples, or randomtsstaps the dynamic
process of interest without time information.

This thesis aims to exploit such non-sequence data in legenfew widely used
dynamic models, including fully observable, linear and lirear models as well as
Hidden Markov Models (HMMs). For fully observable models point out several
issues on model identifiability when learning from non-sauee data, and develop
EM-type learning algorithms based on maximizing approxeii&elinood. We also
consider the setting where a small amount of sequence datvailable in addition
to non-sequence data, and propose a novel penalized leasesapproach that uses
non-sequence data to regularize the model. For HMMs, we drgpiration from
recent advances in spectral learning of latent variableatsoand propose spectral
algorithms thatprovablyrecover the model parameters, under reasonable assump-
tions on the generative process of non-sequence data aricliéhenodel. To the
best of our knowledge, this is the first formal guarantee amnimg dynamic mod-
els from non-sequence data. We also consider the case wtlkerséquence data
are available, and propose learning algorithms that, alsarfully observable case,
use non-sequence data to provide regularization, but do@s combination with
spectral methods. Experiments on synthetic data and deeatalata sets, includ-
ing gene expression and cell image time series, demonshatffectiveness of our
proposed methods.

In the last part of the thesis we return to the usual settingeafning from
sequence data, and consider learning bi-clustered veatorragressive models,
whose transition matrix is both sparse, revealing signitieaeractions among vari-
ables, and bi-clustered, identifying groups of variabled hiave similar interactions
with other variables. Such structures may aid other legrtasks in the same do-
main that have abundant non-sequence data by providingy lbegularization in our
proposed non-sequence methods.
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Chapter 1

Introduction

Learning dynamic models from data is the traditional togisystem identification [Ljung, 1999]
in control theory and many algorithms have been proposeithelmachine learning literature, the
learning of temporal graphical models, such as dynamic 8iapenetworks [Ghahramani, 1998a;
Murphy, 2002], and the learning of various types of Markowd®lg [e.g., Abbeel and Ng, 2005;
Beal et al., 2002; Ghahramani, 1998b; Hsu et al., 2009; Rapi®89; Song et al., 2010], have
been extensively studied.

Virtually all methods of learning dynamic models from datarsfrom the same basic as-
sumption: that the learning algorithm will be provided wilsingle or multiple sequences of
data generated from the dynamic model. However, in quitevanf@dern dynamic modelling
tasks, a major difficulty turns out to be the collection ofable time series data. In some of these
tasks, such as learning dynamic models of galaxy or stau@wgal the dynamics of the processes
of interest are far too slow for researchers to collect ssswe data points showing any mean-
ingful changes. At more modest time scales, the same proatesas in the understanding of
slow-evolving human diseases such as Alzheimer’s or Pswokiis, which may progress over a
decade or more. In other situations, the dynamic process@fast may not be able to undergo
repetitive measurements, so researchers have to measliggeninstances of the same process
while maintaining synchronization among these instanCe® such example is gene expression
time series. In their study, Tu et al. [2005] measured exgioesprofiles of yeast genes along
consecutive metabolic cycles. Due to the destructive paiftithe measurement technique, they
collected expression data from multiple yeast cells. Ireotd obtain reliable time series data,
they spent a lot of effort developing a stable environmengyiochronize the cells during the
metabolic cycles. Yet, they point out in their discussioat such a synchronization scheme may
not work for other species, e.g., certain bacteria and fuagjieffectively as for yeast. Another
example is cell image time series. In a recent study [Buck g2@09] on cell cycle dependence
of protein subcellular location inferred from images, thehers discussed some challenges in
obtaining time series of cell images...“time-lapse images can be more difficult to obtain than
single images of cells because many microscopes do notamraaviable environment for the
cells they image (e.g., cells die after some time, and evele alive they are not under con-
stant conditions). Furthermore, repeated excitation oésiyor fluorescence imaging causes
photobleaching, reducing signal and leading to toxic clehchanges (phototoxicity), further
perturbing cells:



Table 1.1: Summary of thesis work

Model Class
First-order Observable | Hidden Markov Model

* Non-sequence data as regularization

=
+ O g }

g = ¢ | * Significant improvement over standard sequence-only methods
=2 g when sequence data is few

g‘ =] [Chapters 4 and 6]
= * EM-type algorithms * Spectral algorithms with

2 = $ | maximizing approximate formal guarantee

< g S| likelihood » First theoretical statement on
Sl g » Synthetic data, gene learning from non-sequence
S |= S| expressions and cell images data

Qe @ -

[Chapter 3] [Chapter 5]

Learning Bi-clustered Vector Auto-regressive Model [Chapter 7]

While obtaining reliable time series can be difficult, it isesf easier to collect non-sequence
samples, or snapshots of the dynamic process of interesteample, the Sloan Digital Sky
Survey (SDS@)has collected images of millions of celestial objects, ezfalihich may be in a
different phase of its life cycle. In medical sciences, &stst studying Alzheimer’s or Parkin-
son’s can collect samples from his or her current pool ofgrasi, each of whom may be in a
different stage of the disease. Or in gene expression daatysrent technology already enables
large-scale collection of static gene expression datas #lso the case in cell image analysis,
as concluded by Buck et al. [2009]A“method using un-synchronized cells with single-image
capture would have the advantages of avoiding repeated arpds fluorescence excitation
(permitting higher-energy exposure to obtain better slyaad fewer environment viability re-
quirements.

More broadly, in social and medical sciences it is usually ¢hse thakongitudinal study
the collection and analysis of data from the same subjeats long periods of time, is more
powerful but also expensive thaross-sectional studyvhich uses observations collected from a
large or representative portion of the population withiharstime frame. With recent advances
in sensing technology, there will likely be a large increaseross-sectional data in various
domains, and it would be great if they can be used not onlyesssectional study but also to
aid longitudinal study.

1.1 Thesis Summary

Motivated by challenges in time series data collection feaugety of modern dynamic modeling
tasks, we propose and study several methods for learningugadynamic models using non-

http://www.sdss.org/



sequence data that lack time information but are easy tarobable 1.1 summarizes our thesis
work and contributions. In brief, we consider learning t@asses of dynamic models: first-order
observable models and hidden Markov models (HMMs), underdmnditions on the input data.
When the input data consists of both sequence and non-segs@mples, our proposed methods
use non-sequence data as regularization to existing seengarty learning methods, and achieve
significant improvement when sequence data is few. In therdoallenging situation where all
the input data are non-sequence, our methods for learnstgofider observable models maxi-
mize approximate likelihood functions via EM-type procegk) and obtain encouraging results
on synthetic data as well as several real data sets, ingugBne expression data and cell im-
ages. For HMMs, we take advantage of recent advances irrapleetrning [Anandkumar et al.,
2012a] and identify reasonable generative assumptionsmsaquence data that lead to spectral
methods with consistent parameter learning guaranteetheloest of our knowledge, this is the
first theoretical statement on learning from non-sequeiata.d

1.2 Thesis Overview

After surveying related work in Chapter 2, we first consideCinapters 3 and|/4 learning fully
observable dynamic models. In Chapter 3, we assume the otdyadailable are snapshots
taken from multiple instantiations of a dynamic processetnown times, and the dynamic pro-
cess falls in the class of fully observable, discrete-tifitet-order linear or non-linear dynamic
models. Acknowledging several issues in model identifigbive developed EM-type learn-
ing algorithms that maximize approximate likelihood fuoaos, along with novel initialization
methods based on the idea of temporal smoothing. In a nunfleeperiments on synthetic and
real data sets including gene expression data and cell sndgeproposed algorithms are able to
learn moderately to highly accurate dynamic models, butrag suffer severely from the model
ambiguity inherent in this setting.

We thus in Chapter|4 consider slightly stronger assumptiamsddition to non-sequence
data, a small amount of sequence data are also availableedtvet the class of dynamic mod-
els to first-order discrete-time stable vector auto-regiues(VAR) models, and assume the non-
sequence data are independent samples drawn from thenatgtaistribution of the VAR model.
The latter assumption is valid when, for example, snapsretsaken from multiple trajectories
of a VAR process after they have reached stationarity. Basd¢tlese assumptions, we proposed
learning algorithms that minimize a new penalized leastsgwbjective, which incorporates
non-sequence data in a novel regularization term that dieswiolation of the Lyapunov equa-
tion relating the autoregressive model to the covariandts sfationary distribution. Experiments
demonstrate that when the amount of sequence data is somgtiraposed method of exploiting
non-sequence data can significantly improve over stan@arting algorithms, which use only
the sequence data.

Although fully observable models like VAR are useful, in ngaapplications only a subset
of the variables in the underlying dynamical system can seoked. Thus in Chapters 5 and
6/ we turn to learning dynamic models with hidden states. At fitance this seems formidable
because even when sequence data are available, learntenksthte models is in general dif-
ficult both statistically and computationally. However,emerging line of research in machine

3



learning, known as spectral learning, has recently deeslgpatistically consistent and computa-
tionally efficient algorithms for learning from sequencéalperhaps the most widely-used class
of hidden-state models, hidden Markov models (HMMs) [Artandar et al., 2012b; Hsu et al.,
2009; Siddiqi et al., 2010; Song et al., 2010]. Unlike tramfial EM-based learning methods,
which are vulnerable to bad local optima, these new methoelbased on spectral decomposi-
tion, such as Singular Value Decomposition (SVD), of enggiimoments computed from data,
and therefore result innique, local-minima freestimates of model parameters, allowing formal
statistical guarantees to be established. Building orethesent advances, we propose spectral
algorithms for learning HMMs that exploit non-sequenceadat

In Chapter 5 we consider the case where only non-sequencedatvailable. However,
unlike in Chapter 3 where all the data points are assumed ®thasame initial condition, here
we neednultiple setof non-sequence data, each generated from a differerdlihidden-state
distribution. The main contribution of this chapter is temdify conditions on the initial hidden-
state distributions, by drawing connections to spectratrigg of Latent Dirichlet Allocation
(LDA) models [Anandkumar et al., 2013], as well as distribnal assumptions on the missing
time information that allow us to develop spectral algarithwith formal guarantees on HMM
parameter learning. To the best of our knowledge, thesehardirst theoretical guarantees in
learning from non-sequence data. Compared with EM-baseldadgin simulation, our spectral
algorithms perform significantly better in parameter estiion.

Then in Chapter 6 we look at the situation where, as in Chaptsode sequence data are
available and the non-sequence data consist of indepesdsgles from the stationary distri-
bution of the underlying HMM. Extending state-of-the arespal algorithms for learningb-
servable representatioof HMMs [Hsu et al., 2009; Siddiqi et al., 2010; Song et al.1@] our
proposed methods obtain improved estimates of lower-oraenents by minimizing estimation
error on the sequence data plus a regularization term ondhesaquence data, and then apply
spectral decomposition to the improved moment estimatésrdstingly, although the high-level
idea is similar to that of Chapter 4 and HMMs are more complexi@®than VARSs, the opti-
mization problems in this chapter turn out to be convex wagtbe ones in Chapter 4 are non-
convex. Experiments on simulated data and sensor recadihguman activities demonstrate
improvement over existing sequence-only spectral aligorst

In the final part of the thesis, Chapter 7, we return to the ti@utl setting of learning from
sequence data and focus on learning structured vectorregtessive models. Although this
chapter is not directly related to the main theme of the thdbe methodology developed here
can aid learning in the non-sequence setting through iisat#d structure of the VAR model,
which may guide the design of the regularization terms irptleposed EM-type methods (Chap-
ter/3) when applied to non-sequence data in the same domarar&\motivated by problems
in biological time series analysis, where dependency geaphclustering of variables, such as
expression levels of genes, are two of the most commonlyldastguctures. In spite of be-
ing closely related, these two structures are usually edéchin separate procedures. We thus
propose a fully Bayesian approach to simultaneous learoirtese two structures for vector
auto-regressive models, using a novel bi-clustered angisp@romoting prior for the transition
matrix and an efficient blocked Gibbs sampling proceduregfmsterior inference. Applied to a
T-cell activation gene expression time series data setd®aet al., 2004], this new method finds
a more biologically meaningful clustering of genes thanestd-the art gene expression time

4



series clustering methods.
This thesis contains our published work in several venues:
Chapter 3 [Huang and Schneider, 2009; Huang et al., 2010]

Chapter 4 [Huang and Schneider, 2011]
Chapter 5 [Huang and Schneider, 2013b]
Chapter 6 [Huang and Schneider, 2013a]
Chapter 7 [Huang and Schneider, 2012]






Chapter 2
Related Work

In a good number of applications, a critical issue is to ustderd the dynamics or temporal de-
pendency underlying observed data that lack temporal aresgdl information. As a result,
various methods were proposed independently in differezdsa but to the best of our knowl-
edge, no prior work studies the general problem of learnyradhic models from non-sequence
data as comprehensively as this thesis. In this chapter weysseveral such applications and
briefly explain the methods developed therein.

As mentioned in Chapter 1, cell imaging has become a usefllftocstudying certain
types of cell dynamics, such as variation in protein sulbtallocalization during the cell cycle
[Buck et al., 2009]. Instead of relying on time-series calages as in most previous studies,
Buck et al. [2009] propose to utilize static, asynchronawepshots taken from multiple cells at
various phases of the cell cycle because, as quoted in CHasiech images are easier to obtain
on a large scale than time-series images. Their approaahfisst extract a one-dimensional
surrogate of cell cycle time from static cell image featurgsnanifold learning techniqd:é,sand
then use this surrogate in place of cell cycle time for subsatcell-cycle dependence tests.
Through analysis of real data, they confirm that such a sateoig well correlated with the cell
cycle. However, they did not perform explicit dynamic maodg| i.e, building models to predict
future observations.

A closely related problem studied in a number of disciplireethat of ordering a set of ob-
jects. Depending on the domain of interest, an ordering @aimterpreted as progression of
time, some coherent sequential structure or monotonicgrtgpln natural language processing,
the task of multi-document summarization requires ordgohsentences selected from differ-
ent documents, and automatic title generation technigaestaict a headline by selecting and
ordering words from the input text [Barzilay and Elhadad020Deshpande et al., 2007]. In
multimedia analysis and retrieval, automatic generatibwiadeo or slideshow from photos in-
volves laying down a coherent and smoothly transitionirgusace of scenes [Chen et al., 2006;
Hua et al., 2004]. Some of the techniques developed for tteestes are tailored to a specific
problem domain, and most of them have access to some extaraaledge about orderings

IManifold learning techniques have been used in dynamic inledening to identify a subspace where the
dynamics reside, leading to more accurate models. Seexfon@e, [Boot and Gordon, 2011] and references
therein. Similar techniques can be used in combination aitiproposed methods as a pre-processing step to make
the problem lower-dimensional and thus easier.



of objects, such as time stamps of photos or grammaticas fiolesentence compositions. In
contrast, we consider a more general problem setting wiglidsron no or little domain specific
knowledge, though our proposed methods make more expladietrassumptions.

The computational biology community has also studied tludlem of ordering objects, in
the context of finding a temporal ordering of static, asyonaus microarray measurement data
[Gupta and Bar-Joseph, 2008; Magwene et al., 2003]. Theogezpmethods therein are less
domain dependent and fall in a large family of algorithmsdolving thecurve reconstruction
problem which has been studied in various fields such as computdtgmometry (e.g., Giesen
[1999)), statistics [Hastie and Stuetzle, 1989], and maekearning [Smola et al., 2001]. More
specifically, Magwene et al. [2003] proposed to reconstifuetemporal ordering of microarray
samples through finding the minimum spanning tree on thetgiamed by the sample points,
while Gupta and Bar-Joseph [2008] proposed to solve aniostaf the traveling salesman prob-
lem (TSP) and proved that under certain conditions on thealyos generating the samples, the
optimal TSP path accurately reconstructs the true ordednkey assumption behind these two
methods is that temporally close sample points should adsepatially close. Both of these
methods are unable to choose an overall direction of timenigaltion due to the invariance to
time direction in their objective functions. Our problenitsey differs from the aforementioned
in that we consider snapshots franultiple trajectorief some dynamic process rather than out-
of-order samples from single sequenceMoreover, we focus more on learning a model for the
underlying dynamics than ordering the data points. Althotige non-sequence data considered
in our settings, as formalized in later chapters, can beretdbased on their unobserved time
stamps, such an ordering may not be very useful to existimguayc model learning methods
because these methods require as input sequences trélokisgme instances/er time. Nev-
ertheless, ordering objects is still a useful componenuinproposed methods in Chapter 3, but
the objects being ordered, instead of raw data points, ane sepresentative points discovered
by clustering algorithms.

Another problem involving learning dynamic models withéeitnporal ordering is the net-
work structure inference problem considered by Rabbat ¢2@08]. The authors point out that
in many situations, ranging from telecommunication neiwtomography problems to construc-
tion of biological signal pathways or social networks, tloalgs to reconstruct a directed graph
representing the underlying network structure, but the @vkilable data are sets of nodas
occurring in random walks on the graph without the order in which theyemasited. These
problem can be cast as learning a first-order Markov chaim fiata lacking ordering informa-
tion. To avoid the exponential-time complexity of enumirgll possible orderings, the authors
propose a polynomial-time, importance sampling based Ejdrahm with convergence guar-
antee to estimate the parameters of the Markov chain. kdy Rabbat et al. [2008], several
researchers in computational linguistics study the proldé&learning a bi-gram language model
from the commonly-used, order-invariant bag-of-wordsespntation of text corpus [Zhu et al.,
2008], and develop a similar sampling-based EM algorithm.il&#mpirically successful to
some extent, these algorithms, like most EM proceduresotibave guarantees on the quality
of their parameter estimates. Very recently, Gripon anddR&af2013] propose a combinatorial
algorithm for graph reconstruction from co-occurrenceadatd provide some theoretical guar-
antees on the reconstruction accuracy. However, theittseapply only to undirected graphs
and require the input to the algorithm to be the exact setfées of nodes that are connected but
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cycle-free in the graph. In Chapter 5 we also study the proldéhearning first-order Markov
chains from data lacking temporal information. Howevest&ad of data with hidden order-
ings, we consider data drawn from multiple, independei¢cttaries of the underlying Markov
chain, so there was no ordering to begin with. At first glarkearning in this setting may seem
more difficult than in the hidden-ordering setting, but ataded in Chapter 5, the independence
assumption in our setting actually makes learning easier.

In addition to the above general problem areas, there arespsoific problems we find rel-
evant to our work. One is collective inference on Markov nisd8heldon et al., 2008], which
finds the most likely collection of paths on a trellis grapbegi observations on the collective be-
havior of a group of dynamic objects. Their motivation wasréme out trajectories of individual
birds from aggregate statistics of an entire species ofatiigy birds. The other is connecting the
dots between news articles [Shahaf and Guestrin, 2010¢hnhiims to build a chronologicahd
coherent story line of news that connects a given pair ofistaand end articles, thereby pro-
viding readers a detailed description of the causal refatip between two events. A common
feature in both problems is the need of identifying struesuof sequentially matched objects
from partially ordered data. A similar situation arises meaccomponent of our methods, where
the data points are put into ordered clusters for furthec@ssing (Section 3.3). But instead of
finding hard matchings between data points in adjacentarisisive take a soft-matching type of
approach, updating the soft matching and the dynamic mdigehatingly.

While our focus is on learning from data lacking time or ordgrinformation, another com-
mon problem involving time in dynamic modeling is the migalinent of time measurements
across multiple sequences of observed data, due to intearnation of the dynamic process of
interest or measurement error. This problem arises in mamy $eries modeling tasks, such as
speech recognition [L. Rabiner, 1993; Vintsyuk, 1968],lgsia of gene expression time series
[Aach and Church, 2001], activity recognition [Junejo ef 2D11], and audio information re-
trieval [Chapter 4, Miller, 2007], bringing forth a large body of research, knawstatistics as
curve registration [Ramsay and Li, 1998; Silverman, 199%] i computer sciences as dynamic
time warping [Berndt and Clifford, 1994; Keogh and Ratanaataha, 2005]. The general idea
in these works is to first postulate a class of possible timuesfiormations or warping operations,
and then recover the most likely warping operation for eaokeovation by optimizing some
global matching score across all the data sequences. Theesudt is time-warped sequences
of observations that are in better alignment with one anmotéhile not directly related to our
thesis focus, these methods can potentially aid our workoinexample, an iterative, EM-like
manner, where time stamps and dynamic models are alteghatierestimated given the other
until convergence.

Finally, we briefly mention where our work lies in the vast spaf research on dynamical
systems conducted in physics and mathematics. Most dyaathieories are concerned with
the asymptotic behavior of some dynamical system, undéowsuassumptions on the phase or
state space of the system and the short-time evolution laatokand Hasselblatt, 1996]. But
our work studies in some sense the reverse problem, thaivesy gbservations that reflect the
global status of a dynamical system, we try to develop meghioalt figure out the short-time or
local evolution law.
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Chapter 3

Learning Fully Observable Models From
Non-sequence Data

In this chapter, we are interested in learning first-ordéscrte-time, fully observable linear
dynamic models described by the following transition fumct

X(t—i—l) _ AX(t) + €(t+1)’ (31)

wherex® ¢ RP*! is the state vector at timg A € RP*? is the state transition matrix, ard

is the noise vector at time Such a model is also known as a first-order vector auto-ssgre
model (VAR) in the time series literature. For simplicityevassume hereafter thet, €® ~

N (- ]0,0%I),a Gaussian distribution with zero mean and covariartdewherel is the identity
matrix. However, the proposed methods in later sectionsaailbe extended to handle general
covariance matrices. The dynamical system also has a &itef &hich we denote as®. Thus,
the linear dynamic models we consider are fully characterizy® = {A, 02, x(0}.

When sequenced observations are available, a basic leametigpd is least-square linear
regression of the observations at timen the observations at time— 1, whose properties
have been studied extensively (see e.g., [Hamilton, 19944 problem without observed state
sequences is much more difficult. We assumethextecutions of the dynamic model (3.1) have
taken place, and from each execution we have observed & siatgl point drawn at random from
the sequence of states generated in that execution. THeisesdata points{x;, ...,x,}, each
from a different trajectory and having occurred at an unkn@eint in time. To avoid confusion
in indices, hereafter we use parenthesized super-script,x¢?, to denote the time index, but
sub-script, e.gx;, to denote the data index. A precise description of this geive process is
given in Algorithm 3.1 along with a graphical illustration.

We focus on estimatingl and o2, and treat the start stat€? as a nuisance parameter.
For an observatior;, if its immediate predecessat is known, then the likelihood is simply
N(x; | Ax;,0*I). Butx; is unknown, so we integrate it out with respect to the distitim one
time step earlier thar; and obtain the following likelihood:

[|xi—Ax||3
exp(— ) e
L(x; | 0,t;) = / (277022)5 N(x | pl=D, £l Dydx, (3.2)
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Figure 6.2: Median testing log-likelihood. The y-axis laviienit is set to -6 for better visualiza-
tion; the red dashed line actually takes values as small/as -1

6.3.2 IMU Measurements of Human Activities

The PAMAP2 physical activity monitoring dataset [Reiss &ticker, 2012] contains recordings
of 18 different physical activities performed by 9 subjeetsaring 3 inertial measurement units
(IMUs) and a heart-rate monitor. Each subject follows a ot to perform a sequence of
activities with breaks in between. For our experiment we de& collected from subject 101
while walking and running. We focus our experiment on regugd from the three IMUs, and
for each IMU only use the 3D-acceleration data (A)swith scale+16g, as recommended by
the authors, and the 3D-gyroscope data (rad/s), resultiag iobservation space 6fx 3 = 18
dimensions. Subject 101 performs walking and running f@ragimately 3.5 minutes each, and
we discard the first and the last 10 seconds of data to remansitioning between activities. To
make the experiment more interesting, we break the IMU @inogs into short segments of 10
seconds each and interleave the walking segments with timéng ones to generate a sequence
of alternating activities. The IMUs operate at a sampliragtrency of 100Hz, so each segment
has 1000 data points and the entire sequence has 39265 ddta jd¢e normalize each of the 18
dimensions to be zero-mean and standard deviation 1. F&8rshows one of the dimensions
from the first 2000 data points, revealing significant di#feces between walking and running.

We take the last 4256 data points as the testing sequencgeaedate 10 training datasets
as follows. We randomly sampletriples of consecutive observations from the first 3500@&dat
points as the sequence data, and another non-overlapgiofirse+ mg single observations as
the non-sequence data, in whichpoints are used to forr® and the restng points constitute
S in the proposed algorithm. The valuesafm, andmg are: n € {25,50,100,200}, m €
{500, 1000}, andmg = 4000. We use the Gaussian RBF kerng¢k, x') := exp(||x — x'[|*/5?),
and setr? to be half of the median squared pairwise distances of theeseg data. The dimen-
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Figure 6.4: Prediction performance on the IMU data. Thelbldashed line is obtained by using
n = 5000 dynamic data points, serving as a performance limit.

sionk, i.e., the number of top left singular vectors, is set to 20/fo= 25 and 50 for the rest.
The proposed algorithm has three regularization parasietgrand\ in (6.19) andup in (6.34).
We determine these parameters by minimizing 5atbss validation error on the sequence
data over a cube of valué®g, up,log, A\, log, ug) € {—8,—6,...,6} x {=9,-7,...,1} x
{-5,-3,...,9}.

After learning the model parameters, we perform filteringl @mediction along the testing
sequence. As mentioned in Section 6.1, the Hilbert spaceédihg of the predictive distribu-
tion takes the form of a non-parametric density estimatankis to the Gaussian RBF kernel,
and we predict the next observation by selecting f®nthemg static data points, the one with
the highest predictive density. For each predicted obsiervave compute the squared error
against the true observation, and for each predicted sequee take the median and the mean
of the squared prediction errors as sequence-wise perfarenadicators. Figure 6.4(a) gives the
boxplot of the 10 median prediction errors, showing thatphgposed method of incorporating
static data improves on the prediction performance moneifsigntly when the sequence data
sizen is small. Figure 6.4(b) gives the boxplot of the 10 means,afestrating a similar trend of

SWe only split the sequence data but not the static data.
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improvement except whem = 50. Looking more into that result, we find that it is the running
part of the testing sequence the proposed method fails thgpteetter, possibly due to the more
extreme values and changes in its IMU readings, as showrgur€6.3.

6.4 Discussions and Conclusions

We propose spectral learning algorithms for HMMs that ipooate static data as regularization.
Experiments on synthetic and real human activities dataotisirate a clear advantage of us-
ing static data when sequence data is limited. There areademteresting directions for future
work, including deriving theoretical guarantees for thegwsed methods and solving real prob-
lems where sequence data is much more difficult to obtain tlearsequence data. In terms of
methodology, a possible improvement is to combine the tagest in the proposed methods into
one optimization problem, where the optimization variabla three-way tensor representing the
joint probability of observation triples, and the objeetitakes a similar form of an error term
on sequence data plus regularization terms based on noeseef data. Given an estimate for
the three-way probability tensor, lower-order probalatcan be easily obtained by marginal-
ization, and then spectral learning algorithms in Sectidndan be applied. One advantage of
such a procedure is that the estimates of the probabilityixetd tensor are inherently consis-
tent, and therefore the sub-spaces computed by specti@ngesition are optimal with respect
to both, whereas in the proposed two-stage methods, themades are optimal with respect to
only the estimated joint probability matrix. The downsideobviously the optimization in the
space of three-way tensors, which is computationally sitenin terms of both time and storage.

Although not explicitly described in this chapter, it is pdse to extend the regular sequence-
based EM learning algorithm for HMMs to make use of non-segaedata drawn from the
stationary distribution. More specifically, such non-sexge data can be easily incorporated
into the EM estimation procedure for parameters in the olagiem model, e.g., the state-specific
mean observation vectors and noise covariances in a Gaugssarvation model, because these
parameters are time-independent. However, as with thdae§M approach, finding a good
local optimum is always an issue and may require a lot of @nin
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Chapter 7

Learning Bi-clustered Vector
Auto-regressive Model

In this chapter we return to the usual setting of learningfisequence data, and consider learn-
ing structured Vector Auto-regressive (VAR) models. Alligh not directly related to the main
theme of the thesis, the methods developed here, as we reXaiar, can benefit learning from
non-sequence data. Our motivation is from the use of VARsafalyzing the temporal de-
pendencies in multivariate time series data, knowGeanger causality [Granger, 1969]. For
example, recently researchers in computational biologygiideas from sparse linear regres-
sion, developed sparse estimation techniques for VAR nsdéeijita et al., 2007; Lozano et al.,
2009; Shojaie et al., 2011] to learn from high-dimensiorehanic time series a small set of
pairwise, directed interactions, referred to as gene s#gut networks, some of which lead to
novel biological hypotheses.

While individual edges convey important information abauteractions, it is often desir-
able to obtain an aggregate and more interpretable deiseript the network of interest. One
useful set of tools for this purpose are graph clusteringhiods [Schaeffer, 2007], which iden-
tify groups of nodes or vertices that have similar types afirexrtions, such as a common
set of neighboring nodes in undirected graphs, and sharezhipar child nodes in directed
graphs. These methods have been applied in the analysigiotiwdypes of networks, such
as [Girvan and Newman, 2002], and play a key role in graphalization tools [Herman et al.,
2000].

Motivated by the wide applicability of the above two threaflg/ork and the observation that
their goals are tightly coupled, we develop a methodology ithtegrates both types of analyses,
estimating the underlying Granger causal network and iisteting structuresimultaneously
One can image that such a structure, once estimated, couiskoeas prior knowledge for other
learning tasks in the same domain, and as suggested in CBaptarh prior knowledge may aid
learning VARs from non-sequence data by providing bettgulagization of the model.

In this chapter we use the following notation for a first-argalimensional VAR model:

x@ = Xe-nA+ew, €x ~ N(0,0%), (7.1)

More preciselygraphical Granger causality for more than two time series.
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wherex € R'*? denotes the vector of variables observed at timé € R*? is known as the
transition matrix, whose non-zero entries encode Grangasal relations among the variables,
ande’s denote independent noise vectors drawn from a zero-meas<tgn with a spherical

covariances21. Our goal is to obtain a transition matrix estimatehat is bothsparse leading
directly to a Granger-causal network, atldsteredso that variables sharing a similar set of con-
nections are grouped together. Since the rows and the cslafa indicate different roles of
the variables, the former revealing how variables affeetribelves and the latter showing how
variables get affected, we consider the more gen@ralusteringsetting, which allows two dif-
ferent sets of clusters for rows and columns, respectivélig take a nonparametric Bayesian
approach, placing ovet a nonparametric bi-clustered prior and carrying out fukfgoior infer-
ences via a blocked Gibbs sampling scheme. Our simulatiay stemonstrates that when the
underlying VAR model exhibits a clear bi-clustering stiuwet, our proposed method improves
over some natural alternatives, such as adaptive spanmsenganethods [Zou, 2006] followed
by bi-clustering, in terms of model estimation accuracysttring quality, and forecasting ca-
pability. More encouragingly, on a real-world T-cell aetilon gene expression time series data
set [Rangel et al., 2004] our proposed method finds an irttegelsi-clustering structure, which
leads to a biologically more meaningful interpretationrthhose by some state-of-the art time
series clustering methods.

Before introducing our method, we briefly discuss relatedknia Section 7.1. Then we
define our bi-clustered prior in Section 7.2, followed by sampling scheme for posterior infer-
ences in Section 7.3. Lastly, we report our experimentailtesn Section 7.4 and conclude with

Section 7.5.

7.1 Related work

There has been a lot of work on sparse estimation of Grarmesat networks under VAR mod-
els, and perhaps even more on graph clustering. Howevdretbdst of our knowledge, none of
them has considered the simultaneous learning scheme wegatere. Some of the more recent
sparse VAR estimation work [Lozano et al., 2009; Shojaid.e2@11] takes into account depen-
dency further back in time and can even select the right feogtistory, known as the order
of the VAR model. While focusing on first-order VAR models, waserve that it is possible to
extend our method to learn higher-order bi-clustered VARIgls, where the same bi-clustering
structure is shared by all the time-lagged transition magj an extension to the grouped graph-
ical Granger modeling approach of Lozano et al. [2009].

Another large body of related work [e.g., Busygin et al., 0Meeds and Roweis, 2007;
Porteous et al., 2008] concerns bi-clustering (or co-elust)) a data matrix, which usually con-
sists of relations between two sets of objects, such as asegs on items, or word occurrences
in documents. Most of this work models data matrix entriesrbytures of distributions with
different means representing, for example, different mean ratings byed#ht user groups on
item groups. In contrast, common regularization schemgwmior beliefs for VAR estimation
usually assume zero-mean entries for the transition mabiasing the final estimate towards
being stable. Following such a practice, our method modalssition matrix entries ascale
mixturesof zero-mean distributions.
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Finally, clustering time series data has been an activeareleopic in a number of areas,
in particular computational biology. However, unlike oura@ger causality based bi-clustering
method, most of the existing work, such as [Cooke et al., 2&REmoni et al., 2002] and the
references therein, focus on grouping togetsierilar time series, with a wide range of simi-
larity measures from simple linear correlation to compkchGaussian process based likelihood
scores. Differences between our method and existing sityHbased approaches are demon-
strated in Section 7.4 through both simulations and expErision real data.

7.2 Bi-clustered prior

We treat the transition matrid € RP*? as a random variable and place over it a “bi-clustered”
prior, as defined by the following generative process:

7, ~ Stick-Break(a,), m, ~ Stick-Break(«,),
{uiti<i<p ! Multinomial(7r.,), {vihi<j<p gl Multinomial(,),
{)\kl}lgk,lgoo Z}\Jd Gamma(h, C), (72)

Aij  ~ Laplace(0,1/Auy,), 1<i,j<p. (7.3

The process starts by drawing row and column mixture progastr, ands, from the “stick-
breaking” distribution [Sethuraman, 1994], denote®igk-Break(«) and defined on an infinite-
dimensional simplex as follows:

B ~ Beta(l, ),
T = By H(1 — B, 1Sk=oo (7.4)

m<k

wherea > 0 controls the average length of pieces broken from the stickl, may take different
valuesa,, anda, for rows and columns, respectively. Such a prior allows foirdinite number
of mixture components or clusters, and lets the data debel@@mber oeffectivecomponents
having positive probability masses, thereby increasingleling flexibility. The process then
samples row-cluster and column-cluster indicator vadabl’s andv;’s from mixture propor-
tionsw, andw,, and for thek-th row-cluster and théth column-cluster draws an inverse-scale,
or rate parametek,; from a Gamma distribution with shape paraméeieand scale parameter
c. Finally, the generative process draws each matrix edtryfrom a zero-mean Laplace dis-
tribution with inverse scale,,,,;, such that entries belonging to the same bi-cluster share th
same inverse scale, and hence represent interactions idrsmagnitudeswhether positive or
negative.

The above bi-clustered prior subsumes a few interestingiapeases. In some applications
researchers may believe the clusters should be symmeuiat atws and columns, which cor-
responds to enforcing = v. If they further believe that within-cluster interactioslsould be
stronger than between-cluster ones, they may adjust aogiydhe hyper-parameters in the
Gamma prior/(7.2), or as in the group sparse prior proposdddmin et al. [2009] for Gaussian
precision estimation, simply require all within-clusteatmx entries to have the same inverse
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Algorithm 7.1 Blocked Gibbs Sampler
Input: Data X and Y, hyper-parameters, c, a,, o, and initial valuesA©® L©®) u®),
v, (50)2
Output: Samples from the full joint posterig{ A, L,u, v, 0% | X,Y)
Set iterationt = 1
repeat
fori=1topdo
AL~ p(Ad] Ay Al Y VO, (0170)2), L0, X, Y)
end for
fori =1topdo
w o~ plus | AD ul g, vOY (0072 LD, XY
end for
for ‘(7t: l1topdo

t t—1 _ _
o\~ p(v; | A(t),u(t),vgzzjfl),vg. ): (o2 L1 X Y)

J
end for

(00)2 ~ p(o? | A, u®, v® LD X V)
L® ~ p(L | A(t),u(t)7v(t)’(g(t))Z’Xj Y)
Increase iteration
until convergence
Notations: superscriptt) denotes iterationd; denotes the-th row of A, A;; denotes the
sub-matrix inA from thei-th until the j-th row, andu,.; denotes{u,, }i<,<;.

scale constrained to be smaller than the one shared by alebatcluster entries. Our inference
scheme detailed in the next section can be easily adaptddhese special cases.

There can be interesting generalizations as well. For eligmdppending on the application
of interest, it may be desirable to distinguish positiveerattions from negative ones, so that
a bi-cluster of transition matrix entries possess not omtyilar strengths, but alseonsistent
signs However, such a generalization requires a more delicatemtey prior and therefore a
more complex sampling scheme, which we leave as an integeditiection for future work.

7.3 Posterior inference

Let L denote the collection ol,’s, u and v denote{u; }1<;<, and{v;}1<;<,, respectively.
Given one or more time series, collectively denoted as ©egX’ andY whose rows represent
successive pairs of observations, i.e.,

Y; = X;A+e, € ~ N(0,0%]),
we aim to carry out posterior inferences about the transitiatrix A, and row and column cluster
indicatorsu andv. To do so, we consider sampling from the full joint postefiod, L, u, v, o? |

X,Y), and develop an efficient blocked Gibbs sampler outlined ligoAthm [7.1. Starting
with some reasonable initial configuration, the algorithteratively samples rows aofl, row
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and column-cluster indicator variablesand v, the noise varianEeJQ, and the inverse scale
parameterd. from their respective conditional distributions. Next wesdribe in more details
sampling from those conditional distributions.

7.3.1 Sampling the transition matrix A

Let A_; denote the sub-matrix ot excluding thei-th row, X! and X’ , denote the-th column
of X and the sub-matrix oK excluding thei-th column. Algorithm 7.1 requires sampling from
the following conditional distribution:

p(AZ | A—i>u>V7027L7X7 Y) X H N(AZ] | Mij?azz)Laplace(Aij | 07 1/)\uivj)>

1<j<p

where
py = (XX (Y = XA, o = o /|IX%
Therefore, all we need is sampling from univariate dersitiethe form:
f(z) oc N(x| p,o%)Laplace(z | 0,1/N), (7.5)

whose c.d.f.F(x) can be expressed in terms of the standard normal @d.-f:

e B )

C o C o o
wherez~ := min(z,0), 2" := max(z,0), and
¢ = oo T Loy (1- (- E2TY),

We then sample fronf(x) with the inverse c.d.f. method. To reduce the potential Sengpjias
introduced by a fixed sampling schedule, we follow a randodewnng of the rows of4 in each
iteration.

Algorithm 7.1 generates samples from the full joint posterbut sometimes it is desirable
to obtain a point estimate of. One simple estimate is the (empirical) posterior mean;dvan
it is rarely sparse. To get a sparse estimate, we carry odbtlosving “sample EM” step after
Algorithm[7.1 converges:

~

ABICUSEM . 0 mijlogp(A | u®, v® ()2 L0 X V), (7.6)
t

wheret starts at a large number and skips some fixed number of b@sato give better-mixed
and more independent samples. The optimization proble) {§.in the form of sparse least
square regression, which we solve with a simple coordinaseeht algorithm.

20ur sampling scheme can be easily modified to handle diagowaliances.
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7.3.2 Sampling row and cluster indicators

Since our sampling procedures folandv are symmetric, we only describe the onefort can

be viewed as an instantiation of the general Gibbs samptingree studied by Meeds and Roweis
[2007]. According to our model assumption,is independent of the datd, Y and the noise
variances? conditioned on all other random variables. Moreover, uniderstick-breaking prior
(7.4) over the row mixture proportions, and some fixed, we can viewu and the rows ofd as
cluster indicators and samples drawn from a Dirichlet pssarixture model wittisamma(h, ¢)

as the base distribution over cluster parameters. Firtakyl_aplace distribution and the Gamma
distribution are conjugate pairs, allowing us to integra the inverse scale parametérand
derive the following “collapsed” sampling scheme:

p(u; = k" € existing row-cluster$ A, u_;, v)

D((N_(k] + Sae) MI + 1)/ (T(h)e") N[
(N—i[k] 40y ) M 1] +h —1 ” ’
o1 (1ASilR, Ul + S A0l + 1/c) pooTe

p(u; = anew row-clustef A,u_;,v)
D(N_i[K]M[l] + 1)/ (T (R)c")  T(M[I] + h)/(T(h)c") a,
N_;|k]M[l]+h M[l]+h — P
o1 (| Atk 0+ 1/c) (Al +1/¢) p—1+a

whereT'(-) is the Gamma function,, denotes the Kronecker delta functioM, ;[k] is the size
of the k-th row-cluster excludingl;, M[] is the size of thé-th column-cluster, and

lALlE O = Y Al A = ) 1Ayl

s#Lus=k,v;=l vj=l

As in the previous section, we randomly permuf&s andv,’s in each iteration to reduce sam-
pling bias, and also randomly choose to sampt& v first.

Just as with the transition matrit, we may want to obtain point estimates of the cluster
indicators. The usual empirical mean estimator does nokwere because the cluster labels
may change over iterations. We thus employ the followingpdure:

1. Construct a similarity matri¥ such that

1 .
Sij = T Zéqtgt)ug-t)’ 1 S 1,7 S p,
t

wheret selects iterations to approach mixing and independence €&6), andl’ is the
total number of iterations selected.

2. Run normalized spectral clustering [Ng et al., 2001]%nwvith the number of clusters set
according to the spectral gap 6f
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7.3.3 Sampling noise variance and inverse scale parameters

On the noise variance? we place an inverse-Gamma prior with shape 0 and scale? > 0,
leading to the following posterior:

o* | A, X,Y ~ I-Gamma(a + pT/2,2||Y — X A||> + 3), (7.7)

whereT is the number of rows iX and|| - || » denotes the matrix Frobenius norm. Due to the
conjugacy mentioned in the last section, the inverse scalanpeters\;;’s have the following
posterior:

M | A, v o~ Gamma(N[E] M1 + h, (|| Alk, 1|1 + 1/c) 7).

7.4 Experiments

We conduct both simulations and experiments on a real geggression time series dataset, and
compare the proposed method with two types of approaches:

Learning VAR by sparse linear regression, followed by bi-clustering

Unlike the proposed method, which makes inferences abeutamsition matrixA and cluster
indicators jointly, this natural baseline method first esties the transition matrix by adaptive
sparse ol linear regression [Zou, 2006]:

| A
’Aols|fy

Al = argm1n—||Y XAHF—i-/\Z (7.8)

where A% denotes the ordinary least-square estimator, and thetugtiecs AL by either the
cluster indicator sampling procedure in Section 7.3.2 andard clustering methods applied to
rows and columns separately. We compare the proposed matitbthis baseline in terms of
predictive capability, clustering performance, and in¢hse of simulation study, model estima-
tion error.

Clustering based on time series similarity

As described in Section 7.1, existing time series clusgenrethods are designed to group to-
gether time series that exhibit a similar behavior or depeig over time, whereas our proposed
method clusters time series based on their (Granger) caelsdions. We compare the pro-
posed method with the time series clustering method prapbgeCooke et al. [2011], which
models time series data by Gaussian processes and perf@yesiBn Hierarchical Clustering
[Heller and Ghahramani, 2005], achieving state-of-thecarstering performances on the real
genes time series data used in Section 7.4.

7.4.1 Simulation

We generate a transition matrik of size 100 by first sampling entries in bi-clusters:

Laplace(0,v60 i), 41 <i<70,51 < j < 80,
Ay ~ { Laplace(0,v70 '), T71<i<90,1<j< 50, (7.9)
Laplace(0,vII0 '), 91 <i<100,1 < j < 100,
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Figure 7.1: Heat maps of the synthetic bi-clustered VAR
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Figure 7.2: Prediction errors up to 10 time steps. Errorddnger horizons are close to those by
the mean (zero) prediction, shown in black dashed line, amdat reported.

and then all the remaining entries from a sparse back-grouwatdx:

By if |Byj| > Birj| br<iv jr ; . :
Ay = ! By L s ({1 By hiv<aoo) i, j not covered in/(7.9)
0 otherwise
where .
{Bz'j}lgi,j,gloo o Laplace(O, (5\/ 200)_1)

andqes(-) denotes the 98k percentile. Figure 7.1(a) shows the heat map of the actwed ob-
tain by the above sampling scheme, showing clearly fourctwsters and three column-clusters.
This transition matrix has the largest eigenvalue modufu3.@280, constituting a stable VAR
model.

We then sample 10 independent time series of 50 time stepstire VAR model/(7.1), with
noise variance? = 5. We initialize each time series with an independent samgaie/al from the
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Table 7.1: Model estimation error on simulated data
Normalized matrix erron Signed-support error

Ly 0.3133t0.0003 0.3012+:0.0008
Biclus EM 0.2419+:0.0003 0.0662+:0.0012

stationary distribution of (7!1), whose correlation mais shown in Figure 7.1(b), suggesting
that clustering based on correlations among time seriesmoayecover the bi-cluster structure
in Figure 7.1(a).

To compare the proposed method with the two baselines thesln the beginning of Section
7.4, we repeat the following experiment 20 times: a randobsstiof two time series are treated
as testing data, while the other eight time series are ustdiagg data. For., linear regression
(7.8) we randomly hold out two time series from the trainirgadas a validation set for choosing
the best regularization parametefrom {272 271 ... 219} and weight-adaption parameter
from {0,272,2-1, ..., 22}, with which the finalAX is estimated from all the training data. To
bi-clusterAL:, we consider the following:

e L,-+Biclus: run the sampling procedure in Section 7.3.24n.

o Refit+Biclus: refit the non-zero entries of’: using least-square, and run the sampling
procedure in Section 7.3.2.

e L, row-clus (col-clus): construct similarity matrices

S5o= D0 MARIARL S = X0 IARIAGL 1<ig<p

1<s<p 1<s<p

Then run normalized spectral clustering [Ng et al., 2001]56rand S”, with the number

of clusters set to 4 for rows and 3 for columns, respectively.
For the second baseline, Bayesian Hierarchical Clustendgzaussian processes (GPs), we use
the R packag®HC (version 1.8.0) with the squared-exponential covariamcesfaussian pro-
cesses, as suggested by the author of the package. Foll@emige et al. [2011] we normalize
each time series to have mean 0 and standard deviation 1. adkage can be configured to
use replicate information (multiple series) or not, and weezgiment with both settings, abbrevi-
ated aBBHC-SE reps andBHC-SE, respectively. In both settings we give tBeIC package the
mean of the eight training series as input, but additiorsligplyBHC-SE reps a noise variance
estimated from multiple training series to aid GP modeling.

In our proposed method, several hyper-parameters needsjuelodfied. For the stick-breaking
parametersy, anda,, we find that values in a reasonable range often lead to simdlsterior
inferences, and simply set both to be 1.5. We set the noisanea prior parameters in (7.7)
to bea = 9 and = 10. For the two parameters in the Gamma prior (7.2), wehset 2 and
¢ = /2p = /200 to bias the transition matrices sampled from the Laplacer §#i.3) towards
being stable. Another set of inputs to Algorithm 7.1 are thigal values, which we set as fol-
lows: A® = 0,u® =v® =1, (¢©)? = 1,andL® = (h — 1)c = /200. We run Algorithm
7.1 and the sampling procedures for+Biclus and Refit-Biclus for 2,500 iterations, and take
samples in every 10 iterations starting from the 1,501esttton, at which the sampling algo-
rithms have mixed quite well, to compute point estimatesfpn andv as described in Sections
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Figure 7.3: Adjusted Rand index on simulated data

7.3.1and 7.3.2.

Figure 2 shows the squared prediction errord.flinear regressioni(;) and the proposed
method with a final sample EM step (Biclus EM) for various pe&dn horizons up to 10. Pre-
dictions errors for longer horizons are close to those byliptang the mean of the series, which
is zero under our stable VAR model, and are not reported H&icdus EM slightly outperforms
L4, and paired t tests show that the improvements for all 1(zbas are significant at a p-value
< 0.01. This suggests that when the underlying VAR model does hawechustering struc-
ture, our proposed method can improve the prediction perdoice over adaptive, regression,
though by a small margin.

Another way to comparé; and Biclus EM is through model estimation error, and we repor
in Table 7.1 these two types of error:

Normalized matrix error ||A — Al /|| A||F,

Signed-support error% 3~ _, - I(sign(Aj;) # sign(Ay;)).

Clearly, Biclus EM performs much better thdn in recovering the underlying model, and in
particular achieves a huge gain in signed support erronkth#o its use of bi-clustered inverse
scale parameters.

Perhaps the most interesting is the clustering quality,ctvhwe evaluate by thAdjusted
Rand IndeXHubert and Arabie, 1985], a common measure of similarityMeen two cluster-
ings based on co-occurrences of object pairs across dhgtemwith correction for chance ef-
fects. An adjusted Rand index takes the maximum value of § whien the two clusterings
are identical (modulo label permutation), and is close tol&mvthe agreement between the
two clusterings could have resulted from two random clustgsr. Figure 7.3 shows the cluster-
ing performances of different methods. The proposed metlaietled as Biclus, outperforms
all alternatives greatly and always recovers the correstaad column clusterings. The two-
stage baseline methods+Biclus, Refit+Biclus, and.; row-clus (col-clus) make a significant
amount of errors, but still recover moderately accuratsteltings. In contrast, the clusterings
by the time-series similarity based methoBB|C-SE andBHC-SE reps, are barely better than
random clusterings. To explain this, we first point out tB&C-SE and BHC-SE reps are
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Figure 7.4: Heat maps of the Biclus-EM estimatedo&nd the inverse scale parametéraver-
aged over posterior samples; rows and columns permuteddacgdo clusters.

designed to model time series as noisy observations ofrdetistic, time-dependent “trends”
or “curves” and to group similar curves together, but theetiseries generated from our stable
VAR model all have zero expectati@t all time points(not justacross timg As a result, clus-
tering based on similar trends may just be fitting noise insinulated series. These results on
clustering quality suggest that when the underlying clustieicture stems from (Granger) causal
relations, clustering methods based on series similaréty give irrelevant results, and we really
need methods that explicitly take into account dynamicaudion patterns, such as the one we
propose here.

7.4.2 Modeling T-cell activation gene expression time series

We analyze a gene expression time series dataskected by Rangel et al. [2004] from a T-cell
activation experiment. To facilitate the analysis, theg-processed the raw data to obtain 44
replicates of 58 gene time series across 10 unevenly-sgeuegoints. Recently Cooke et al.
[2011] carried out clustering analysis of these time sedia®, with their proposed Gaussian
process (GP) based Bayesian Hierarchical Clustering (BH@)qaite a few other state-of-the
art time series clustering methods. BHC, aided by GP with accspline covariance func-
tion, gave the best clustering result as measured by the@adl Homogeneity Index (BHI)
[Datta and Datta, 2006], which scores a gene cluster basigd mnmber of gene pairs that share
certain biological annotations (Gene Ontology terms).

To apply our proposed method, we first normalize each timiesés have mean 0 and stan-
dard deviation 1 across both time points and replicatestlz “de-trend” the series by taking
the first order difference, resulting in 44 replicates of 58 series of gene expression dif-
ferences across 9 time points. We run Algorithm| 7.1 on thidreleded dataset, with all the
hyper-parameters and initial values set in the same way asirirsimulation study. In 3,000
iterations the algorithm mixes reasonably well; we let it far another 2,000 iterations and take

SAvailable in the R packagengitudinal.
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Figure 7.5: BHI. Green dots show BHiIs of different methodsglboxes are BHIs obtained by

200 random permutations of cluster labels by those methgréen boxes are BHIs computed

on posterior cluster indicator samples from the proposetthate In parentheses are numbers of
clusters given by different methods.

samples from every 10 iterations, resulting in 200 postes@nples, to compute point estimates
for A, cluster indicatorax andv as described in Sections 7.3.1 and 7.3.2. Figures 7.4(a) and
7.4(b) show the heat maps of the transition matrix pointhestie and the inverse scale param-
eters)\;;'s averaged over the posterior samples, with rows and cadupenmuted according to
clusters, revealing a quite clear bi-clustering structure

For competing methods, we use the GP based Bayesian HiearChustering (BHC) by
Cooke et al. [2011], with two GP covariance functions: culpine BHC-C) and squared-
exponential BHC-SEﬂ. We also apply the two-stage methbgtBiclus described in our sim-
ulation study, but its posterior samples give an averagéafdsters, which is much more than
the number of clusters, around 4, from the spectral anatlessribed in Section 7.3.2, suggest-
ing a high level of uncertainty in their posterior inferes@bout cluster indicators. We thus do
not report their results here. The other two simple basslare: Corr, standing for normalized
spectral clustering on the correlation matrix of the 58 tseées averaged over all 44 replicates,
the number of clusters 2 determined by the spectral gap, diAd-Ane, which simply puts all
genes in one cluster.

Figure 7.5 shows the BHI scoﬁeg;iven by different methods, and higher-values indicate bet
tering clusterings. Biclus row and Biclus col respectivegnote the row and column clusterings
given by our method. To measure the significance of the cing® we report BHI scores com-
puted on 200 random permutations of the cluster labels dwesach method. For Biclus row
and Biclus col, we also report the scores computed on the @d@por samples. All-in-one has
a BHI score around 0.63, suggesting that nearly two-thifddl@ene pairs share some biolog-

4We did not report results obtained using replicate infoiorabecause they are not better. Cluster labels are
fromht t p: / / ww. bi omedcentral . conf 1471- 2105/ 12/ 399/ addi ti onal |

SWe compute BHIs by th&HI function in the R packagelValid (version 0.6-4) [Brock et al., 2008] and the
databaségul133plus2.db (version 2.6.3), following Cooke et al. [2011].
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1.64e-02 BP regulation of viral-induced cytoplasmic pattern recognition receptor signal... (4)
1.64e-02 BP regulation of RIG-1 signaling pathuay (5)
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4.90e-02  BP regulation of binding oligomerization dowain containing sighalin... (4)

Figure 7.6: Gene functional profiling of the large BHC-C céurst

ical annotations. Corr puts genes into two nearly equaldsthesters (28 and 30), but does not
increase the BHI score much. In contreBHC-C and Biclus row achieve substantially higher
scores, and both are significantly better than those by ranglermutations, showing that the
improvements are much more likely due to the methods ratfar varying numbers or sizes of
clusters. We also note that even though Corr BRIC-C both give two clusters, the twBHC-C
clusters have very different sizes (48 and 10), which cadaegar variance in their BHI distri-
bution under random label permutations. LadB{fC-SE and Biclus col give lower scores that
are not significantly better than random permutations. Qussibple explanation for the differ-
ence in scores by Biclus row and Biclus col is that the formesds itself on how genesdfect
one another while the latter on how gerags affectedby others, and Gene Ontology terms, the
biological annotations underlying the BHI function, delsermore about genes’ active roles or
molecular functions in various biological processes thaatinfluence genes.
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5.14e-03  BP regulation of RIG-I sighaling pathuway (8
2.48e-03  BP toll-like receptor signaling pathway (5)
ﬂ—mL—Hﬂ—E — —
2.76e-02  BP nucleotide-binding oligomerization domain containing signaling pathuway 1)
1.54e-02  BP regulation of nuclectide-binding oligomerization domain containing signalin... (2)
1.98e-02  BP negative regulation of cell death ¢1)
1.66e-02 BP negative regulation of progranmed cell death (22 Ce | | Death
1.61e-02  BF rnegative regulation of apoptotic process (1)

(b) Third row cluster

Figure 7.7: Gene functional profiling of two large row clustey the proposed method

Finally, to gain more understanding on the cluster8bjC-C and Biclus row, we conduct
gene function profiling with the web-based tapProfiler [Reimand et al., 2011], which per-
forms “statistical enrichment analysis to provide inteftation to user-defined gene lists.” We
select the following three optionSignificant onlyHierarchical sorting andNo electronic GO
annotations ForBHC-C, 4 out of 10 genes in the small cluster are found to be assatigith
the KEGG cell-cycle pathway (04110), but the other 6 genesnat mapped to collectively
meaningful annotations. The profiling results of the laB¥#C-C cluster with 48 genes are in
Figure 7.6; for better visibility we show only the Gene Owigy (GO) terms and high-light sim-
ilar terms with red rectangles and tags. About a half of tmmsgeare related to cell death and
immune response, and the other half are lower-level dagmmgpinvolving, for example, signal-
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Table 7.2: Contingency table of row and column clusterings

coll v | o | 3| 4
row
1 0o 0| 3 | 2
2 177 2 ] 0 | 0
3 10 | 17 | 0 | 2
] 1 [ 21 0| 2

ing pathways. For Biclus row, we report the profiling reswit®nly the two larger clusters (the
second and the third) in Figure 7.7, because the two smélisters, each containing 5 genes, are
not mapped to collectively meaningful GO terms. Interagyinthe two large Biclus row clusters
are associated with T-cell activation and immune respoasgectively, and together they cover
41 of the 48 genes in the lar@@HC-C cluster. This suggests that our method roughly splits the
largeBHC-C cluster into two smaller ones, each being mapped to a moteséatset of biolog-
ical annotations. Moreover, these Biclus profiling resuhe heat map (Figure 7.4(a)), and the
contingency table between the row and column clusters €Tala) altogether constitute a nice
resonance with the fact that T-cell activation results froather than leading to, the emergence
of immune responses.

7.5 Conclusion

We develop a nonparametric Bayesian method to simultaheodsr sparse VAR models and

bi-clusterings from multivariate time series data, and destrate its effectiveness via simula-
tions and experiments on real T-cell activation gene exgwestime series, on which the pro-
posed method finds a more biologically interpretable chiusgethan those by some state-of-the
art methods. Future directions include modeling signs arfigition matrix entries, generaliza-
tions to higher-order VAR models, and applications to otieat time series.
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Chapter 8

Conclusions and Future Directions

Motivated by the difficulties in collecting reliable timerges data in a variety of modern dynamic
modeling tasks, we study in this thesis the problem of legymiynamic models from data that
lack time information but are easier to obtain. We obsera¢ $iich non-sequence data can often
be modeled as independent samples drawn from multiplepem#ent executions of the under-
lying dynamic process. Based on this assumption, we progpodeatudy learning algorithms for
several widely-used dynamic models, including fully olvadte linear and non-linear models,
and Hidden Markov Models.

For fully observable models, we first point out some modehidiability issues in learning
from non-sequence data. Then we develop several EM-typeitgpalgorithms based on max-
imizing approximate likelihood, and for the case where alsaraount of sequence data are
available, we propose a novel penalized least square agiptbat uses both sequence and non-
sequence data. Empirical evaluation on synthetic data eveta real data sets, including gene
expression and cell image time series, demonstrates thatoposed methods can learn reason-
ably accurate dynamic models with little or even no time infation. However, we also observe
several failure modes that are hard to overcome withouterformation or assumption. This
suggests that for the proposed methods to make impact iappétations, they should incorpo-
rate as much expert domain knowledge as possible. For egakipwing how the variables in
the dynamic model might interact with one another can hedpdigsign of a better regularization
scheme. This motivates us to develop methods for learnirgutered vector autoregressive
models. Or, in some applications there might be partial mmdeinformation about the data,
which can provide constraints in our EM-type algorithms.

For Hidden Markov Models, we build on recent advances in tsaklearning of latent vari-
able models and propose tensor factorization based methatguarantee consistent parameter
estimation, under reasonable assumptions on the undgmyMM and the generative process
of non-sequence data. These assumptions are inspired tiyadpearning of topic models, but
have a few key differences, such as conditions on the Detgbriior for the initial state distribu-
tion and modeling missing times as geometric random vaglihat are specific to the HMM
setting. Although these generative assumptions may ndtihabservational data, they may be
fairly easy to implement in some scientific experiments. e aonsider the situation when lit-
tle sequence data are available, and propose a spectrattagosing both types of data, which
outperforms sequence-only learning algorithms.
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Going forward, one interesting direction is to investigateether spectral methods can be
used to consistently learn first-order observable models fnon-sequence data, and under what
conditions. As demonstrated in Chapter 5, it is primarilydigereteness, or more generally, non-
Gaussianity of the hidden state space dynamics that leadsddensor structures in observable
moments and easy characterization of assumptions ensurigge parameter estimation. There-
fore, in the case of first-order models with continuous obetaons, we expect that non-Gaussian
initial distribution is needed for consistent spectrafiteag from non-sequence data. Moreover,
it is likely that extra assumptions on the initial distrilmrt, such as distinct variances or means in
different dimensions, are required to eliminate the irsacie to parameter permutation inherent
in spectral learning.

Another important future direction is to make impact in rapplications with our proposed
methods. In order for that to happen, we expect to see vainberesting extensions or modifica-
tions to our approaches that are tailored to the applicationterest. In particular, our proposed
modeling assumption of non-sequence data has several cemsahat can be replaced to bet-
ter suit different applications, such as the distributi@assumption on the missing times and the
observational noise model. More broadly, our work has destrated the possibility of using
cross sectional data to aid longitudinal study. As mentilonehe very beginning of the thesis,
it is common in medical and social sciences that cross sedtiata are much easier to collect
than longitudinal data, and yet a lot of cross sectional detee actually collected under some
longitudinal effect. With advances in large-scale senseapnology, this situation will likely
become more prevalent. We think there are several posibifior our work to make concrete
contributions. For example, at the initial stage of londihal studies, researchers often have
to pose reasonable hypotheses to guide the design of exgdsnar data collection protocols.
However, even forming good hypotheses may be difficult whengubject matter involves a
complicated system. In this situation, our methods mayesasva good hypothesis generator, us-
ing cross sectional data that are available to produce lpessiodels. Or, sometimes researchers
may want some immediate, preliminary assessment even hhitveglongitudinal study is still
ongoing and only produced limited data. If there are abuhdeoss sectional data in the same
domain, our methods of combining sequence and non-sequataenay be used to provide a
reasonable estimate of the dynamic model under study.

In conclusion, our work demonstrates the possibility ofiéag dynamic models from data
that lack time information, and we hope it stimulates moseegch in making better use of the
large amount of cross sectional data brought by modernmsgtschnology.
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Appendix A

A Variational EM algorithm for Learning
HMMs from Non-sequence Data
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Based on the generative process in Section 5.2.2, we dexigéaional EM algorithm for
parameter learning assuming the observation noise followgherical Gaussian with variance
o2. The full joint probability of data and latent variables ¢éakhe following form:

({Xj} {hj} {tj} {Sj} {776} | U, 0% P,r, )
_H (H (HN J | Ul,a f) )(H((Ptf)l,l)hfl,551>Geometl’ic(tz | T><H((7T€))Z)SZZ>> .

rl l
Dirichlet() | ),

in which we use super-script as set indices and sub-scigpiiaia indices within a set wherever
appropriate. The goal is to maximize the marginal likelidad the data w.r.t to the parameters.
We begin by marginalizing over the latent timgs}:

PR AB) Al (i} | U 0%, T )
=H<H(HN x| Ui, o )(Hm”s”)(H wz;msfz))Dirichlet(wé|a>,

j=1 \i=1

whereT denotes the expected transition probability matrix. Ashe tensor factorization ap-
proach, we recoveP andr from the estimated” using the proposed search heuristics. Because
the posterior distribution of the remaining latent varegbktill leads to an intractable E step, we
employ the following factorized approximation:

FUBY Ay A} |H{xD), U, 0%, T, @) = q({h]} {s]} | {25 }a({mo} | {B7}).

where

g({nl} sy [ {@) = T (@)™, @ e 0,1,

ivjvllvl

a({m} [ {B7}) = HDifiCNet(Wélﬁj),

and obtain the following lower bound on the log marginal lilkeod:

g({®1}, {6}, U0, T, )

=Ry (100 0y 187) llog (f({xg}-’ ). {s1). {mo} | U T, a)>]
A g({h}, {si} [ {®: Da({mo} [{B’})
:E{h{},{sg}|{<1>§'},{7rg}\{ﬁj}[1Og f({Xf}»{hZ}»{Sz},{ﬂ'f)} | Uv OQ,T,a)]—
By o100 108 0000} 457} 1{OT1] = By [loma(md} | {831)]

= _ (@) (log N(x! | Uy, 0*I) + log Tir) +Z(Z Do+ o = 1) ((8) = 6(5))

YRRN4 il

— N(Zlogf Oél> — log F(Oéo)) — Z (q)g)ll’ lOg((I)g)”/

j7i7l7l/

= D8 = D08 () + D (D osT(B) ~logT(5)).
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where(-) is the digamma function. The variational EM algorithm themoaints to maximizing
g iteratively, alternating between the following two stepdiliconvergence:

Variational E-step

Holding the model parameters fixed, repeat the updates

(@) o N(x | Uy, o) T exp(¢(B) — (57)),
B = Z(Qf)zfﬂraz,

il

until convergence.
M-step '
Holding the variational parameteré¢®; } and{g3,} fixed, update model parameters:

Z;V 1D i Zf’ (P j)ll’xj
Z] 1 Zz 1 Zl’ 1( )ll’
2 Zj:l > it Zl,l’(q)g)ll/HXi - U?

U =

T Nnm
Ty = Zjvlz?_( )i
| ZJ 12% 121 1( )u'
o = {132%(}22 o = 1)(@(B]) — (&) = N( D logT(ar) — logT(a)).

The update fokx is a convex optimization problem whose inverse Hessian eacomputed in
linear time Blei et al. [2003].

Finally, we have to match the columns Gfwith the columns ofl". Note that the updates
imply that the columns ot/ are aligned with the rows df’, so it suffices to matclis rows
with its columns. Using the assumptions thata, = 7« andm; # m; V i # j, we recover the
matching by sortingx/« andT e/ ay.
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Appendix B

Proofs of Theorems in Chapter 5
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B.1 Tensor structure in low-order moments

Here we give proofs of theorems on tensor structures in ladetomoments of observable data.
The proofs make repeated use the following facts:

e T'm = m, i.e., the stationary state distribution is invariant unthee expected transition
probability matrixT".

e The missing time steps’s are independent of everything else.

e Conditioned on the initial state distributioty, i.e., within the same set of data, the obser-
vations{x;} are mutually independent, so are the hidden stfites and the initial states

{si}.
e The low-order moments of the Dirichlet distribution havepeeaal form (c.f. Appendix
B.1 of Anandkumar et al. [2013]), which leads to the desingdmetric tensor structure.

B.1.1 Proof of Theorem 2

E[xi] = EgE[x:1 | m]
= E.E[P"s; | m]
= En [E[P"]m]
= Tm
= .
Cy, = Exix,]

= EnE[P"sis; (P?)" | ]
= Er,[E[P"]E[s1s, | mo]E[(P")"]]
= TEg[momy T
: T
_ 7 diag(m) L QT (B.1)
g + 1 g + 1
Tdia T T
_ iag() N QT ‘ (B.2)
ag + 1 oo + 1
C3 = E[x; ® xy ® x3]
= E.,E[(P"s)) ® (P"sy) ® (P"s3) | o)
= Ex, [(Tmo) @ (T'mo) @ (T'mo)]
_ ZZ-27T¢T¢®T¢®TZ'+ RBrTRmW (B.3)
(Oé() + 2)(0&0 + 1) (O./O + 2)(0./0 + 1)
a0 (Ly (e Te T+ Lo 0T+ 10 T @ T)m )
_I_
(a0 + 2)(a0 + 1)
Zi 27‘(1’7}@3 — 20&%7‘&'@)3 Oéo(ﬂ' ®3 CQ =+ 7T X9 C2 + T X Cg)

N (a0 +2)(a0 +1) i o + 2 . 49
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We obtain|(B.1) and (B.3) by using the expressions of Digtimhoments derived in Appendix
B.1 of Anandkumar et al. [2013]. Re-arranging (B.2) and [Be&ds to the adjusted moments
M, and Ms.

B.1.2 Proof of Theorem 4

Vi = Elx4]
= E[Uh; + €]
= UE[P"s]
= UTE[m]
= Um.
Va = E[xix|]
= E[(Uh; +€)(Uhy +¢)"]
= E[Uhh/U"] + %I
= UE[diag(h,)|U" + 0?1
= UE[diag(P"s)|U" + ¢*I
= UE[diag(Tm)|U" + o*I
= Udiag(m)U" + 1.
Vs = Elx; ®x @ x4
= E[(Uh; +€)® (Uh; +€) ® (Uh; + €))]
= E[(Uh)®]+E[(Uh) ®¢ ® €] +E[e; ® (Uh) ® e1] + E[e; ® 6, ® (Uhy)]
Y mU; @ Ui @ Uy + Vi @1 (0°) + Vi @, (0°1) + Vi @3 (1),

which relies on the assumption of zero skewriggg;)3] = 0,1 < d < m.

Cy = E[x1x]
= E[(Uh; +€)(Uhy +e)']
= E[UhhyU"] (B.5)
= UE[P"s;s, (P2)TUT
UTE[mom) |T"UT
UTdiag(m)(UT)"T ooV V)"

— o1 + P (B.6)
C; = E[x; ®x2 ® x3]
= E[(Uh; +¢€)® (Uhy + €) ® (Uhg + €3)]
= E[({Uhi) ® (Uhy) ® (Uhs)] (B.7)
= E[(UP"s;) ® (UP"sy) ® (UP"%s3)]
[(

= E[(UTmy) ® (UTmy) @ (UTT)]
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> 27Ti(UT)Z®3 — 204(2)‘/1(83 ap(Vi @3 Co + Vi ®9 Cy + V1 ®1 C)
+ .
(Oé0+2)(040+ 1) CYO—|—2
Note that due to the independence assumption, there arase mbated terms in (B.5) and (B.7),
indicating thatC;, andC5 are unaffected by the noise distribution. And again, (Br&) éB.8)

are established with the expressions of Dirichlet momen#sipendix B.1 of Anandkumar et al.
[2013]. As in Appendix B.1.1M,, M3, M}, and M}, result from adjusting the raw moments.

(B.8)

B.2 Proof of Theorem 3

We first prove the following lemma:
Lemmal. If P(r) := (rI+(1—r)T*)"'T* exists and is a stochastic matrix for some (0, 1],
thenP(r’) exists and is a stochastic matrix for all € [r, 1].

Proof. SinceP(r) exists we can writd™* = rP(r)(I — (1 — r)P(r))~!. By assumptionP* is
invertible, so7™ is invertible. We then have

r! !

P (=) = S0P T = (=)D + (=) = SPe) I = (1= ) P)),

which is invertible for all”’ € [r, 1]. Therefore, we can write
/ / *) — / — r / _
P(r) = ("(T) 7+ (L =) D)7 = S P = (L= r/r)P(r)) ™" = E[P(r)],
wheret ~ Geometric(r/r"), showing thatP(r’) is a stochastic matrix. O

To prove Theorem|3 we begin by noting ti&tontains all values of for whichr 7+ (1—r)T™*
is singular. ThereforeP(r) is well-defined and invertible for € (0, 1] \ S. From the identity
T*n* = 7« = (rl + (1 — r)T*)x* we haveP(r)nm* = =*, r ¢ S. Similarly, the identity
177* =17 =17 (rI+(1—r)T*) and the fact thatr [+ (1 —r)T*) 1 T* = T*(rI+(1—r)T*) "
imply that1" P(r) = 17, r ¢ S. Itis easy to verifyP(r*) = P* by plugging in the definition
of T*. Lemma 1 then implies thatax(S) < r* and thatP(r’) is a stochastic matrix far’ > r*.
To prove the last statement of the theorem we rew#ite) by plugging in the definition of™:

*

P(r) = 7’7 (I—(1—r*/r)P") P

and consider its first-order derivative w.nt.
2 _ * *
oP(r)  _ S(Lrs (1= L)) a=-rjp
or r* r* r*
which exists for- € (0,1] \ S. By assumption we have; = 0, and by ergodicity of>* we can
assumeg P*)?; > 0 (otherwise there exists # j such thatP;; = 0 and(P*)7, > 0). Then we
have .
oP(r)y)  _ (P 0.
or r=r* r*

implying that there exists > 0 such that for € [r* —c,r*), P(r);; < Pj; = 0. This and Lemma
then imply the last statement of the theorem.
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B.3 Sample Complexity Analysis

The analyses here mostly follow those in Anandkumar et 8l182. LetO denote the observa-
tion matrix, which can be th& matrix in First-order Markov models, tHé matrix or the product
UT in Hidden Markov Models. Define

O := Odiag([\/71 V72 - V7).

k
My = Odl&g(ﬂ')O—r = 66T and Ms = ZTFZOZ ® 0; ® 0.
=1

Let T, := min,; m;. We have

Uk(0> Tmin S Uk(O)v

01(0) < 01(0),

whereo;(-) denotes thgth largest singular value.
Denote byl| - || the spectral norm of a matrix or the operator norm of a symimétird-order
tensor induced by the vector 2-norm:

|M|| := sup [M(6,6,0)]
lloll2=1
Suppose
|My — M| = B,
| M5 — M3|| < Es,

for someFE, and E; to be determined.

B.3.1 Perturbation Lemmas

Let J\/fgk be the best rank approximation tall in terms of the matrix 2-norm. According to
Algorithm/5.1, we have

WAL = 1.

Let L
WTM,W = ADAT

be an SVD ofiV T M, W, whereA € R***. Define
W = WAD /24T

and notice that P
WTM,W = AD™V2ATW T MyWADY2AT = 1.

LetQ :=W'O andQ := W'O.
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Lemma 2. (Lemma C.1 of Anandkumar et al. [2013]) LH{;, be the orthogonal projection
onto the range ol andII be the orthogonal projection onto the range®f Supposer, <
or(Ms)/2. We have the following:

el = 1,
1ol < 2,
_ 2
Wi < —,
O'k(O)
Wi < 20,(0),
W < 301(0),
~ 4F5
_ < _ ,
lo-al < 22
it -wy < OB
o, (0)?
M= Thy|| < —22
0, (0)?

Lemma 3. Weyl's Theorem. (Theorem 4.11, p.204 in Stewart and Sun [L9%@t A, F €
R™™ with m > n be given. Then

max |0;(A + E) — 0i(A)] < [[E].

1<i<n

B.3.2 Reconstruction Accuracy

Throughout this section we assume that the number of i@rafl andL for Algorithm (5.2
satisfy the conditions in Theorem 1.

Lemma 4. Supposenax(Fs, F3) < o,(Ms)/2. Foranyn € (0,1), with probability at least
1 — n the following holds:

max(o1(0), 1)
732 min(ox(0)?,1)

min

0= (WTVA| <c

max(EQ, Eg)

for some constant > 0.

Proof. By Theorem 1, the following hold with probability at lealst- #:

V=l =[S - vu2<\/2 (64E2)/(1/y/momn)? = 8Es,

IA|| = maxl/\/ﬁ_z < max(1/y/Ti + 5E3) < mil* + 5Es.
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With the above two bounds and Lemma 2 we have
10— (WHIVA| < 0~ w0l + w0 — (WT)IVA
=[|TIO — Iy Ol| + (W) TVA — (WHTVA|
< = |[O]] + [[(WHTVA — (WHTVA| + |(WHTVA — (WHTVA|
<[ = Ty ||+ (IWHIVIIIA = Rl + (W) TVA = (WHTVA| + [(WHTVA — (W TVA|
<0 — Ty || + W Bs + W[V = VAL + 1w = WA

AE ~ . 60(O)E
2 1+ 301(0)E;3 + 301(0)||V = V||#||A| + 1(—)2
o1 (0)? 01(0)?

<c ((\/ii_m + 3>01(O)E3 + <4 T 6\(;;_(53) ak(Ob;zﬁmm)

2701(0)  10max(01(0), 1)

<

<c ( — W%i(fk(O)z max (Fs, Fs)
37 max(01(0), 1)

= 72 min(o,(0)2,1)

min

<

IV = Vllr+DA]

maX(EQ, Eg)

wherec > 0 is a constant large enough to dominate low-order termsHikes. [

Lemma 5. With a slight abuse of notation, &t denote a column permutation of the trle,
UT denote a column permutation of the trig", and P denote a column-and-row permutation
of the trueP, where the permutations involved are the same. Suppose

max(|U — U||, [UT = UT|)) < ox(rU + (1 = r)UT)/2.
We then have

60, (UT)
o,(rU + (1 = r)UT)?

1P = (rU + (1 — 1 UDUT|| < max(|U — U||, |UT — UT|)).

Proof. First notice that
(rU + (1 —r)UT)'(UT)

(rT+ (=)D TUTU(rT 4 (1 —#)T)) " (rI + (1 —#)T) U UT
=(rI+(1—-n)T)"'T = P.

Then we have

1P = U+ 1 —=nUD)UT| = ||(rU+ (1 =r)(UT)'UT = (U + (1 —r)UDITUT)|
<||(U + Q= UDUT) - (rU + (1 — r)UT) (UT)||+

1(rTU + (1 =) UDUT) = (U + (1 = r)UD)UT||
) —

<||(rU + (1 = r)UT)! (rU—I— (1-— r)UT) or| + ||(rU—|— (1 —r)UT) IUT — U{BH 0
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By Lemma 3 and the assumption of the lemma, we have
ou(rU + (1 = )UT)/2 < ou(rU + (1 = )UT) < 304(rU + (1 — r)UT)/2,
showing that ranfeU + (1 — r)ﬁ) =kand
1(rU + (1 — »)UD)!|| = 1/ox(rU + (1 — r)UT) < 2/ox(rU + (1 — r)UT).

Because rankl + (1 — r)UT) = rankrU + (1 — r)UT) = k, Theorem 3.4 in Stewart [1977]
indicates that

I(rU + (1 = r)UT) — (U + (1 — ) UT)||
<V2| (U + (1 =) UD) [T + (1 = )T |[|r(U = U) + (1 = r)(UT = UT)|
Va(r|U = Ul + (1 = nIIUT - UT|) _ 2v2(rllU = U] + (1 = n)|UT - UT)
" ou(rU + (1= 1)U o (rU + (1 — 1) UT) ~ or(rU + (1 = r)UT)?
Applying these bounds to (B.9) then leads to
1P — (U + (1 —r)UT)'UT|

_2V20,(UT) (r|U — U]l + (1 - )|UT — UTY) 2|UT — UT)|

- o(rU + (1 —r)UT)? o,(rU + (1 —=r)UT)
r220,(UT)|U =T (1 —)2v201(UT) + 204,(rU + (1 — r)UT)) |UT — UT]|
o (rU + (1 —1r)UT)2 op(rU + (1 —r)UT)?

<max(r2\/§, (1—=7)2v2+2)o (UT)

a o (rU + (1 —r)UT)? max(||U - U|[, [UT — UT||)

60, (UT) . __
U-U|,|lUT-UT
_Uk(TU+(1—T)UT)2 maX(H ”7” ”)7
in which we use the fact, (UT) > o1(rU + (1 — r)UT) > oy (rU + (1 — r)UT). O

B.3.3 Concentration of empirical averages

Lemma 6. Let {y,;}, be N i.i.d. random vectors irR™. Letu := Ely;],¥ := Var(y;) and
02 0 i= Maxy Ygq. Letp := (3, y;)/N. Then

max

mo?>

Prob(||z — > ) < X
([0 — pl]2 > €) < Ne?

Proof. This lemma is a straightforward consequence of the Markeguality:

Prolf[|a — pll2 > ) = Prol{f|a — pl; > €*)

Elllp — plf3]
_ ZdE(p’d_u’d)2 _ Tr<2) < maﬁlax
€2 Nez2 — Ne2 -~
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Lemma?. Leﬂ71, 172, 17},, 6‘;, @ denote averages df independent draws of;, x; ® x1,X; ®
X] ® X1,X; ® X9,X; ® Xy ® X3 from the generative process in Section 5.2.2. dgt, =
max; ; ’U'LJ| Then

R 2 2
Prob(| Vi — Vifls = ¢) < T £07)

2 ]2\[62 272
—~ m=\u g
Prob(||Vo — Vallp > €) < 3( ;I]l{lfxej 2)3=
—~ m-\u g
Prob(||Vs — Vs]|p > €) < ( H}ffxej ) ;
Prob([|Cs — Col|r > €) < s %@X; : )2’
N m?>(u? o?)3
Prob(||Cs — Cs]|r > €) < ( n}\a;;;— )

Proof. Based on Lemma 6, it suffices to boun], . in these five cases:

maxVar((x1);) < maxE[(x));] = maxEy, [0+ (Uhy)] < 0—2+maXUz‘2kv
Hgngar((xl)i(xl)j) < mf]iXE[(Xl) (x1)7] = mathl[(U + (Uhy)7) (o +(Uh1)?)]
< I{ljaf(a +UN(0* +Up) < (0 +T%2XU2‘23'>7
max Var((x,)i(xz);) < Hlf]lXE[(Xl) (x2)7] = max B, [E[(x1)7 7o) E[(x2)7 | o]
<

max sup E[(x, )7 |mo]E[(x2);|mo] < (mlaXS}TlopIf“i[(xl)?lﬂo])2

2¥) ™0

(mlax sup Z U (T7o)k + 02)2

= maxmaxZU Ty +0°) 7 < (max U] + o°).
2y

With similar arguments, we have that

max Var((x1)i(x1);(x1)1) < (max U + o),
i.J, i,j

max Var((x1);(x2);(x3);) < (maxU} +0°)".

1,7, 2%]

]

Lemma 8. Let]\//.l\g, ]\/4\3, ]\75, ]\Zg denote estimates of the population quantities defined im-The
rem/4 obtained by plugging in empirical averages of indegedamples as in Lemma 7, and

- ~ T . . .
75 = Amin(V2 — V1V1 ), where\,,;,(-) denotes the smallest eigenvalue in modulus. Define
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v :=max(c? +u2_ , 1). We then have the following:

— 75m2u?

Prob(|| M), — M| > <

(- M) 2 0 <

— 1000m*?

Prob(||M; — M;|| > ¢) < N2
— 50(c + 1)?m?v?

Prob(||[ My — Ms|| > ¢€) < e ,

1100k2m3(ap + 2)2(a + 1)%0/3

Prob My — M| > <
(M5 — My > ) < e

. _ . ~ A AT ~ .
Proof. We first note that it is easy verify" (1, — ViV, )z > 0 for any real vector, soo? is
always non-negative. By Lemma 3, we have

~ ~ ~T ~ ~ ~T
Vo= ViV, = (Vo = ViV || < Ve = Vol + V" =WV ]
Vo = Vol + [[Vi = VAl (1Al + IV D
Vo — Val| + 2[Vall[IVa — Vall + Vi — VA ||

|02 — 02|

VAN VANVAN

We also need the following
2
Vil? = o= = ) <ZUm> < Y omUs < ) maxUj < mug,,.
% 7 %]
Then we have
IVa = Val| +|o* — 0|

<
< 2|[Va — Vol + 2VillIVh = Wil + [V — VA
< 2|Vy — Vallp + 2[VAllIVi — V|| + V2 — WA P2,

M5 — M|

which implies

Prol(|| M — Mj|| > ¢)

< Prob(2||Va — Vallr + 2 VA[[[[V = Vil + Vi = VA[)” = ¢)

< Probf2||Vs — Va||r > €¢/3) + Probi2||Vi[|[Vi — Vi|| > €/3) + Prol(|[Vi — Vi[> > ¢/3)
o 36m*(una +0%)7 | B6IVAPm(upe +0%) | 3m(uga, +07)

- Ne? Ne? Ne

< 36m?(u?,, + 0%)? N 36m*u?, (v, +0?)  3m(ud,, +0?)

- Ne? Ne? Ne

< 75m2(ut . + 02)?

- Ne?
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Similarly, we have

1My — Ma|| < (Vs = Vallp + 3|V @1 (0%1) — Vi @1 (02]) 1
Vs — Val|r + 3v/ml|o*Vi — o2V
< |IVs = Vallp + 3vm(e®|Vi = Vall + |02 — a2|(IVal| + V2 — VAl]))
< Vs = Vallp + Vi = ValI3v/m(o® + 2mu,,) + Ve — Val[3tmaxm
Vi = Vil + 3vm(|Vi — Vi Va = Vall + [V = VA1),

implying

Prol( || M — Mj|| > ¢)

< Prolf||Vs — V|l» > €/6) + Prob(||[Vi — Vi|| > ¢/(18y/m(0” + 2mu?,,,)))
+Prol(|[Va — Va| > €/(18uaxm)) + Prol([|[Vi — Vi[* > €/(54umaxm))
+prob( Vi = Vil = \/e/1vm) ) +Prob Vs — il > </ (15im)
LPIOH||Vi — ilP* > ¢/ (18y/m))
< 36m(Upa +0°) N 324m?(0? + 2mus,, ) (0? +ui ) N 324ul, m*(0® + ul,,)?
- Ne? Ne? Ne?
Sumaxm?(0? +u2, )  18m32(0? +u2,)  18m*2(0? +u?,,)?
Ne Ne Ne
36Y3mA3 (02 +ul,)
N€2/3
1000m*(max(e? + u2,,1))3
- Ne? ’

Using similar arguments, we have

—~ AT
(ao + D]|Cy = Ca|lp + aolViV) = ViVA ||k
(ap + 1)[|Cy — Calp + 2a0 | VAl VE — VAl + aol|V2 — VA 1%,

| My — M| <
<

and therefore

Proky(|| M, — M| > e)

—~ ~ €
< Prol||Cy — Co||r > m)+Prod||V1—V1|| > m)
+PrOH(|Vy — Vi[[* > o)
0 P 4 ) Bbedmtud (ot 4 ud)  Bagm(o® + i)
- Ne? Ne? Ne
< 50(ap + 1)2m? (0% +u? ,.)*
- Ne? '
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Finally, we have

1M — Ms|
g+ 2) (g + 1 —~ 3(ag + o~
< (0 )2( 0 )||C3—03||F+%HV1®102 ‘/1®O2||F
+aVieVioVi - oV e Wlx
ag+ 2) (g + 1 — 3(ag + 3(ag +
< ot 2ot Do, G+ 20 D0y Gy + 20TV 50, - )
+30d[|VA[2(1V2 — VAl + 32 VallI Vi — VAl + o3[ Vi — VA )?
ap+2)(ap+ 1 — 3(ap + = 3(ap + —~
< 02200+ Dy, G+ 202Dy gy + 20T D00, - G
3(ag + 1) ~ — ~ ~ R
200t D00 DGy~ Calle + 303IAIPIV: — Tl + a3 VAllIVa — P41+ agl1vi — VAl
ap+2)(ag+1 — ~ 3(ag + 1) —~
< (00X D006 Gl + 5(a0 + Daokmad Vi - G+ 20T D0 w50, 7,
3(ap + D ~ o~ . -
+il7l%%—%W@—@M+&ﬁMW%—%WﬂﬁM—%W
using the fact that
dia T
1Collr = HUT( g + oo )TTUT < UTI < kmid,,
Oéo-'-l F
and thus
— — €
Prol( || M5 — Ms|| > < Prob|( ||C5 — C >
(s~ T 2 9 < Prob(la — Gallr > 3ot )
~ € —~ €
Prob( [|V; — W4 Prob|( ||C, — C >
+ (H ! ille = (ao—i—l)aokmuﬁlw) + (H 2 2llp > 9(a0+1)a0)
Prob( ||V, — V|2 > Prob( [|V; — ‘
- ProIVi — > ey ) + Prob(IV: P> o )
- Im? (g + 2)* (g + 1) (0? + u2,)? 900/<:2 3ap + 1)2dut (0% +u2,.)
- Ne? N€2
+81(a0 + 1)%2aim?(o? + u?,)? N 18a3m3/2umax(02 +u?,.) N 6ma§/3(0 +u?,)
Ne? Ne Ne2/3
- 1100k%*m3 (g + 2)* (g + 1)%(0? + u2,)?
- Ne? )
OJ

B.4 Proof of Theorem 5

Let 7 andUT be column-permuted as described in Algorithm 5.4. Let
Bin == min |1/ /7 — 1/ /5.
7/7]

122



If max(FEs, EY) < dmin/15, Theorem 5.1 of Anandkumar et al. [2012a] implies that foy an
n € (0,1), with probability at least — 7, the columns of/ andUT are matched to the same
permutation of the columns of the trdéandUT, respectively. As in Lemma 5, léf, UT, and

P denote proper permutations of the true matrices. We thea hav

eor(rU + (1 —r)UT)?
601 (UT) )

Prob(max(HU — 0|, |luT = UT||) >

eo(rU + (1 —r)UT)?
60 (UT)

gprob(nU— Ul >

> + Prob(||UT 7| s U+ (1= T>UT)2) .

601(UT)

Let the failure probability for the tensor decompositionthul be set td!. Then by Lemma 4
we can bound the first term as follows:

eo(rU + (1 —r)UT)?
601 (UT) )
eop(rU + (1 — T)UT)QW%i min(o,(U)?, 1))

Prob(nU—ﬁH >

601 (UT)cmax(o1(U), 1)

+ Prot{max(E}, Ef) > 0(Mj)/2) + 7 + PrOH(E} > 6 /15),

<Prob (max(Eé, E3) >

where the firstterm in the r.h.s is based on Lemma 4 conditionghe event thahax(E,, EY) >
o,(M3)/2 and the tensor decomposition method succeeds, the secdnideattird terms bound
the probability that the event does not occur, and the last tounds the probability of incor-
rectly matching the columns &f andU. To continue bounding these terms we use Lemma 8 to
have

601 (UT)cmax(oy(U), 1)
(2700m?v?* + 36000m*v3)o1 (UT)*c* max(aq (U)?, 1)
Ne2op(rU + (1 — r)UT)473 . min(ox(U)*4, 1)
39000m*v30y (UT)?*c® max(o1(U)?, 1)
“Ne2op(rU + (1 — r)UT)*x3 . min(oy(U)*, 1)’
300m?v? + 4000m*v? < 4300m*v?
Noy(Msy)? = Nop(My)?’

prob<maX( B, E) > ear,(rU + (1 — r)UT)*m2i2 min(oy (U)?, 1))
2y H~3) —

Prob{max(E}, ) > 04(M3)/2) <

225000m*v3
N§2

min

Prob(E} > 6in/15) <

Thus, by setting the sample si2éso that

v o 2wt 225000 4300 390000, (UT)2e max(o1 (U2, 1)
max
- n 62, o (My)? €o(rU + (1 —r)UT)*w3, min(op(U)*,1) )’

min min

we have
(B.10)

N _ 2
Prob(HU— ol > eor(rU + (1 —r)UT) > < g’

601 (UT)
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where the randomness is from both the data and the algorittsing similar arguments, we have
that for sample sizéV such that

N > 12k*m3(ap + 2)2 (g + 1)21/3'

n
s 225000 4600 4200001 (UT)?(¢')* max(a1 (UT)?, 1)
62 T op(M'9)? 0y, (rU + (1 — r)UT)*w3, min(o,(UT)*,1) )’

the following holds:

. _ 2
Prob<||UT— o) > Cxrv+ U = n)UT) ) < (B.11)

601 (UT)
Combining the two bounds (B.10) and (B.11), we have for
N > 12max(k*, m)m’v?(ao + 2)* (a0 + 1)*

s <225000 Z17600 42000c?01 (UT)? max (o (UT), 0,(U),1)? )
Omin  Min(ok(M'2),04(M2))*" €04 (rU + (1 — r)UT)* min(ox(UT), 0, (U),1)* ) *
the following bound holds for any > 0 andn € (0, 1):

N3

R — eop(rU + (1 —r)UT)?
Prob - T-UTl) = =1
ro (maX(HU Ull, U uTll) < 601 (UT) "

which by Lemma 5 implies that

Prol(||P — (U + (1 - r)UT)UT| < ) > 1-n.
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Appendix C

Derivations in Chapter 6
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C.1 Derivation of (6.20)
Using properties of the matrix trace and the kernel trick immediately have
1 ~ 1
§||22leT — Ca1lgsg o §Tr(PTM2PM1) —Tr(P'F),
u S1 o, T S1 o,
5 (12:P1 = 22l + 12071 - 2 )
~ ng(PTMgP + PMPT)1 —ulT (P py + Ppuy).

Let \;(-) denotes the-th Eigenvalue of a matrix. We then rewrite the nuclear nagrmt

T 2PE . = 7Y \/M(ZPLT L PTZ])

=y VAN(LTPTLLL PLY) = 7| L] PLl.,

C.2 Derivation of (6.34)

We begin by defining some notations:
H = (7TM317, R = VTle/, u:= (7T1, V= ‘7T1,

®] Z,

F1 = <I>1TZJ7, F2 = y F3 = (I);Zg[’j

Let vec(X) be the vector resulting from column concatenation of a matij diag(x) be the
diagonal matrix with the vectat being its main diagonal. Superscripts denote column irsdice
Using properties of the matrix trace and the kernel trick rervrite the three terms in (6.34) as
follows. For the first term we have

ICs.12({B:}) = Cs12/8ege0
o T ( S (Eul 2V B UMD BV ) -
d

LU

~ o~ diag((P2)q.
2 ZTr( 3 VBZTUT(Zé)ngT%%@IZl)
d l

:Tr( S (My)uBHB/R -2 BZTF;diag(Fg)Fl),
w l
and then for the second term

1Cs.2({B1}) = Cat G o

Tr([Biv -+ Byuv] H[Biv -+ B,v]M,)—
oTr([Biv -+ Buv] U Mgy PMi,) =

Tr(> (My)a Bl HBvv' — 2> BJU" Mgy PM,v"),

il

126



and finally for the third term

IC.12({B}) " = Canllgag

Tr([Bfu --- Blu|My[Blu --- Blu] R)-

2Tr([Bu -~ Blu] MyPM V) =

Tr() (M) Bl uu B;R — 2> " Blu(Mj)TPMV).
i i

To further simplify these expressions, we re-define thetimta3 to be ak?-by-m matrix whose
I-th columnB! denotes column concatenation of thdy-k matrix B; in the above expressions.
With the new notation and the identity:

vec(XYZ) = (Z" o X)vec(Y) (C.1)
whereo denotes the Kronecker product, we obtain the succinct fér84] in which

C:=RoH+u((vv')oH+ Ro(uu')),
J = (Fi o F)" [vec(diag(Fy)) --- vec(diag(F3"))]
+ u((v o (UT Mgy P)) Myy + (VT MPT) o u) MQ).
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