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Abstract

Virtually all methods of learning dynamic models from data start from the same
basic assumption: that the learning algorithm will be provided with a single or mul-
tiple sequences of data generated from the dynamic model. However, in quite a few
modern time series modeling tasks, the collection of reliable time series data turns
out to be a major challenge, due to either slow progression ofthe dynamic process of
interest, or inaccessibility of repetitive measurements of the same dynamic process
over time. In most of those situations, however, we observe that it is easier to col-
lect a large amount of non-sequence samples, or random snapshots of the dynamic
process of interest without time information.

This thesis aims to exploit such non-sequence data in learning a few widely used
dynamic models, including fully observable, linear and nonlinear models as well as
Hidden Markov Models (HMMs). For fully observable models, we point out several
issues on model identifiability when learning from non-sequence data, and develop
EM-type learning algorithms based on maximizing approximate likelihood. We also
consider the setting where a small amount of sequence data are available in addition
to non-sequence data, and propose a novel penalized least square approach that uses
non-sequence data to regularize the model. For HMMs, we drawinspiration from
recent advances in spectral learning of latent variable models and propose spectral
algorithms thatprovably recover the model parameters, under reasonable assump-
tions on the generative process of non-sequence data and thetrue model. To the
best of our knowledge, this is the first formal guarantee on learning dynamic mod-
els from non-sequence data. We also consider the case where little sequence data
are available, and propose learning algorithms that, as in the fully observable case,
use non-sequence data to provide regularization, but does so in combination with
spectral methods. Experiments on synthetic data and several real data sets, includ-
ing gene expression and cell image time series, demonstratethe effectiveness of our
proposed methods.

In the last part of the thesis we return to the usual setting oflearning from
sequence data, and consider learning bi-clustered vector auto-regressive models,
whose transition matrix is both sparse, revealing significant interactions among vari-
ables, and bi-clustered, identifying groups of variables that have similar interactions
with other variables. Such structures may aid other learning tasks in the same do-
main that have abundant non-sequence data by providing better regularization in our
proposed non-sequence methods.
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Chapter 1

Introduction

Learning dynamic models from data is the traditional topic of system identification [Ljung, 1999]
in control theory and many algorithms have been proposed. Inthe machine learning literature, the
learning of temporal graphical models, such as dynamic Bayesian networks [Ghahramani, 1998a;
Murphy, 2002], and the learning of various types of Markov models [e.g., Abbeel and Ng, 2005;
Beal et al., 2002; Ghahramani, 1998b; Hsu et al., 2009; Rabiner, 1989; Song et al., 2010], have
been extensively studied.

Virtually all methods of learning dynamic models from data start from the same basic as-
sumption: that the learning algorithm will be provided witha single or multiple sequences of
data generated from the dynamic model. However, in quite a few modern dynamic modelling
tasks, a major difficulty turns out to be the collection of reliable time series data. In some of these
tasks, such as learning dynamic models of galaxy or star evolution, the dynamics of the processes
of interest are far too slow for researchers to collect successive data points showing any mean-
ingful changes. At more modest time scales, the same problemarises in the understanding of
slow-evolving human diseases such as Alzheimer’s or Parkinson’s, which may progress over a
decade or more. In other situations, the dynamic process of interest may not be able to undergo
repetitive measurements, so researchers have to measure multiple instances of the same process
while maintaining synchronization among these instances.One such example is gene expression
time series. In their study, Tu et al. [2005] measured expression profiles of yeast genes along
consecutive metabolic cycles. Due to the destructive nature of the measurement technique, they
collected expression data from multiple yeast cells. In order to obtain reliable time series data,
they spent a lot of effort developing a stable environment tosynchronize the cells during the
metabolic cycles. Yet, they point out in their discussion that such a synchronization scheme may
not work for other species, e.g., certain bacteria and fungi, as effectively as for yeast. Another
example is cell image time series. In a recent study [Buck et al., 2009] on cell cycle dependence
of protein subcellular location inferred from images, the authors discussed some challenges in
obtaining time series of cell images: “... time-lapse images can be more difficult to obtain than
single images of cells because many microscopes do not maintain a viable environment for the
cells they image (e.g., cells die after some time, and even while alive they are not under con-
stant conditions). Furthermore, repeated excitation of dyes for fluorescence imaging causes
photobleaching, reducing signal and leading to toxic chemical changes (phototoxicity), further
perturbing cells.”

1



Table 1.1: Summary of thesis work

While obtaining reliable time series can be difficult, it is often easier to collect non-sequence
samples, or snapshots of the dynamic process of interest. For example, the Sloan Digital Sky
Survey (SDSS)1 has collected images of millions of celestial objects, eachof which may be in a
different phase of its life cycle. In medical sciences, a scientist studying Alzheimer’s or Parkin-
son’s can collect samples from his or her current pool of patients, each of whom may be in a
different stage of the disease. Or in gene expression analysis, current technology already enables
large-scale collection of static gene expression data. It is also the case in cell image analysis,
as concluded by Buck et al. [2009]: “A method using un-synchronized cells with single-image
capture would have the advantages of avoiding repeated exposure to fluorescence excitation
(permitting higher-energy exposure to obtain better signal) and fewer environment viability re-
quirements.”

More broadly, in social and medical sciences it is usually the case thatlongitudinal study,
the collection and analysis of data from the same subjects over long periods of time, is more
powerful but also expensive thancross-sectional study, which uses observations collected from a
large or representative portion of the population within a short time frame. With recent advances
in sensing technology, there will likely be a large increasein cross-sectional data in various
domains, and it would be great if they can be used not only in cross-sectional study but also to
aid longitudinal study.

1.1 Thesis Summary

Motivated by challenges in time series data collection for avariety of modern dynamic modeling
tasks, we propose and study several methods for learning various dynamic models using non-

1http://www.sdss.org/
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sequence data that lack time information but are easy to obtain. Table 1.1 summarizes our thesis
work and contributions. In brief, we consider learning two classes of dynamic models: first-order
observable models and hidden Markov models (HMMs), under two conditions on the input data.
When the input data consists of both sequence and non-sequence samples, our proposed methods
use non-sequence data as regularization to existing sequence-only learning methods, and achieve
significant improvement when sequence data is few. In the more challenging situation where all
the input data are non-sequence, our methods for learning first-order observable models maxi-
mize approximate likelihood functions via EM-type procedures, and obtain encouraging results
on synthetic data as well as several real data sets, including gene expression data and cell im-
ages. For HMMs, we take advantage of recent advances in spectral learning [Anandkumar et al.,
2012a] and identify reasonable generative assumptions on non-sequence data that lead to spectral
methods with consistent parameter learning guarantees. Tothe best of our knowledge, this is the
first theoretical statement on learning from non-sequence data.

1.2 Thesis Overview

After surveying related work in Chapter 2, we first consider inChapters 3 and 4 learning fully
observable dynamic models. In Chapter 3, we assume the only data available are snapshots
taken from multiple instantiations of a dynamic process at unknown times, and the dynamic pro-
cess falls in the class of fully observable, discrete-time,first-order linear or non-linear dynamic
models. Acknowledging several issues in model identifiability, we developed EM-type learn-
ing algorithms that maximize approximate likelihood functions, along with novel initialization
methods based on the idea of temporal smoothing. In a number of experiments on synthetic and
real data sets including gene expression data and cell images, the proposed algorithms are able to
learn moderately to highly accurate dynamic models, but at times suffer severely from the model
ambiguity inherent in this setting.

We thus in Chapter 4 consider slightly stronger assumptions:in addition to non-sequence
data, a small amount of sequence data are also available. We restrict the class of dynamic mod-
els to first-order discrete-time stable vector auto-regressive (VAR) models, and assume the non-
sequence data are independent samples drawn from the stationary distribution of the VAR model.
The latter assumption is valid when, for example, snapshotsare taken from multiple trajectories
of a VAR process after they have reached stationarity. Basedon these assumptions, we proposed
learning algorithms that minimize a new penalized least square objective, which incorporates
non-sequence data in a novel regularization term that quantifies violation of the Lyapunov equa-
tion relating the autoregressive model to the covariance ofits stationary distribution. Experiments
demonstrate that when the amount of sequence data is small, our proposed method of exploiting
non-sequence data can significantly improve over standard learning algorithms, which use only
the sequence data.

Although fully observable models like VAR are useful, in many applications only a subset
of the variables in the underlying dynamical system can be observed. Thus in Chapters 5 and
6 we turn to learning dynamic models with hidden states. At first glance this seems formidable
because even when sequence data are available, learning hidden-state models is in general dif-
ficult both statistically and computationally. However, anemerging line of research in machine
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learning, known as spectral learning, has recently developed statistically consistent and computa-
tionally efficient algorithms for learning from sequence data perhaps the most widely-used class
of hidden-state models, hidden Markov models (HMMs) [Anandkumar et al., 2012b; Hsu et al.,
2009; Siddiqi et al., 2010; Song et al., 2010]. Unlike traditional EM-based learning methods,
which are vulnerable to bad local optima, these new methods are based on spectral decomposi-
tion, such as Singular Value Decomposition (SVD), of empirical moments computed from data,
and therefore result inunique, local-minima freeestimates of model parameters, allowing formal
statistical guarantees to be established. Building on these recent advances, we propose spectral
algorithms for learning HMMs that exploit non-sequence data.

In Chapter 5 we consider the case where only non-sequence dataare available. However,
unlike in Chapter 3 where all the data points are assumed to have the same initial condition, here
we needmultiple setsof non-sequence data, each generated from a different initial hidden-state
distribution. The main contribution of this chapter is to identify conditions on the initial hidden-
state distributions, by drawing connections to spectral learning of Latent Dirichlet Allocation
(LDA) models [Anandkumar et al., 2013], as well as distributional assumptions on the missing
time information that allow us to develop spectral algorithms with formal guarantees on HMM
parameter learning. To the best of our knowledge, these are the first theoretical guarantees in
learning from non-sequence data. Compared with EM-based methods in simulation, our spectral
algorithms perform significantly better in parameter estimation.

Then in Chapter 6 we look at the situation where, as in Chapter 4,some sequence data are
available and the non-sequence data consist of independentsamples from the stationary distri-
bution of the underlying HMM. Extending state-of-the art spectral algorithms for learningob-
servable representationof HMMs [Hsu et al., 2009; Siddiqi et al., 2010; Song et al., 2010], our
proposed methods obtain improved estimates of lower-ordermoments by minimizing estimation
error on the sequence data plus a regularization term on the non-sequence data, and then apply
spectral decomposition to the improved moment estimates. Interestingly, although the high-level
idea is similar to that of Chapter 4 and HMMs are more complex models than VARs, the opti-
mization problems in this chapter turn out to be convex whereas the ones in Chapter 4 are non-
convex. Experiments on simulated data and sensor recordings of human activities demonstrate
improvement over existing sequence-only spectral algorithms.

In the final part of the thesis, Chapter 7, we return to the traditional setting of learning from
sequence data and focus on learning structured vector auto-regressive models. Although this
chapter is not directly related to the main theme of the thesis, the methodology developed here
can aid learning in the non-sequence setting through its estimated structure of the VAR model,
which may guide the design of the regularization terms in theproposed EM-type methods (Chap-
ter 3) when applied to non-sequence data in the same domain. We are motivated by problems
in biological time series analysis, where dependency graphand clustering of variables, such as
expression levels of genes, are two of the most commonly sought structures. In spite of be-
ing closely related, these two structures are usually estimated in separate procedures. We thus
propose a fully Bayesian approach to simultaneous learningof these two structures for vector
auto-regressive models, using a novel bi-clustered and sparsity-promoting prior for the transition
matrix and an efficient blocked Gibbs sampling procedure forposterior inference. Applied to a
T-cell activation gene expression time series data set [Rangel et al., 2004], this new method finds
a more biologically meaningful clustering of genes than state-of-the art gene expression time
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series clustering methods.
This thesis contains our published work in several venues:
• Chapter 3 [Huang and Schneider, 2009; Huang et al., 2010]

• Chapter 4 [Huang and Schneider, 2011]

• Chapter 5 [Huang and Schneider, 2013b]

• Chapter 6 [Huang and Schneider, 2013a]

• Chapter 7 [Huang and Schneider, 2012]
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Chapter 2

Related Work

In a good number of applications, a critical issue is to understand the dynamics or temporal de-
pendency underlying observed data that lack temporal or sequential information. As a result,
various methods were proposed independently in different areas, but to the best of our knowl-
edge, no prior work studies the general problem of learning dynamic models from non-sequence
data as comprehensively as this thesis. In this chapter we survey several such applications and
briefly explain the methods developed therein.

As mentioned in Chapter 1, cell imaging has become a useful tool for studying certain
types of cell dynamics, such as variation in protein subcellular localization during the cell cycle
[Buck et al., 2009]. Instead of relying on time-series cell images as in most previous studies,
Buck et al. [2009] propose to utilize static, asynchronous snapshots taken from multiple cells at
various phases of the cell cycle because, as quoted in Chapter1, such images are easier to obtain
on a large scale than time-series images. Their approach is to first extract a one-dimensional
surrogate of cell cycle time from static cell image featuresby manifold learning techniques1, and
then use this surrogate in place of cell cycle time for subsequent cell-cycle dependence tests.
Through analysis of real data, they confirm that such a surrogate is well correlated with the cell
cycle. However, they did not perform explicit dynamic modeling, i.e, building models to predict
future observations.

A closely related problem studied in a number of disciplinesis that of ordering a set of ob-
jects. Depending on the domain of interest, an ordering can be interpreted as progression of
time, some coherent sequential structure or monotonic property. In natural language processing,
the task of multi-document summarization requires ordering of sentences selected from differ-
ent documents, and automatic title generation techniques construct a headline by selecting and
ordering words from the input text [Barzilay and Elhadad, 2002; Deshpande et al., 2007]. In
multimedia analysis and retrieval, automatic generation of video or slideshow from photos in-
volves laying down a coherent and smoothly transitioning sequence of scenes [Chen et al., 2006;
Hua et al., 2004]. Some of the techniques developed for thesetasks are tailored to a specific
problem domain, and most of them have access to some externalknowledge about orderings

1Manifold learning techniques have been used in dynamic model learning to identify a subspace where the
dynamics reside, leading to more accurate models. See, for example, [Boot and Gordon, 2011] and references
therein. Similar techniques can be used in combination withour proposed methods as a pre-processing step to make
the problem lower-dimensional and thus easier.
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of objects, such as time stamps of photos or grammatical rules for sentence compositions. In
contrast, we consider a more general problem setting which relies on no or little domain specific
knowledge, though our proposed methods make more explicit model assumptions.

The computational biology community has also studied the problem of ordering objects, in
the context of finding a temporal ordering of static, asynchronous microarray measurement data
[Gupta and Bar-Joseph, 2008; Magwene et al., 2003]. The proposed methods therein are less
domain dependent and fall in a large family of algorithms forsolving thecurve reconstruction
problem, which has been studied in various fields such as computational geometry (e.g., Giesen
[1999]), statistics [Hastie and Stuetzle, 1989], and machine learning [Smola et al., 2001]. More
specifically, Magwene et al. [2003] proposed to reconstructthe temporal ordering of microarray
samples through finding the minimum spanning tree on the graph formed by the sample points,
while Gupta and Bar-Joseph [2008] proposed to solve an instance of the traveling salesman prob-
lem (TSP) and proved that under certain conditions on the dynamics generating the samples, the
optimal TSP path accurately reconstructs the true ordering. A key assumption behind these two
methods is that temporally close sample points should also be spatially close. Both of these
methods are unable to choose an overall direction of time, a limitation due to the invariance to
time direction in their objective functions. Our problem setting differs from the aforementioned
in that we consider snapshots frommultiple trajectoriesof some dynamic process rather than out-
of-order samples from asingle sequence. Moreover, we focus more on learning a model for the
underlying dynamics than ordering the data points. Although the non-sequence data considered
in our settings, as formalized in later chapters, can be ordered based on their unobserved time
stamps, such an ordering may not be very useful to existing dynamic model learning methods
because these methods require as input sequences trackingthe same instancesover time. Nev-
ertheless, ordering objects is still a useful component in our proposed methods in Chapter 3, but
the objects being ordered, instead of raw data points, are some representative points discovered
by clustering algorithms.

Another problem involving learning dynamic models withouttemporal ordering is the net-
work structure inference problem considered by Rabbat et al. [2008]. The authors point out that
in many situations, ranging from telecommunication network tomography problems to construc-
tion of biological signal pathways or social networks, the goal is to reconstruct a directed graph
representing the underlying network structure, but the only available data are sets of nodesco-
occurring in random walks on the graph without the order in which they were visited. These
problem can be cast as learning a first-order Markov chain from data lacking ordering informa-
tion. To avoid the exponential-time complexity of enumerating all possible orderings, the authors
propose a polynomial-time, importance sampling based EM algorithm with convergence guar-
antee to estimate the parameters of the Markov chain. Inspired by Rabbat et al. [2008], several
researchers in computational linguistics study the problem of learning a bi-gram language model
from the commonly-used, order-invariant bag-of-words representation of text corpus [Zhu et al.,
2008], and develop a similar sampling-based EM algorithm. While empirically successful to
some extent, these algorithms, like most EM procedures, do not have guarantees on the quality
of their parameter estimates. Very recently, Gripon and Rabbat [2013] propose a combinatorial
algorithm for graph reconstruction from co-occurrence data and provide some theoretical guar-
antees on the reconstruction accuracy. However, their results apply only to undirected graphs
and require the input to the algorithm to be the exact set of triples of nodes that are connected but
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cycle-free in the graph. In Chapter 5 we also study the problemof learning first-order Markov
chains from data lacking temporal information. However, instead of data with hidden order-
ings, we consider data drawn from multiple, independent trajectories of the underlying Markov
chain, so there was no ordering to begin with. At first glance,learning in this setting may seem
more difficult than in the hidden-ordering setting, but as detailed in Chapter 5, the independence
assumption in our setting actually makes learning easier.

In addition to the above general problem areas, there are twospecific problems we find rel-
evant to our work. One is collective inference on Markov models [Sheldon et al., 2008], which
finds the most likely collection of paths on a trellis graph given observations on the collective be-
havior of a group of dynamic objects. Their motivation was totrace out trajectories of individual
birds from aggregate statistics of an entire species of migrating birds. The other is connecting the
dots between news articles [Shahaf and Guestrin, 2010], which aims to build a chronologicaland
coherent story line of news that connects a given pair of starting and end articles, thereby pro-
viding readers a detailed description of the causal relationship between two events. A common
feature in both problems is the need of identifying structures of sequentially matched objects
from partially ordered data. A similar situation arises in one component of our methods, where
the data points are put into ordered clusters for further processing (Section 3.3). But instead of
finding hard matchings between data points in adjacent clusters, we take a soft-matching type of
approach, updating the soft matching and the dynamic model alternatingly.

While our focus is on learning from data lacking time or ordering information, another com-
mon problem involving time in dynamic modeling is the misalignment of time measurements
across multiple sequences of observed data, due to internalvariation of the dynamic process of
interest or measurement error. This problem arises in many time series modeling tasks, such as
speech recognition [L. Rabiner, 1993; Vintsyuk, 1968], analysis of gene expression time series
[Aach and Church, 2001], activity recognition [Junejo et al., 2011], and audio information re-
trieval [Chapter 4, M̈uller, 2007], bringing forth a large body of research, knownin statistics as
curve registration [Ramsay and Li, 1998; Silverman, 1995] and in computer sciences as dynamic
time warping [Berndt and Clifford, 1994; Keogh and Ratanamahatana, 2005]. The general idea
in these works is to first postulate a class of possible time transformations or warping operations,
and then recover the most likely warping operation for each observation by optimizing some
global matching score across all the data sequences. The final result is time-warped sequences
of observations that are in better alignment with one another. While not directly related to our
thesis focus, these methods can potentially aid our work in,for example, an iterative, EM-like
manner, where time stamps and dynamic models are alternatingly re-estimated given the other
until convergence.

Finally, we briefly mention where our work lies in the vast space of research on dynamical
systems conducted in physics and mathematics. Most dynamical theories are concerned with
the asymptotic behavior of some dynamical system, under various assumptions on the phase or
state space of the system and the short-time evolution law [Katok and Hasselblatt, 1996]. But
our work studies in some sense the reverse problem, that is, given observations that reflect the
global status of a dynamical system, we try to develop methods that figure out the short-time or
local evolution law.
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Chapter 3

Learning Fully Observable Models From
Non-sequence Data

In this chapter, we are interested in learning first-order, discrete-time, fully observable linear
dynamic models described by the following transition function:

x(t+1) = Ax(t) + ǫ(t+1), (3.1)

wherex(t) ∈ Rp×1 is the state vector at timet, A ∈ Rp×p is the state transition matrix, andǫ(t)

is the noise vector at timet. Such a model is also known as a first-order vector auto-regressive
model (VAR) in the time series literature. For simplicity, we assume hereafter that∀t, ǫ(t) ∼
N (· | 0, σ2I), a Gaussian distribution with zero mean and covarianceσ2I, whereI is the identity
matrix. However, the proposed methods in later sections allcan be extended to handle general
covariance matrices. The dynamical system also has a start state, which we denote asx(0). Thus,
the linear dynamic models we consider are fully characterized byΘ = {A, σ2,x(0)}.

When sequenced observations are available, a basic learningmethod is least-square linear
regression of the observations at timet on the observations at timet − 1, whose properties
have been studied extensively (see e.g., [Hamilton, 1994]). The problem without observed state
sequences is much more difficult. We assume thatn executions of the dynamic model (3.1) have
taken place, and from each execution we have observed a single data point drawn at random from
the sequence of states generated in that execution. The result is n data points,{x1, . . . ,xn}, each
from a different trajectory and having occurred at an unknown point in time. To avoid confusion
in indices, hereafter we use parenthesized super-script, e.g., x(t), to denote the time index, but
sub-script, e.g.,xi, to denote the data index. A precise description of this generative process is
given in Algorithm 3.1 along with a graphical illustration.

We focus on estimatingA and σ2, and treat the start statex(0) as a nuisance parameter.
For an observationxi, if its immediate predecessor̃xi is known, then the likelihood is simply
N (xi | Ax̃i, σ

2I). But x̃i is unknown, so we integrate it out with respect to the distribution one
time step earlier thanxi and obtain the following likelihood:

L(xi | θ, ti) =

∫
exp(−‖xi−Ax‖2

2

2σ2 )

(2πσ2)
p
2

N (x | µ(ti−1),Σ(ti−1))dx, (3.2)
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Figure 6.2: Median testing log-likelihood. The y-axis lower limit is set to -6 for better visualiza-
tion; the red dashed line actually takes values as small as -17.

6.3.2 IMU Measurements of Human Activities

The PAMAP2 physical activity monitoring dataset [Reiss andStricker, 2012] contains recordings
of 18 different physical activities performed by 9 subjectswearing 3 inertial measurement units
(IMUs) and a heart-rate monitor. Each subject follows a protocol to perform a sequence of
activities with breaks in between. For our experiment we usedata collected from subject 101
while walking and running. We focus our experiment on recordings from the three IMUs, and
for each IMU only use the 3D-acceleration data (ms−2) with scale±16g, as recommended by
the authors, and the 3D-gyroscope data (rad/s), resulting in an observation space of6 × 3 = 18
dimensions. Subject 101 performs walking and running for approximately 3.5 minutes each, and
we discard the first and the last 10 seconds of data to remove transitioning between activities. To
make the experiment more interesting, we break the IMU recordings into short segments of 10
seconds each and interleave the walking segments with the running ones to generate a sequence
of alternating activities. The IMUs operate at a sampling frequency of 100Hz, so each segment
has 1000 data points and the entire sequence has 39265 data points. We normalize each of the 18
dimensions to be zero-mean and standard deviation 1. Figure6.3 shows one of the dimensions
from the first 2000 data points, revealing significant differences between walking and running.

We take the last 4256 data points as the testing sequence, andgenerate 10 training datasets
as follows. We randomly samplen triples of consecutive observations from the first 35000 data
points as the sequence data, and another non-overlapping set of m + mS single observations as
the non-sequence data, in whichm points are used to formZ and the restmS points constitute
S in the proposed algorithm. The values ofn,m, andmS are: n ∈ {25, 50, 100, 200}, m ∈
{500, 1000}, andmS = 4000. We use the Gaussian RBF kernelκ(x,x′) := exp(‖x− x′‖2/σ2),
and setσ2 to be half of the median squared pairwise distances of the sequence data. The dimen-
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Figure 6.3: First-axis acceleration from the wrist IMU

(a) Boxplots of median prediction errors (b) Boxplots of mean prediction errors

Figure 6.4: Prediction performance on the IMU data. The black-dashed line is obtained by using
n = 5000 dynamic data points, serving as a performance limit.

sionk, i.e., the number of top left singular vectors, is set to 20 for n = 25 and 50 for the rest.
The proposed algorithm has three regularization parameters: uP andλ in (6.19) anduB in (6.34).
We determine these parameters by minimizing 5-fold5 cross validation error on the sequence
data over a cube of values(log2 uP , log2 λ, log2 uB) ∈ {−8,−6, . . . , 6} × {−9,−7, . . . , 1} ×
{−5,−3, . . . , 9}.

After learning the model parameters, we perform filtering and prediction along the testing
sequence. As mentioned in Section 6.1, the Hilbert space embedding of the predictive distribu-
tion takes the form of a non-parametric density estimator thanks to the Gaussian RBF kernel,
and we predict the next observation by selecting fromS, themS static data points, the one with
the highest predictive density. For each predicted observation we compute the squared error
against the true observation, and for each predicted sequence we take the median and the mean
of the squared prediction errors as sequence-wise performance indicators. Figure 6.4(a) gives the
boxplot of the 10 median prediction errors, showing that theproposed method of incorporating
static data improves on the prediction performance more significantly when the sequence data
sizen is small. Figure 6.4(b) gives the boxplot of the 10 means, demonstrating a similar trend of

5We only split the sequence data but not the static data.

86



improvement except whenn = 50. Looking more into that result, we find that it is the running
part of the testing sequence the proposed method fails to predict better, possibly due to the more
extreme values and changes in its IMU readings, as shown in Figure 6.3.

6.4 Discussions and Conclusions

We propose spectral learning algorithms for HMMs that incorporate static data as regularization.
Experiments on synthetic and real human activities data demonstrate a clear advantage of us-
ing static data when sequence data is limited. There are several interesting directions for future
work, including deriving theoretical guarantees for the proposed methods and solving real prob-
lems where sequence data is much more difficult to obtain thannon-sequence data. In terms of
methodology, a possible improvement is to combine the two stages in the proposed methods into
one optimization problem, where the optimization variableis a three-way tensor representing the
joint probability of observation triples, and the objective takes a similar form of an error term
on sequence data plus regularization terms based on non-sequenced data. Given an estimate for
the three-way probability tensor, lower-order probabilities can be easily obtained by marginal-
ization, and then spectral learning algorithms in Section 6.1 can be applied. One advantage of
such a procedure is that the estimates of the probability matrix and tensor are inherently consis-
tent, and therefore the sub-spaces computed by spectral decomposition are optimal with respect
to both, whereas in the proposed two-stage methods, the sub-spaces are optimal with respect to
only the estimated joint probability matrix. The downside is obviously the optimization in the
space of three-way tensors, which is computationally intensive in terms of both time and storage.

Although not explicitly described in this chapter, it is possible to extend the regular sequence-
based EM learning algorithm for HMMs to make use of non-sequence data drawn from the
stationary distribution. More specifically, such non-sequence data can be easily incorporated
into the EM estimation procedure for parameters in the observation model, e.g., the state-specific
mean observation vectors and noise covariances in a Gaussian observation model, because these
parameters are time-independent. However, as with the regular EM approach, finding a good
local optimum is always an issue and may require a lot of tuning.
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Chapter 7

Learning Bi-clustered Vector
Auto-regressive Model

In this chapter we return to the usual setting of learning from sequence data, and consider learn-
ing structured Vector Auto-regressive (VAR) models. Although not directly related to the main
theme of the thesis, the methods developed here, as we explain later, can benefit learning from
non-sequence data. Our motivation is from the use of VARs foranalyzing the temporal de-
pendencies in multivariate time series data, known asGranger causality1 [Granger, 1969]. For
example, recently researchers in computational biology, using ideas from sparse linear regres-
sion, developed sparse estimation techniques for VAR models [Fujita et al., 2007; Lozano et al.,
2009; Shojaie et al., 2011] to learn from high-dimensional genomic time series a small set of
pairwise, directed interactions, referred to as gene regulatory networks, some of which lead to
novel biological hypotheses.

While individual edges convey important information about interactions, it is often desir-
able to obtain an aggregate and more interpretable description of the network of interest. One
useful set of tools for this purpose are graph clustering methods [Schaeffer, 2007], which iden-
tify groups of nodes or vertices that have similar types of connections, such as a common
set of neighboring nodes in undirected graphs, and shared parent or child nodes in directed
graphs. These methods have been applied in the analysis of various types of networks, such
as [Girvan and Newman, 2002], and play a key role in graph visualization tools [Herman et al.,
2000].

Motivated by the wide applicability of the above two threadsof work and the observation that
their goals are tightly coupled, we develop a methodology that integrates both types of analyses,
estimating the underlying Granger causal network and its clustering structuresimultaneously.
One can image that such a structure, once estimated, could beused as prior knowledge for other
learning tasks in the same domain, and as suggested in Chapter3, such prior knowledge may aid
learning VARs from non-sequence data by providing better regularization of the model.

In this chapter we use the following notation for a first-order p-dimensional VAR model:

x(t) = x(t−1)A+ ǫ(t), ǫ(t) ∼ N (0, σ2I), (7.1)

1More precisely,graphicalGranger causality for more than two time series.
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wherex(t) ∈ R1×p denotes the vector of variables observed at timet, A ∈ Rp×p is known as the
transition matrix, whose non-zero entries encode Granger-causal relations among the variables,
andǫ(t)’s denote independent noise vectors drawn from a zero-mean Gaussian with a spherical
covarianceσ2I. Our goal is to obtain a transition matrix estimateÂ that is bothsparse, leading
directly to a Granger-causal network, andclusteredso that variables sharing a similar set of con-
nections are grouped together. Since the rows and the columns ofA indicate different roles of
the variables, the former revealing how variables affect themselves and the latter showing how
variables get affected, we consider the more generalbi-clusteringsetting, which allows two dif-
ferent sets of clusters for rows and columns, respectively.We take a nonparametric Bayesian
approach, placing overA a nonparametric bi-clustered prior and carrying out full posterior infer-
ences via a blocked Gibbs sampling scheme. Our simulation study demonstrates that when the
underlying VAR model exhibits a clear bi-clustering structure, our proposed method improves
over some natural alternatives, such as adaptive sparse learning methods [Zou, 2006] followed
by bi-clustering, in terms of model estimation accuracy, clustering quality, and forecasting ca-
pability. More encouragingly, on a real-world T-cell activation gene expression time series data
set [Rangel et al., 2004] our proposed method finds an interesting bi-clustering structure, which
leads to a biologically more meaningful interpretation than those by some state-of-the art time
series clustering methods.

Before introducing our method, we briefly discuss related work in Section 7.1. Then we
define our bi-clustered prior in Section 7.2, followed by oursampling scheme for posterior infer-
ences in Section 7.3. Lastly, we report our experimental results in Section 7.4 and conclude with
Section 7.5.

7.1 Related work

There has been a lot of work on sparse estimation of Granger-causal networks under VAR mod-
els, and perhaps even more on graph clustering. However, to the best of our knowledge, none of
them has considered the simultaneous learning scheme we propose here. Some of the more recent
sparse VAR estimation work [Lozano et al., 2009; Shojaie et al., 2011] takes into account depen-
dency further back in time and can even select the right length of history, known as the order
of the VAR model. While focusing on first-order VAR models, we observe that it is possible to
extend our method to learn higher-order bi-clustered VAR models, where the same bi-clustering
structure is shared by all the time-lagged transition matrices, an extension to the grouped graph-
ical Granger modeling approach of Lozano et al. [2009].

Another large body of related work [e.g., Busygin et al., 2008; Meeds and Roweis, 2007;
Porteous et al., 2008] concerns bi-clustering (or co-clustering) a data matrix, which usually con-
sists of relations between two sets of objects, such as user ratings on items, or word occurrences
in documents. Most of this work models data matrix entries bymixtures of distributions with
different means, representing, for example, different mean ratings by different user groups on
item groups. In contrast, common regularization schemes orprior beliefs for VAR estimation
usually assume zero-mean entries for the transition matrix, biasing the final estimate towards
being stable. Following such a practice, our method models transition matrix entries asscale
mixturesof zero-mean distributions.
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Finally, clustering time series data has been an active research topic in a number of areas,
in particular computational biology. However, unlike our Granger causality based bi-clustering
method, most of the existing work, such as [Cooke et al., 2011;Ramoni et al., 2002] and the
references therein, focus on grouping togethersimilar time series, with a wide range of simi-
larity measures from simple linear correlation to complicated Gaussian process based likelihood
scores. Differences between our method and existing similarity-based approaches are demon-
strated in Section 7.4 through both simulations and experiments on real data.

7.2 Bi-clustered prior

We treat the transition matrixA ∈ Rp×p as a random variable and place over it a “bi-clustered”
prior, as defined by the following generative process:

πu ∼ Stick-Break(αu), πv ∼ Stick-Break(αv),

{ui}1≤i≤p
i.i.d∼ Multinomial(πu), {vj}1≤j≤p

i.i.d∼ Multinomial(πv),

{λkl}1≤k,l≤∞
i.i.d.∼ Gamma(h, c), (7.2)

Aij ∼ Laplace(0, 1/λuivj
), 1 ≤ i, j ≤ p. (7.3)

The process starts by drawing row and column mixture proportionsπu andπv from the “stick-
breaking” distribution [Sethuraman, 1994], denoted byStick-Break(α) and defined on an infinite-
dimensional simplex as follows:

βk ∼ Beta(1, α),

πk := βk

∏

m<k

(1− βm), 1 ≤ k ≤ ∞, (7.4)

whereα > 0 controls the average length of pieces broken from the stick,and may take different
valuesαu andαv for rows and columns, respectively. Such a prior allows for an infinite number
of mixture components or clusters, and lets the data decide the number ofeffectivecomponents
having positive probability masses, thereby increasing modeling flexibility. The process then
samples row-cluster and column-cluster indicator variablesui’s andvj ’s from mixture propor-
tionsπu andπv, and for thek-th row-cluster and thel-th column-cluster draws an inverse-scale,
or rate parameterλkl from a Gamma distribution with shape parameterh and scale parameter
c. Finally, the generative process draws each matrix entryAij from a zero-mean Laplace dis-
tribution with inverse scaleλuivj

, such that entries belonging to the same bi-cluster share the
same inverse scale, and hence represent interactions of similar magnitudes, whether positive or
negative.

The above bi-clustered prior subsumes a few interesting special cases. In some applications
researchers may believe the clusters should be symmetric about rows and columns, which cor-
responds to enforcingu = v. If they further believe that within-cluster interactionsshould be
stronger than between-cluster ones, they may adjust accordingly the hyper-parameters in the
Gamma prior (7.2), or as in the group sparse prior proposed byMarlin et al. [2009] for Gaussian
precision estimation, simply require all within-cluster matrix entries to have the same inverse
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Algorithm 7.1 Blocked Gibbs Sampler

Input: Data X and Y , hyper-parametersh, c, αu, αv, and initial valuesA(0), L(0), u(0),
v(0), (σ(0))2

Output: Samples from the full joint posteriorp(A,L,u,v, σ2 | X,Y )
Set iterationt = 1
repeat

for i = 1 to p do
A

(t)
i ∼ p(Ai | A(t)

1:(i−1), A
(t−1)
(i+1):p,u

(t−1),v(t−1), (σ(t−1))2), L(t−1), X, Y )
end for
for i = 1 to p do
u

(t)
i ∼ p(ui | A(t),u

(t)
1:(i−1),u

(t−1)
(i+1):p,v

(t−1), (σ(t−1))2, L(t−1), X, Y )
end for
for j = 1 to p do
v

(t)
j ∼ p(vj | A(t),u(t),v

(t)
1:(j−1),v

(t−1)
(j+1):p, (σ

(t−1))2, L(t−1), X, Y )
end for
(σ(t))2 ∼ p(σ2 | A(t),u(t),v(t), L(t−1), X, Y )
L(t) ∼ p(L | A(t),u(t),v(t), (σ(t))2, X, Y )
Increase iterationt

until convergence
Notations: superscript(t) denotes iteration,Ai denotes thei-th row of A, Ai:j denotes the
sub-matrix inA from thei-th until thej-th row, andui:j denotes{un}i≤n≤j.

scale constrained to be smaller than the one shared by all between-cluster entries. Our inference
scheme detailed in the next section can be easily adapted to all these special cases.

There can be interesting generalizations as well. For example, depending on the application
of interest, it may be desirable to distinguish positive interactions from negative ones, so that
a bi-cluster of transition matrix entries possess not only similar strengths, but alsoconsistent
signs. However, such a generalization requires a more delicate per-entry prior and therefore a
more complex sampling scheme, which we leave as an interesting direction for future work.

7.3 Posterior inference

Let L denote the collection ofλkl’s, u and v denote{ui}1≤i≤p and {vj}1≤j≤p, respectively.
Given one or more time series, collectively denoted as matricesX andY whose rows represent
successive pairs of observations, i.e.,

Yi = XiA+ ǫ, ǫ ∼ N (0, σ2I),

we aim to carry out posterior inferences about the transition matrixA, and row and column cluster
indicatorsu andv. To do so, we consider sampling from the full joint posteriorp(A,L,u,v, σ2 |
X,Y ), and develop an efficient blocked Gibbs sampler outlined in Algorithm 7.1. Starting
with some reasonable initial configuration, the algorithm iteratively samples rows ofA, row
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and column-cluster indicator variablesu andv, the noise variance2 σ2, and the inverse scale
parametersL from their respective conditional distributions. Next we describe in more details
sampling from those conditional distributions.

7.3.1 Sampling the transition matrixA

Let A−i denote the sub-matrix ofA excluding thei-th row,X ′
i andX ′

−i denote thei-th column
of X and the sub-matrix ofX excluding thei-th column. Algorithm 7.1 requires sampling from
the following conditional distribution:

p(Ai | A−i,u,v, σ
2, L,X, Y ) ∝

∏

1≤j≤p

N (Aij | µij, σ
2
i )Laplace(Aij | 0, 1/λuivj

),

where
µij := (X ′

i/‖X ′
i‖22)⊤(Y −X ′

−iA−i)
′
j, σ2

i := σ2/‖X ′
i‖2.

Therefore, all we need is sampling from univariate densities of the form:

f(x) ∝ N (x | µ, σ2)Laplace(x | 0, 1/λ), (7.5)

whose c.d.f.F (x) can be expressed in terms of the standard normal c.d.f.Φ(·):

F (x) =
C1

C
Φ
(x− − (µ+ σ2λ)

σ

)
+
C2

C

(
Φ
(x+ − (µ− σ2λ)

σ

)
− Φ

(
− µ− σ2λ

σ

))
,

wherex− := min(x, 0), x+ := max(x, 0), and

C := C1Φ
(
− µ+ σ2λ

σ

)
+ C2

(
1− Φ

(
− µ− σ2λ

σ

))
,

C1 :=
λ

2
exp

(λ(2µ+ σ2λ)

2

)
, C2 :=

λ

2
exp

(λ(σ2λ− 2µ)

2

)
.

We then sample fromf(x) with the inverse c.d.f. method. To reduce the potential sampling bias
introduced by a fixed sampling schedule, we follow a random ordering of the rows ofA in each
iteration.

Algorithm 7.1 generates samples from the full joint posterior, but sometimes it is desirable
to obtain a point estimate ofA. One simple estimate is the (empirical) posterior mean; however,
it is rarely sparse. To get a sparse estimate, we carry out thefollowing “sample EM” step after
Algorithm 7.1 converges:

ÂBiclus-EM := arg max
A

∑

t

log p(A | u(t),v(t), (σ(t))2, L(t), X, Y ), (7.6)

wheret starts at a large number and skips some fixed number of iterations to give better-mixed
and more independent samples. The optimization problem (7.6) is in the form of sparse least
square regression, which we solve with a simple coordinate descent algorithm.

2Our sampling scheme can be easily modified to handle diagonalcovariances.
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7.3.2 Sampling row and cluster indicators

Since our sampling procedures foru andv are symmetric, we only describe the one foru. It can
be viewed as an instantiation of the general Gibbs sampling scheme studied by Meeds and Roweis
[2007]. According to our model assumption,u is independent of the dataX,Y and the noise
varianceσ2 conditioned on all other random variables. Moreover, underthe stick-breaking prior
(7.4) over the row mixture proportionsπu and some fixedv, we can viewu and the rows ofA as
cluster indicators and samples drawn from a Dirichlet process mixture model withGamma(h, c)
as the base distribution over cluster parameters. Finally,the Laplace distribution and the Gamma
distribution are conjugate pairs, allowing us to integrateout the inverse scale parametersL and
derive the following “collapsed” sampling scheme:

p(ui = k′ ∈ existing row-clusters| A,u−i,v)

∝



∏

k,l

Γ((N−i[k] + δkk′)M [l] + h)/(Γ(h)ch)
(
‖A−i[k, l]‖1 + δkk′‖Ai[l]‖1 + 1/c

)(N−i[k]+δkk′ )M [l]+h


 N−i[k

′]

p− 1 + αu

,

p(ui = a new row-cluster| A,u−i,v)

∝



∏

k,l

Γ(N−i[k]M [l] + h)/(Γ(h)ch)
(
‖A−i[k, l]‖1 + 1/c

)N−i[k]M [l]+h
· Γ(M [l] + h)/(Γ(h)ch)
(
‖Ai[l]‖1 + 1/c

)M [l]+h


 αu

p− 1 + αu

,

whereΓ(·) is the Gamma function,δab denotes the Kronecker delta function,N−i[k] is the size
of thek-th row-cluster excludingAi,M [l] is the size of thel-th column-cluster, and

‖A−i[k, l]‖1 :=
∑

s 6=i,us=k,vj=l

|Asj|, ‖Ai[l]‖1 :=
∑

vj=l

|Aij|.

As in the previous section, we randomly permuteui’s andvj ’s in each iteration to reduce sam-
pling bias, and also randomly choose to sampleu or v first.

Just as with the transition matrixA, we may want to obtain point estimates of the cluster
indicators. The usual empirical mean estimator does not work here because the cluster labels
may change over iterations. We thus employ the following procedure:

1. Construct a similarity matrixS such that

Sij :=
1

T

∑

t

δ
u
(t)
i u

(t)
j

, 1 ≤ i, j ≤ p,

wheret selects iterations to approach mixing and independence as in (7.6), andT is the
total number of iterations selected.

2. Run normalized spectral clustering [Ng et al., 2001] onS, with the number of clusters set
according to the spectral gap ofS.
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7.3.3 Sampling noise variance and inverse scale parameters

On the noise varianceσ2 we place an inverse-Gamma prior with shapea > 0 and scaleβ > 0,
leading to the following posterior:

σ2 | A,X, Y ∼ I-Gamma(a+ pT/2, 2‖Y −XA‖−2
F + β), (7.7)

whereT is the number of rows inX and‖ · ‖F denotes the matrix Frobenius norm. Due to the
conjugacy mentioned in the last section, the inverse scale parametersλkl’s have the following
posterior:

λkl | A,u,v ∼ Gamma(N [k]M [l] + h, (‖A[k, l]‖1 + 1/c)−1).

7.4 Experiments

We conduct both simulations and experiments on a real gene expression time series dataset, and
compare the proposed method with two types of approaches:
Learning VAR by sparse linear regression, followed by bi-clustering
Unlike the proposed method, which makes inferences about the transition matrixA and cluster
indicators jointly, this natural baseline method first estimates the transition matrix by adaptive
sparse orL1 linear regression [Zou, 2006]:

ÂL1 := arg min
A

1

2
‖Y −XA‖2F + λ

∑

i,j

|Aij|
|Âols

ij |γ
, (7.8)

whereÂols denotes the ordinary least-square estimator, and then bi-clustersÂL1 by either the
cluster indicator sampling procedure in Section 7.3.2 or standard clustering methods applied to
rows and columns separately. We compare the proposed methodand this baseline in terms of
predictive capability, clustering performance, and in thecase of simulation study, model estima-
tion error.

Clustering based on time series similarity
As described in Section 7.1, existing time series clustering methods are designed to group to-
gether time series that exhibit a similar behavior or dependency over time, whereas our proposed
method clusters time series based on their (Granger) causalrelations. We compare the pro-
posed method with the time series clustering method proposed by Cooke et al. [2011], which
models time series data by Gaussian processes and performs Bayesian Hierarchical Clustering
[Heller and Ghahramani, 2005], achieving state-of-the artclustering performances on the real
genes time series data used in Section 7.4.

7.4.1 Simulation

We generate a transition matrixA of size 100 by first sampling entries in bi-clusters:

Aij ∼





Laplace(0,
√

60
−1
i), 41 ≤ i ≤ 70, 51 ≤ j ≤ 80,

Laplace(0,
√

70
−1

), 71 ≤ i ≤ 90, 1 ≤ j ≤ 50,

Laplace(0,
√

110
−1

), 91 ≤ i ≤ 100, 1 ≤ j ≤ 100,

(7.9)

95



(a) Transition matrix (b) Correlation matrix

Figure 7.1: Heat maps of the synthetic bi-clustered VAR

Figure 7.2: Prediction errors up to 10 time steps. Errors forlonger horizons are close to those by
the mean (zero) prediction, shown in black dashed line, and are not reported.

and then all the remaining entries from a sparse back-groundmatrix:

Aij =

{
Bij if |Bij| ≥ q98

(
{|Bi′j′|}1≤i′,j′≤100

)
,

0 otherwise,
i, j not covered in (7.9),

where
{Bij}1≤i,j,≤100

i.i.d.∼ Laplace(0, (5
√

200)−1)

andq98(·) denotes the 98-th percentile. Figure 7.1(a) shows the heat map of the actualA we ob-
tain by the above sampling scheme, showing clearly four row-clusters and three column-clusters.
This transition matrix has the largest eigenvalue modulus of 0.9280, constituting a stable VAR
model.

We then sample 10 independent time series of 50 time steps from the VAR model (7.1), with
noise varianceσ2 = 5. We initialize each time series with an independent sample drawn from the
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Table 7.1: Model estimation error on simulated data
Normalized matrix error Signed-support error

L1 0.3133±0.0003 0.3012±0.0008
Biclus EM 0.2419±0.0003 0.0662±0.0012

stationary distribution of (7.1), whose correlation matrix is shown in Figure 7.1(b), suggesting
that clustering based on correlations among time series maynot recover the bi-cluster structure
in Figure 7.1(a).

To compare the proposed method with the two baselines described in the beginning of Section
7.4, we repeat the following experiment 20 times: a random subset of two time series are treated
as testing data, while the other eight time series are used astraining data. ForL1 linear regression
(7.8) we randomly hold out two time series from the training data as a validation set for choosing
the best regularization parameterλ from {2−2, 2−1, . . . , 210} and weight-adaption parameterγ
from {0, 2−2, 2−1, . . . , 22}, with which the finalÂL1 is estimated from all the training data. To
bi-clusterÂL1 , we consider the following:
• L1+Biclus: run the sampling procedure in Section 7.3.2 onÂL1 .

• Refit+Biclus: refit the non-zero entries of̂AL1 using least-square, and run the sampling
procedure in Section 7.3.2.

• L1 row-clus (col-clus): construct similarity matrices

Su
ij :=

∑

1≤s≤p

|ÂL1
is ||ÂL1

js |, Sv
ij :=

∑

1≤s≤p

|ÂL1
si ||ÂL1

sj |, 1 ≤ i, j ≤ p.

Then run normalized spectral clustering [Ng et al., 2001] onSu andSv, with the number
of clusters set to 4 for rows and 3 for columns, respectively.

For the second baseline, Bayesian Hierarchical Clustering and Gaussian processes (GPs), we use
the R packageBHC (version 1.8.0) with the squared-exponential covariance for Gaussian pro-
cesses, as suggested by the author of the package. FollowingCooke et al. [2011] we normalize
each time series to have mean 0 and standard deviation 1. The package can be configured to
use replicate information (multiple series) or not, and we experiment with both settings, abbrevi-
ated asBHC-SE reps andBHC-SE, respectively. In both settings we give theBHC package the
mean of the eight training series as input, but additionallysupplyBHC-SE reps a noise variance
estimated from multiple training series to aid GP modeling.

In our proposed method, several hyper-parameters need to bespecified. For the stick-breaking
parametersαu andαv, we find that values in a reasonable range often lead to similar posterior
inferences, and simply set both to be 1.5. We set the noise variance prior parameters in (7.7)
to bea = 9 andβ = 10. For the two parameters in the Gamma prior (7.2), we seth = 2 and
c =
√

2p =
√

200 to bias the transition matrices sampled from the Laplace prior (7.3) towards
being stable. Another set of inputs to Algorithm 7.1 are the initial values, which we set as fol-
lows: A(0) = 0, u(0) = v(0) = 1, (σ(0))2 = 1, andL(0) = (h− 1)c =

√
200. We run Algorithm

7.1 and the sampling procedures forL1+Biclus and Refit+Biclus for 2,500 iterations, and take
samples in every 10 iterations starting from the 1,501-st iteration, at which the sampling algo-
rithms have mixed quite well, to compute point estimates forA, u andv as described in Sections
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(a) Row clusters (b) Column clusters

Figure 7.3: Adjusted Rand index on simulated data

7.3.1 and 7.3.2.
Figure 2 shows the squared prediction errors ofL1 linear regression (L1) and the proposed

method with a final sample EM step (Biclus EM) for various prediction horizons up to 10. Pre-
dictions errors for longer horizons are close to those by predicting the mean of the series, which
is zero under our stable VAR model, and are not reported here.Biclus EM slightly outperforms
L1, and paired t tests show that the improvements for all 10 horizons are significant at a p-value
≤ 0.01. This suggests that when the underlying VAR model does have abi-clustering struc-
ture, our proposed method can improve the prediction performance over adaptiveL1 regression,
though by a small margin.

Another way to compareL1 and Biclus EM is through model estimation error, and we report
in Table 7.1 these two types of error:
Normalized matrix error: ‖Â− A‖F/‖A‖F ,
Signed-support error: 1

p2

∑
1≤i,j≤p I(sign(Âij) 6= sign(Aij)).

Clearly, Biclus EM performs much better thanL1 in recovering the underlying model, and in
particular achieves a huge gain in signed support error, thanks to its use of bi-clustered inverse
scale parametersL.

Perhaps the most interesting is the clustering quality, which we evaluate by theAdjusted
Rand Index[Hubert and Arabie, 1985], a common measure of similarity between two cluster-
ings based on co-occurrences of object pairs across clusterings, with correction for chance ef-
fects. An adjusted Rand index takes the maximum value of 1 only when the two clusterings
are identical (modulo label permutation), and is close to 0 when the agreement between the
two clusterings could have resulted from two random clusterings. Figure 7.3 shows the cluster-
ing performances of different methods. The proposed method, labeled as Biclus, outperforms
all alternatives greatly and always recovers the correct row and column clusterings. The two-
stage baseline methodsL1+Biclus, Refit+Biclus, andL1 row-clus (col-clus) make a significant
amount of errors, but still recover moderately accurate clusterings. In contrast, the clusterings
by the time-series similarity based methods,BHC-SE andBHC-SE reps, are barely better than
random clusterings. To explain this, we first point out thatBHC-SE andBHC-SE reps are
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(a) Transition matrix (b) Average inverse scaleL

Figure 7.4: Heat maps of the Biclus-EM estimate ofA and the inverse scale parametersL aver-
aged over posterior samples; rows and columns permuted according to clusters.

designed to model time series as noisy observations of deterministic, time-dependent “trends”
or “curves” and to group similar curves together, but the time series generated from our stable
VAR model all have zero expectationat all time points(not justacross time). As a result, clus-
tering based on similar trends may just be fitting noise in oursimulated series. These results on
clustering quality suggest that when the underlying cluster structure stems from (Granger) causal
relations, clustering methods based on series similarity may give irrelevant results, and we really
need methods that explicitly take into account dynamic interaction patterns, such as the one we
propose here.

7.4.2 Modeling T-cell activation gene expression time series

We analyze a gene expression time series dataset3 collected by Rangel et al. [2004] from a T-cell
activation experiment. To facilitate the analysis, they pre-processed the raw data to obtain 44
replicates of 58 gene time series across 10 unevenly-spacedtime points. Recently Cooke et al.
[2011] carried out clustering analysis of these time seriesdata, with their proposed Gaussian
process (GP) based Bayesian Hierarchical Clustering (BHC) and quite a few other state-of-the
art time series clustering methods. BHC, aided by GP with a cubic spline covariance func-
tion, gave the best clustering result as measured by the Biological Homogeneity Index (BHI)
[Datta and Datta, 2006], which scores a gene cluster based onits number of gene pairs that share
certain biological annotations (Gene Ontology terms).

To apply our proposed method, we first normalize each time series to have mean 0 and stan-
dard deviation 1 across both time points and replicates, andthen “de-trend” the series by taking
the first order difference, resulting in 44 replicates of 58 time series of gene expression dif-
ferences across 9 time points. We run Algorithm 7.1 on this de-trended dataset, with all the
hyper-parameters and initial values set in the same way as inour simulation study. In 3,000
iterations the algorithm mixes reasonably well; we let it run for another 2,000 iterations and take

3Available in the R packagelongitudinal.
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Figure 7.5: BHI. Green dots show BHIs of different methods; blue boxes are BHIs obtained by
200 random permutations of cluster labels by those methods;green boxes are BHIs computed
on posterior cluster indicator samples from the proposed method. In parentheses are numbers of
clusters given by different methods.

samples from every 10 iterations, resulting in 200 posterior samples, to compute point estimates
for A, cluster indicatorsu andv as described in Sections 7.3.1 and 7.3.2. Figures 7.4(a) and
7.4(b) show the heat maps of the transition matrix point estimate and the inverse scale param-
etersλij ’s averaged over the posterior samples, with rows and columns permuted according to
clusters, revealing a quite clear bi-clustering structure.

For competing methods, we use the GP based Bayesian Hierarchical Clustering (BHC) by
Cooke et al. [2011], with two GP covariance functions: cubic spline (BHC-C) and squared-
exponential (BHC-SE)4. We also apply the two-stage methodL1+Biclus described in our sim-
ulation study, but its posterior samples give an average of 15 clusters, which is much more than
the number of clusters, around 4, from the spectral analysisdescribed in Section 7.3.2, suggest-
ing a high level of uncertainty in their posterior inferences about cluster indicators. We thus do
not report their results here. The other two simple baselines are: Corr, standing for normalized
spectral clustering on the correlation matrix of the 58 timeseries averaged over all 44 replicates,
the number of clusters 2 determined by the spectral gap, and All-in-one, which simply puts all
genes in one cluster.

Figure 7.5 shows the BHI scores5 given by different methods, and higher-values indicate bet-
tering clusterings. Biclus row and Biclus col respectivelydenote the row and column clusterings
given by our method. To measure the significance of the clusterings, we report BHI scores com-
puted on 200 random permutations of the cluster labels givenby each method. For Biclus row
and Biclus col, we also report the scores computed on the 200 posterior samples. All-in-one has
a BHI score around 0.63, suggesting that nearly two-thirds of all gene pairs share some biolog-

4We did not report results obtained using replicate information because they are not better. Cluster labels are
from http://www.biomedcentral.com/1471-2105/12/399/additional.

5We compute BHIs by theBHI function in the R packageclValid (version 0.6-4) [Brock et al., 2008] and the
databasehgu133plus2.db (version 2.6.3), following Cooke et al. [2011].
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Figure 7.6: Gene functional profiling of the large BHC-C cluster

ical annotations. Corr puts genes into two nearly equal-sized clusters (28 and 30), but does not
increase the BHI score much. In contrast,BHC-C and Biclus row achieve substantially higher
scores, and both are significantly better than those by random permutations, showing that the
improvements are much more likely due to the methods rather than varying numbers or sizes of
clusters. We also note that even though Corr andBHC-C both give two clusters, the twoBHC-C
clusters have very different sizes (48 and 10), which cause alarger variance in their BHI distri-
bution under random label permutations. Lastly,BHC-SE and Biclus col give lower scores that
are not significantly better than random permutations. One possible explanation for the differ-
ence in scores by Biclus row and Biclus col is that the former bases itself on how genesaffect
one another while the latter on how genesare affectedby others, and Gene Ontology terms, the
biological annotations underlying the BHI function, describe more about genes’ active roles or
molecular functions in various biological processes than what influence genes.
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(a) Second row cluster

(b) Third row cluster

Figure 7.7: Gene functional profiling of two large row clusters by the proposed method

Finally, to gain more understanding on the clusters byBHC-C and Biclus row, we conduct
gene function profiling with the web-based toolg:Profiler [Reimand et al., 2011], which per-
forms “statistical enrichment analysis to provide interpretation to user-defined gene lists.” We
select the following three options:Significant only, Hierarchical sorting, andNo electronic GO
annotations. ForBHC-C, 4 out of 10 genes in the small cluster are found to be associated with
the KEGG cell-cycle pathway (04110), but the other 6 genes are not mapped to collectively
meaningful annotations. The profiling results of the largeBHC-C cluster with 48 genes are in
Figure 7.6; for better visibility we show only the Gene Ontology (GO) terms and high-light sim-
ilar terms with red rectangles and tags. About a half of the terms are related to cell death and
immune response, and the other half are lower-level descriptions involving, for example, signal-
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Table 7.2: Contingency table of row and column clusterings
H

H
H

H
H

H
row

col
1 2 3 4

1 0 0 3 2
2 17 2 0 0
3 10 17 0 2
4 1 2 0 2

ing pathways. For Biclus row, we report the profiling resultsof only the two larger clusters (the
second and the third) in Figure 7.7, because the two smaller clusters, each containing 5 genes, are
not mapped to collectively meaningful GO terms. Interestingly, the two large Biclus row clusters
are associated with T-cell activation and immune response respectively, and together they cover
41 of the 48 genes in the largeBHC-C cluster. This suggests that our method roughly splits the
largeBHC-C cluster into two smaller ones, each being mapped to a more focused set of biolog-
ical annotations. Moreover, these Biclus profiling results, the heat map (Figure 7.4(a)), and the
contingency table between the row and column clusters (Table 7.2) altogether constitute a nice
resonance with the fact that T-cell activation results from, rather than leading to, the emergence
of immune responses.

7.5 Conclusion

We develop a nonparametric Bayesian method to simultaneously infer sparse VAR models and
bi-clusterings from multivariate time series data, and demonstrate its effectiveness via simula-
tions and experiments on real T-cell activation gene expression time series, on which the pro-
posed method finds a more biologically interpretable clustering than those by some state-of-the
art methods. Future directions include modeling signs of transition matrix entries, generaliza-
tions to higher-order VAR models, and applications to otherreal time series.
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Chapter 8

Conclusions and Future Directions

Motivated by the difficulties in collecting reliable time series data in a variety of modern dynamic
modeling tasks, we study in this thesis the problem of learning dynamic models from data that
lack time information but are easier to obtain. We observe that such non-sequence data can often
be modeled as independent samples drawn from multiple, independent executions of the under-
lying dynamic process. Based on this assumption, we proposeand study learning algorithms for
several widely-used dynamic models, including fully observable linear and non-linear models,
and Hidden Markov Models.

For fully observable models, we first point out some model identifiability issues in learning
from non-sequence data. Then we develop several EM-type learning algorithms based on max-
imizing approximate likelihood, and for the case where a small amount of sequence data are
available, we propose a novel penalized least square approach that uses both sequence and non-
sequence data. Empirical evaluation on synthetic data and several real data sets, including gene
expression and cell image time series, demonstrates that our proposed methods can learn reason-
ably accurate dynamic models with little or even no time information. However, we also observe
several failure modes that are hard to overcome without extra information or assumption. This
suggests that for the proposed methods to make impact in realapplications, they should incorpo-
rate as much expert domain knowledge as possible. For example, knowing how the variables in
the dynamic model might interact with one another can help the design of a better regularization
scheme. This motivates us to develop methods for learning bi-clustered vector autoregressive
models. Or, in some applications there might be partial ordering information about the data,
which can provide constraints in our EM-type algorithms.

For Hidden Markov Models, we build on recent advances in spectral learning of latent vari-
able models and propose tensor factorization based methodsthat guarantee consistent parameter
estimation, under reasonable assumptions on the underlying HMM and the generative process
of non-sequence data. These assumptions are inspired by spectral learning of topic models, but
have a few key differences, such as conditions on the Dirichlet prior for the initial state distribu-
tion and modeling missing times as geometric random variables, that are specific to the HMM
setting. Although these generative assumptions may not hold in observational data, they may be
fairly easy to implement in some scientific experiments. We also consider the situation when lit-
tle sequence data are available, and propose a spectral algorithm using both types of data, which
outperforms sequence-only learning algorithms.
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Going forward, one interesting direction is to investigatewhether spectral methods can be
used to consistently learn first-order observable models from non-sequence data, and under what
conditions. As demonstrated in Chapter 5, it is primarily thediscreteness, or more generally, non-
Gaussianity of the hidden state space dynamics that leads tonice tensor structures in observable
moments and easy characterization of assumptions ensuringunique parameter estimation. There-
fore, in the case of first-order models with continuous observations, we expect that non-Gaussian
initial distribution is needed for consistent spectral learning from non-sequence data. Moreover,
it is likely that extra assumptions on the initial distribution, such as distinct variances or means in
different dimensions, are required to eliminate the invariance to parameter permutation inherent
in spectral learning.

Another important future direction is to make impact in realapplications with our proposed
methods. In order for that to happen, we expect to see variousinteresting extensions or modifica-
tions to our approaches that are tailored to the applicationof interest. In particular, our proposed
modeling assumption of non-sequence data has several components that can be replaced to bet-
ter suit different applications, such as the distributional assumption on the missing times and the
observational noise model. More broadly, our work has demonstrated the possibility of using
cross sectional data to aid longitudinal study. As mentioned in the very beginning of the thesis,
it is common in medical and social sciences that cross sectional data are much easier to collect
than longitudinal data, and yet a lot of cross sectional datawere actually collected under some
longitudinal effect. With advances in large-scale sensingtechnology, this situation will likely
become more prevalent. We think there are several possibilities for our work to make concrete
contributions. For example, at the initial stage of longitudinal studies, researchers often have
to pose reasonable hypotheses to guide the design of experiments or data collection protocols.
However, even forming good hypotheses may be difficult when the subject matter involves a
complicated system. In this situation, our methods may serve as a good hypothesis generator, us-
ing cross sectional data that are available to produce possible models. Or, sometimes researchers
may want some immediate, preliminary assessment even though the longitudinal study is still
ongoing and only produced limited data. If there are abundant cross sectional data in the same
domain, our methods of combining sequence and non-sequencedata may be used to provide a
reasonable estimate of the dynamic model under study.

In conclusion, our work demonstrates the possibility of learning dynamic models from data
that lack time information, and we hope it stimulates more research in making better use of the
large amount of cross sectional data brought by modern sensing technology.

106



Appendix A

A Variational EM algorithm for Learning
HMMs from Non-sequence Data
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Based on the generative process in Section 5.2.2, we derive avariational EM algorithm for
parameter learning assuming the observation noise followsa spherical Gaussian with variance
σ2. The full joint probability of data and latent variables takes the following form:

f({xj
i}, {hj

i}, {tji}, {sj
i}, {πj

0} | U, σ2, P, r,α)

=
N∏

j=1

(
n∏

i=1

( k∏

l=1

N (xj
i | Ul, σ

2I)h
j
il

)(∏

l′,l

((P tji )l′l)
h

j

il′
s
j
il

)
Geometric(tji | r)

(∏

l

((πj
0)l)

s
j
il

))
·

Dirichlet(πj
0 | α),

in which we use super-script as set indices and sub-scripts as data indices within a set wherever
appropriate. The goal is to maximize the marginal likelihood of the data w.r.t to the parameters.
We begin by marginalizing over the latent times{tji}:

f({xj
i}, {hj

i}, {sj
i}, {πj

0} | U, σ2, T,α)

=
N∏

j=1

(
n∏

i=1

( k∏

l=1

N (xj
i | Ul, σ

2I)h
j
il

)(∏

l′,l

T
h

j

il′
s
j
il

l′l

)(∏

l

((πj
0)l)

s
j
il

))
Dirichlet(πj

0 | α),

whereT denotes the expected transition probability matrix. As in the tensor factorization ap-
proach, we recoverP andr from the estimatedT using the proposed search heuristics. Because
the posterior distribution of the remaining latent variables still leads to an intractable E step, we
employ the following factorized approximation:

f({hj
i}, {sj

i}, {πj
0} | {xj

i}, U, σ2, T,α) ≈ q({hj
i}, {sj

i} | {Φi
j})q({πj

0} | {βj}),
where

q({hj
i}, {sj

i} | {Φj
i}) :=

∏

i,j,l′,l

((Φj
i )l′l)

h
j

il′
s
j
il , Φj

i ∈ [0, 1]k×k,

q({πj
0} | {βj}) :=

∏

j

Dirichlet(πj
0 | βj),

and obtain the following lower bound on the log marginal likelihood:

g({Φj
i}, {βj}, U, σ2, T,α)

:=E{hj
i},{s

j
i}|{Φ

j
i},{π

j
0}|{β

j}

[
log

(
f({xj

i}, {hj
i}, {sj

i}, {πj
0} | U, σ2, T,α)

q({hj
i}, {sj

i} | {Φj
i})q({πj

0} | {βj})

)]

=E{hj
i},{s

j
i}|{Φ

j
i},{π

j
0}|{β

j}

[
log f({xj

i}, {hj
i}, {sj

i}, {πj
0} | U, σ2, T,α)

]
−

E{hj
i},{s

j
i}|{Φ

j
i}

[
log q({hj

i}, {sj
i} | {Φj

i})
]
− E{πj

0}|{β
j
0}

[
log q({πj

0} | {βj
0})
]

=
∑

j,i,l,l′

(Φj
i )ll′(logN (xj

i | Ul, σ
2I) + log Tll′) +

∑

j,l

(∑

i,l′

(Φj
i )l′l + αl − 1

)(
ψ(βj

l )− ψ(βj
0)
)

−N
(∑

l

log Γ(αl)− log Γ(α0)
)
−
∑

j,i,l,l′

(Φj
i )ll′ log(Φj

i )ll′

−
∑

j,l

(βj
l − 1)(ψ(βj

l )− ψ(βj
0)) +

∑

j

(∑

l

log Γ(βj
l )− log Γ(βj

0)
)
,
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whereψ(·) is the digamma function. The variational EM algorithm then amounts to maximizing
g iteratively, alternating between the following two steps until convergence:
Variational E-step
Holding the model parameters fixed, repeat the updates

(Φj
i )ll′ ∝ N (xj

i | Ul, σ
2I)Tll′ exp(ψ(βj

l′)− ψ(βj
0)),

(βj)l =
∑

i,l′

(Φj
i )l′l + αl,

until convergence.
M-step
Holding the variational parameteres{Φj

i} and{βj} fixed, update model parameters:

Ul :=

∑N
j=1

∑n
i=1

∑k
l′=1(Φ

j
i )ll′x

j
i∑N

j=1

∑n
i=1

∑k
l′=1(Φ

j
i )ll′

,

σ2 :=

∑N
j=1

∑n
i=1

∑
l,l′(Φ

j
i )ll′‖xj

i − Ul‖2
Nnm

,

Tll′ :=

∑N
j=1

∑n
i=1(Φ

j
i )ll′∑N

j=1

∑n
i=1

∑k
l=1(Φ

j
i )ll′

,

α := arg max
{αl≥0}

N∑

j=1

k∑

l=1

(αl − 1)(ψ(βj
l )− ψ(βj

0))−N
( k∑

l=1

log Γ(αl)− log Γ(α0)
)
.

The update forα is a convex optimization problem whose inverse Hessian can be computed in
linear time Blei et al. [2003].

Finally, we have to match the columns ofU with the columns ofT . Note that the updates
imply that the columns ofU are aligned with the rows ofT , so it suffices to matchT ’s rows
with its columns. Using the assumptions thatα/α0 = π andπi 6= πj ∀ i 6= j, we recover the
matching by sortingα/α0 andTα/α0.
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Appendix B

Proofs of Theorems in Chapter 5
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B.1 Tensor structure in low-order moments

Here we give proofs of theorems on tensor structures in low-order moments of observable data.
The proofs make repeated use the following facts:
• Tπ = π, i.e., the stationary state distribution is invariant under the expected transition

probability matrixT .

• The missing time stepsti’s are independent of everything else.

• Conditioned on the initial state distributionπ0, i.e., within the same set of data, the obser-
vations{xi} are mutually independent, so are the hidden states{hi} and the initial states
{si}.

• The low-order moments of the Dirichlet distribution have a special form (c.f. Appendix
B.1 of Anandkumar et al. [2013]), which leads to the desired symmetric tensor structure.

B.1.1 Proof of Theorem 2

E[x1] = Eπ0E[x1 | π0]

= Eπ0E[P t1s1 | π0]

= Eπ0 [E[P t1 ]π0]

= Tπ

= π.

C2 = E[x1x
⊤
2 ]

= Eπ0E[P t1s1s
⊤
2 (P t2)⊤ | π0]

= Eπ0 [E[P t1 ]E[s1s
⊤
2 | π0]E[(P t2)⊤]]

= TEπ0 [π0π
⊤
0 ]T⊤

= T

(
diag(π)

α0 + 1
+
α0ππ⊤

α0 + 1

)
T⊤ (B.1)

=
Tdiag(π)T⊤

α0 + 1
+
α0ππ⊤

α0 + 1
. (B.2)

C3 = E[x1 ⊗ x2 ⊗ x3]

= Eπ0E[(P t1s1)⊗ (P t2s2)⊗ (P t3s3) | π0]

= Eπ0 [(Tπ0)⊗ (Tπ0)⊗ (Tπ0)]

=

∑
i 2πiTi ⊗ Ti ⊗ Ti

(α0 + 2)(α0 + 1)
+

α2
0π ⊗ π ⊗ π

(α0 + 2)(α0 + 1)
(B.3)

+
α0

(∑
ij

(
Ti ⊗ Ti ⊗ Tj + Ti ⊗ Tj ⊗ Ti + Tj ⊗ Ti ⊗ Ti

)
πiπj

)

(α0 + 2)(α0 + 1)

=

∑
i 2πiT

⊗3
i − 2α2

0π
⊗3

(α0 + 2)(α0 + 1)
+
α0(π ⊗3 C2 + π ⊗2 C2 + π ⊗1 C2)

α0 + 2
. (B.4)
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We obtain (B.1) and (B.3) by using the expressions of Dirichlet moments derived in Appendix
B.1 of Anandkumar et al. [2013]. Re-arranging (B.2) and (B.4) leads to the adjusted moments
M2 andM3.

B.1.2 Proof of Theorem 4

V1 := E[x1]

= E[Uh1 + ǫ1]

= UE[P t1s1]

= UTE[π0]

= Uπ.

V2 := E[x1x
⊤
1 ]

= E[(Uh1 + ǫ1)(Uh1 + ǫ1)
⊤]

= E[Uh1h
⊤
1 U

⊤] + σ2I

= UE[diag(h1)]U
⊤ + σ2I

= UE[diag(P t1s1)]U
⊤ + σ2I

= UE[diag(Tπ0)]U
⊤ + σ2I

= Udiag(π)U⊤ + σ2I.

V3 := E[x1 ⊗ x1 ⊗ x1]

= E[(Uh1 + ǫ1)⊗ (Uh1 + ǫ1)⊗ (Uh1 + ǫ1)]

= E[(Uh1)
⊗3] + E[(Uh1)⊗ ǫ1 ⊗ ǫ1] + E[ǫ1 ⊗ (Uh1)⊗ ǫ1] + E[ǫ1 ⊗ ǫ1 ⊗ (Uh1)]

=
∑

i

πiUi ⊗ Ui ⊗ Ui + V1 ⊗1 (σ2I) + V1 ⊗2 (σ2I) + V1 ⊗3 (σ2I),

which relies on the assumption of zero skewnessE[(ǫ1)
3
d] = 0, 1 ≤ d ≤ m.

C2 := E[x1x
⊤
2 ]

= E[(Uh1 + ǫ1)(Uh2 + ǫ2)
⊤]

= E[Uh1h
⊤
2 U

⊤] (B.5)

= UE[P t1s1s
⊤
2 (P t2)T ]U⊤

= UTE[π0π
⊤
0 ]T⊤U⊤

=
UTdiag(π)(UT )⊤

α0 + 1
+
α0V1V

⊤
1

α0 + 1
. (B.6)

C3 := E[x1 ⊗ x2 ⊗ x3]

= E[(Uh1 + ǫ1)⊗ (Uh2 + ǫ2)⊗ (Uh3 + ǫ3)]

= E[(Uh1)⊗ (Uh2)⊗ (Uh3)] (B.7)

= E[(UP t1s1)⊗ (UP t2s2)⊗ (UP t3s3)]

= E[(UTπ0)⊗ (UTπ0)⊗ (UTπ0)]
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=

∑
i 2πi(UT )⊗3

i − 2α2
0V

⊗3
1

(α0 + 2)(α0 + 1)
+
α0(V1 ⊗3 C2 + V1 ⊗2 C2 + V1 ⊗1 C2)

α0 + 2
. (B.8)

Note that due to the independence assumption, there are no noise-related terms in (B.5) and (B.7),
indicating thatC2 andC3 are unaffected by the noise distribution. And again, (B.6) and (B.8)
are established with the expressions of Dirichlet moments in Appendix B.1 of Anandkumar et al.
[2013]. As in Appendix B.1.1,M2,M3,M ′

2 andM ′
3 result from adjusting the raw moments.

B.2 Proof of Theorem 3

We first prove the following lemma:
Lemma 1. If P (r) := (rI+(1−r)T ∗)−1T ∗ exists and is a stochastic matrix for somer ∈ (0, 1],
thenP (r′) exists and is a stochastic matrix for allr′ ∈ [r, 1].

Proof. SinceP (r) exists we can writeT ∗ = rP (r)(I − (1 − r)P (r))−1. By assumptionP ∗ is
invertible, soT ∗ is invertible. We then have

r′(T ∗)−1 + (1− r′)I =
r′

r
(P (r)−1 − (1− r)I) + (1− r′)I =

r′

r
P (r)−1(I − (1− r/r′)P (r)),

which is invertible for allr′ ∈ [r, 1]. Therefore, we can write

P (r′) = (r′(T ∗)−1 + (1− r′)I)−1 =
r

r′
P (r)(I − (1− r/r′)P (r))−1 = Et[P (r)],

wheret ∼ Geometric(r/r′), showing thatP (r′) is a stochastic matrix.

To prove Theorem 3 we begin by noting thatS contains all values ofr for whichrI+(1−r)T ∗

is singular. Therefore,P (r) is well-defined and invertible forr ∈ (0, 1] \ S. From the identity
T ∗π∗ = π∗ = (rI + (1 − r)T ∗)π∗ we haveP (r)π∗ = π∗, r /∈ S. Similarly, the identity
1⊤T ∗ = 1⊤ = 1⊤(rI+(1−r)T ∗) and the fact that(rI+(1−r)T ∗)−1T ∗ = T ∗(rI+(1−r)T ∗)−1

imply that1⊤P (r) = 1⊤, r /∈ S. It is easy to verifyP (r∗) = P ∗ by plugging in the definition
of T ∗. Lemma 1 then implies thatmax(S) < r∗ and thatP (r′) is a stochastic matrix forr′ ≥ r∗.
To prove the last statement of the theorem we rewriteP (r) by plugging in the definition ofT ∗:

P (r) =
r∗

r
(I − (1− r∗/r)P ∗)−1 P ∗

and consider its first-order derivative w.r.t.r:

∂P (r)

∂r
= −

( r
r∗
I +

(
1− r

r∗

)
P ∗
)−2 (I − P ∗)P ∗

r∗
,

which exists forr ∈ (0, 1] \ S. By assumption we haveP ∗
ij = 0, and by ergodicity ofP ∗ we can

assume(P ∗)2
ij > 0 (otherwise there existsk 6= j such thatP ∗

ik = 0 and(P ∗)2
ik > 0). Then we

have
∂P (r)ij

∂r

∣∣∣
r=r∗

=
(P ∗)2

ij

r∗
> 0,

implying that there existsc > 0 such that forr ∈ [r∗−c, r∗), P (r)ij < P ∗
ij = 0. This and Lemma

1 then imply the last statement of the theorem.
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B.3 Sample Complexity Analysis

The analyses here mostly follow those in Anandkumar et al. [2013]. LetO denote the observa-
tion matrix, which can be theT matrix in First-order Markov models, theU matrix or the product
UT in Hidden Markov Models. Define

Õ := Odiag([
√
π1

√
π2 · · ·

√
πk]),

M2 := Odiag(π)O⊤ = ÕÕ⊤ and M3 :=
k∑

i=1

πiOi ⊗Oi ⊗Oi.

Let πmin := mini πi. We have

σk(O)
√
πmin ≤ σk(Õ),

σ1(Õ) ≤ σ1(O),

whereσj(·) denotes thejth largest singular value.
Denote by‖ · ‖ the spectral norm of a matrix or the operator norm of a symmetric third-order

tensor induced by the vector 2-norm:

‖M‖ := sup
‖θ‖2=1

|M(θ,θ,θ)|.

Suppose

‖M̂2 −M2‖ = E2,

‖M̂3 −M3‖ ≤ E3,

for someE2 andE3 to be determined.

B.3.1 Perturbation Lemmas

Let M̂2,k be the best rankk approximation toM̂2 in terms of the matrix 2-norm. According to
Algorithm 5.1, we have

Ŵ⊤M̂2,kŴ = I.

Let
Ŵ⊤M2Ŵ = ADA⊤

be an SVD of̂W⊤M2Ŵ , whereA ∈ Rk×k. Define

W := ŴAD−1/2A⊤

and notice that
W⊤M2W = AD−1/2A⊤Ŵ⊤M2ŴAD−1/2A⊤ = I.

LetQ := W⊤Õ andQ̂ := Ŵ⊤Õ.
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Lemma 2. (Lemma C.1 of Anandkumar et al. [2013]) LetΠW be the orthogonal projection
onto the range ofW andΠ be the orthogonal projection onto the range ofO. SupposeE2 ≤
σk(M2)/2. We have the following:

‖Q‖ = 1,

‖Q̂‖ ≤ 2,

‖Ŵ‖ ≤ 2

σk(Õ)
,

‖Ŵ †‖ ≤ 2σ1(Õ),

‖W †‖ ≤ 3σ1(Õ),

‖Q− Q̂‖ ≤ 4E2

σk(Õ)2
,

‖Ŵ † −W †‖ ≤ 6σ1(Õ)E2

σk(Õ)2
,

‖Π− ΠW‖ ≤
4E2

σk(Õ)2
.

Lemma 3. Weyl’s Theorem. (Theorem 4.11, p.204 in Stewart and Sun [1990]). Let A,E ∈
Rm×n withm ≥ n be given. Then

max
1≤i≤n

|σi(A+ E)− σi(A)| ≤ ‖E‖.

B.3.2 Reconstruction Accuracy

Throughout this section we assume that the number of iterations N and L for Algorithm 5.2
satisfy the conditions in Theorem 1.
Lemma 4. Supposemax(E2, E3) ≤ σk(M2)/2. For anyη ∈ (0, 1), with probability at least
1− η the following holds:

‖O − (Ŵ⊤)†V̂ Λ̂‖ ≤ c
max(σ1(O), 1)

π
3/2
min min(σk(O)2, 1)

max(E2, E3)

for some constantc > 0.

Proof. By Theorem 1, the following hold with probability at least1− η:

‖V − V̂ ‖F =

√∑

i

‖Vi − V̂i‖2 ≤
√∑

i

(64E2
3)/(1/

√
πmin)2 = 8E3,

‖Λ̂‖ = max
i

1̂/
√
πi ≤ max

i
(1/
√
πi + 5E3) ≤ π

−1/2
min + 5E3.
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With the above two bounds and Lemma 2 we have

‖O − (Ŵ⊤)†V̂ Λ̂‖ ≤ ‖O − ΠWO‖+ ‖ΠWO − (Ŵ⊤)†V̂ Λ̂‖
=‖ΠO − ΠWO‖+ ‖(W †)⊤V Λ− (Ŵ †)⊤V̂ Λ̂‖
≤‖Π− ΠW‖‖O‖+ ‖(W †)⊤V Λ− (W †)⊤V Λ̂‖+ ‖(W †)⊤V Λ̂− (Ŵ †)⊤V̂ Λ̂‖
≤‖Π− ΠW‖+ ‖W †‖‖V ‖‖Λ− Λ̂‖+ ‖(W †)⊤V Λ̂− (W †)⊤V̂ Λ̂‖+ ‖(W †)⊤V̂ Λ̂− (Ŵ †)⊤V̂ Λ̂‖
≤‖Π− ΠW‖+ ‖W †‖E3 + ‖W †‖‖V − V̂ ‖‖Λ̂‖+ ‖W † − Ŵ †‖‖V̂ ‖‖Λ̂‖

≤ 4E2

σk(Õ)2
+ 3σ1(Õ)E3 + 3σ1(Õ)‖V − V̂ ‖F‖Λ̂‖+

6σ1(Õ)E2

σk(Õ)2
(‖V̂ − V ‖F + 1)‖Λ̂‖

≤c
(( 24√

πmin

+ 3
)
σ1(O)E3 +

(
4 +

6σ1(O)√
πmin

) E2

σk(O)2πmin

)

≤c
(

27σ1(O)√
πmin

+
10 max(σ1(O), 1)

π
3/2
minσk(O)2

)
max(E2, E3)

≤c 37 max(σ1(O), 1)

π
3/2
min min(σk(O)2, 1)

max(E2, E3)

wherec > 0 is a constant large enough to dominate low-order terms likeE2E3.

Lemma 5. With a slight abuse of notation, letU denote a column permutation of the trueU ,
UT denote a column permutation of the trueUT , andP denote a column-and-row permutation
of the trueP , where the permutations involved are the same. Suppose

max(‖U − Û‖, ‖ÛT − UT‖) ≤ σk(rU + (1− r)UT )/2.

We then have

‖P − (rÛ + (1− r)ÛT )†ÛT‖ ≤ 6σ1(UT )

σk(rU + (1− r)UT )2
max(‖U − Û‖, ‖UT − ÛT‖).

Proof. First notice that

(rU + (1− r)UT )†(UT )

=
(
(rI + (1− r)T )⊤U⊤U(rI + (1− r)T )

)−1
(rI + (1− r)T )⊤U⊤UT

=(rI + (1− r)T )−1T = P.

Then we have

‖P − (rÛ + (1− r)ÛT )†ÛT‖ = ‖(rU + (1− r)(UT ))†UT − (rÛ + (1− r)ÛT )†ÛT‖
≤‖(rU + (1− r)UT )†(UT )− (rÛ + (1− r)ÛT )†(UT )‖+
‖(rÛ + (1− r)ÛT )†(UT )− (rÛ + (1− r)ÛT )†ÛT‖
≤‖(rU + (1− r)UT )† − (rÛ + (1− r)ÛT )†‖‖UT‖+ ‖(rÛ + (1− r)ÛT )†‖‖UT − ÛT‖.

(B.9)
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By Lemma 3 and the assumption of the lemma, we have

σk(rU + (1− r)UT )/2 ≤ σk(rÛ + (1− r)ÛT ) ≤ 3σk(rU + (1− r)UT )/2,

showing that rank(rÛ + (1− r)ÛT ) = k and

‖(rÛ + (1− r)ÛT )†‖ = 1/σk(rÛ + (1− r)ÛT ) ≤ 2/σk(rU + (1− r)UT ).

Because rank(rÛ + (1− r)ÛT ) = rank(rU + (1− r)UT ) = k, Theorem 3.4 in Stewart [1977]
indicates that

‖(rU + (1− r)UT )† − (rÛ + (1− r)ÛT )†‖
≤
√

2‖(rU + (1− r)UT )†‖‖(rÛ + (1− r)ÛT )†‖‖r(U − Û) + (1− r)(UT − ÛT )‖

≤
√

2(r‖U − Û‖+ (1− r)‖ÛT − UT‖)
σk(rU + (1− r)UT )σk(rÛ + (1− r)ÛT )

≤ 2
√

2(r‖U − Û‖+ (1− r)‖UT − ÛT‖)
σk(rU + (1− r)UT )2

.

Applying these bounds to (B.9) then leads to

‖P − (rÛ + (1− r)ÛT )†ÛT‖

≤2
√

2σ1(UT )
(
r‖U − Û‖+ (1− r)‖UT − ÛT‖

)

σk(rU + (1− r)UT )2
+

2‖UT − ÛT‖
σk(rU + (1− r)UT )

=
r2
√

2σ1(UT )‖U − Û‖
σk(rU + (1− r)UT )2

+

(
(1− r)2

√
2σ1(UT ) + 2σk(rU + (1− r)UT )

)
‖UT − ÛT‖

σk(rU + (1− r)UT )2

≤max(r2
√

2, (1− r)2
√

2 + 2)σ1(UT )

σk(rU + (1− r)UT )2
max(‖U − Û‖, ‖UT − ÛT‖)

≤ 6σ1(UT )

σk(rU + (1− r)UT )2
max(‖U − Û‖, ‖UT − ÛT‖),

in which we use the factσ1(UT ) ≥ σ1(rU + (1− r)UT ) ≥ σk(rU + (1− r)UT ).

B.3.3 Concentration of empirical averages

Lemma 6. Let {yi}Ni=1 beN i.i.d. random vectors inRm. Let µ := E[yi],Σ := Var(yi) and
σ2

max := maxd Σdd. Let µ̄ := (
∑

i yi)/N . Then

Prob(‖µ̄− µ‖2 ≥ ǫ) ≤ mσ2
max

Nǫ2
.

Proof. This lemma is a straightforward consequence of the Markov inequality:

Prob(‖µ̄− µ‖2 ≥ ǫ) = Prob(‖µ̄− µ‖22 ≥ ǫ2)

≤ E[‖µ̄− µ‖22]
ǫ2

=

∑
d E(µ̄d − µd)

2

ǫ2
=

Tr(Σ)

Nǫ2
≤ mσ2

max

Nǫ2
.
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Lemma 7. Let V̂1, V̂2, V̂3, Ĉ2, Ĉ3 denote averages ofN independent draws ofx1,x1 ⊗ x1,x1 ⊗
x1 ⊗ x1,x1 ⊗ x2,x1 ⊗ x2 ⊗ x3 from the generative process in Section 5.2.2. Letumax :=
maxi,j |Uij|. Then

Prob(‖V̂1 − V1‖2 ≥ ǫ) ≤ m(u2
max + σ2)

Nǫ2
,

Prob(‖V̂2 − V2‖F ≥ ǫ) ≤ m2(u2
max + σ2)2

Nǫ2
,

Prob(‖V̂3 − V3‖F ≥ ǫ) ≤ m3(u2
max + σ2)3

Nǫ2
,

Prob(‖Ĉ2 − C2‖F ≥ ǫ) ≤ m2(u2
max + σ2)2

Nǫ2
,

Prob(‖Ĉ3 − C3‖F ≥ ǫ) ≤ m3(u2
max + σ2)3

Nǫ2
.

Proof. Based on Lemma 6, it suffices to boundσ2
max in these five cases:

max
i

Var((x1)i) ≤ max
i

E[(x1)
2
i ] = max

i
Eh1 [σ

2 + (Uh1)
2
i ] ≤ σ2 + max

i,k
U2

ik,

max
i,j

Var((x1)i(x1)j) ≤ max
i,j

E[(x1)
2
i (x1)

2
j ] = max

i,j
Eh1 [(σ

2 + (Uh1)
2
i )(σ

2 + (Uh1)
2
j)]

≤ max
i,j,l

(σ2 + U2
il)(σ

2 + U2
jl) ≤ (σ2 + max

i,j
U2

ij)
2,

max
i,j

Var((x1)i(x2)j) ≤ max
i,j

E[(x1)
2
i (x2)

2
j ] = max

i,j
Eπ0

[
E[(x1)

2
i |π0]E[(x2)

2
i |π0]

]

≤ max
i,j

sup
π0

E[(x1)
2
i |π0]E[(x2)

2
i |π0] ≤

(
max

i
sup
π0

E[(x1)
2
i |π0]

)2

=
(
max

i
sup
π0

∑

k

U2
ij(Tπ0)k + σ2

)2

=
(
max

i
max

j′

∑

k

U2
ijTjj′ + σ2

)2 ≤ (max
i,j

U2
ij + σ2)2.

With similar arguments, we have that

max
i,j,l

Var((x1)i(x1)j(x1)l) ≤ (max
i,j

U2
ij + σ2)3,

max
i,j,l

Var((x1)i(x2)j(x3)l) ≤ (max
i,j

U2
ij + σ2)3.

Lemma 8. Let M̂2, M̂3, M̂ ′
2, M̂

′
3 denote estimates of the population quantities defined in Theo-

rem 4 obtained by plugging in empirical averages of independent samples as in Lemma 7, and

σ̂2 := λmin(V̂2 − V̂1V̂1

⊤
), whereλmin(·) denotes the smallest eigenvalue in modulus. Define
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ν := max(σ2 + u2
max, 1). We then have the following:

Prob(‖M ′
2 − M̂ ′

2‖ ≥ ǫ) ≤ 75m2ν2

Nǫ2
,

Prob(‖M ′
3 − M̂ ′

3‖ ≥ ǫ) ≤ 1000m4ν3

Nǫ2
,

Prob(‖M2 − M̂2‖ ≥ ǫ) ≤ 50(α0 + 1)2m2ν2

Nǫ2
,

Prob(‖M3 − M̂3‖ ≥ ǫ) ≤ 1100k2m3(α0 + 2)2(α0 + 1)2ν3

Nǫ2
.

Proof. We first note that it is easy verifyz⊤(V̂2 − V̂1V̂1

⊤
)z ≥ 0 for any real vectorz, so σ̂2 is

always non-negative. By Lemma 3, we have

|σ2 − σ̂2| ≤ ‖V2 − V1V
⊤
1 − (V̂2 − V̂1V̂1

⊤
)‖ ≤ ‖V2 − V̂2‖+ ‖V1V

⊤
1 − V̂1V̂1

⊤‖
≤ ‖V2 − V̂2‖+ ‖V̂1 − V1‖(‖V̂1‖+ ‖V1‖)
≤ ‖V2 − V̂2‖+ 2‖V1‖‖V̂1 − V1‖+ ‖V1 − V̂1‖2.

We also need the following

‖V1‖2 = ‖Uπ‖2 =
∑

i

(∑

j

Uijπj

)2

≤
∑

i,j

πjU
2
ij ≤

∑

i

max
j
U2

ij ≤ mu2
max.

Then we have

‖M̂ ′
2 −M ′

2‖ ≤ ‖V̂2 − V2‖+ |σ̂2 − σ2|
≤ 2‖V̂2 − V2‖+ 2‖V1‖‖V̂1 − V1‖+ ‖V̂1 − V1‖2

≤ 2‖V̂2 − V2‖F + 2‖V1‖‖V̂1 − V1‖+ ‖V̂1 − V1‖2,

which implies

Prob(‖M̂ ′
2 −M ′

2‖ ≥ ǫ)

≤ Prob(2‖V̂2 − V2‖F + 2‖V1‖‖V̂1 − V1‖+ ‖V̂1 − V1‖2 ≥ ǫ)

≤ Prob(2‖V̂2 − V2‖F ≥ ǫ/3) + Prob(2‖V1‖‖V̂1 − V1‖ ≥ ǫ/3) + Prob(‖V̂1 − V1‖2 ≥ ǫ/3)

≤ 36m2(u2
max + σ2)2

Nǫ2
+

36‖V1‖2m(u2
max + σ2)

Nǫ2
+

3m(u2
max + σ2)

Nǫ

≤ 36m2(u2
max + σ2)2

Nǫ2
+

36m2u2
max(u

2
max + σ2)

Nǫ2
+

3m(u2
max + σ2)

Nǫ

≤ 75m2(u2
max + σ2)2

Nǫ2
.
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Similarly, we have

‖M ′
3 − M̂ ′

3‖ ≤ ‖V3 − V̂3‖F + 3‖V1 ⊗1 (σ2I)− V̂1 ⊗1 (σ̂2I)‖F
= ‖V3 − V̂3‖F + 3

√
m‖σ2V1 − σ̂2V̂1‖

≤ ‖V3 − V̂3‖F + 3
√
m(σ2‖V1 − V̂1‖+ |σ2 − σ̂2|(‖V1‖+ ‖V̂1 − V1‖))

≤ ‖V3 − V̂3‖F + ‖V1 − V̂1‖3
√
m(σ2 + 2mu2

max) + ‖V2 − V̂2‖3umaxm

+‖V1 − V̂1‖29umaxm+ 3
√
m(‖V1 − V̂1‖‖V̂2 − V2‖+ ‖V1 − V̂1‖3),

implying

Prob(‖M ′
3 − M̂ ′

3‖ ≥ ǫ)

≤ Prob(‖V3 − V̂3‖F ≥ ǫ/6) + Prob(‖V1 − V̂1‖ ≥ ǫ/(18
√
m(σ2 + 2mu2

max)))

+Prob(‖V2 − V̂2‖ ≥ ǫ/(18umaxm)) + Prob(‖V1 − V̂1‖2 ≥ ǫ/(54umaxm))

+Prob

(
‖V1 − V̂1‖ ≥

√
ǫ/(18

√
m)

)
+ Prob

(
‖‖V2 − V̂2‖ ≥

√
ǫ/(18

√
m)

)

+Prob(‖V1 − V̂1‖3 ≥ ǫ/(18
√
m))

≤ 36m3(u2
max + σ2)3

Nǫ2
+

324m2(σ2 + 2mu2
max)

2(σ2 + u2
max)

Nǫ2
+

324u2
maxm

4(σ2 + u2
max)

2

Nǫ2

+
54umaxm

2(σ2 + u2
max)

Nǫ
+

18m3/2(σ2 + u2
max)

Nǫ
+

18m5/2(σ2 + u2
max)

2

Nǫ

+
361/3m4/3(σ2 + u2

max)

Nǫ2/3

≤ 1000m4(max(σ2 + u2
max, 1))3

Nǫ2
.

Using similar arguments, we have

‖M2 − M̂2‖ ≤ (α0 + 1)‖C2 − Ĉ2‖F + α0‖V1V
⊤
1 − V̂1V̂1

⊤‖F
≤ (α0 + 1)‖C2 − Ĉ2‖F + 2α0‖V1‖‖V̂1 − V1‖+ α0‖V̂1 − V1‖2,

and therefore

Prob(‖M2 − M̂2‖ ≥ ǫ)

≤ Prob(‖C2 − Ĉ2‖F ≥
ǫ

3(α0 + 1)
) + Prob(‖V̂1 − V1‖ ≥

ǫ

6α0‖V1‖
)

+Prob(‖V̂1 − V1‖2 ≥
ǫ

3α0

)

≤ 9(α0 + 1)2m2(σ2 + u2
max)

2

Nǫ2
+

36α2
0m

2u2
max(σ

2 + u2
max)

Nǫ2
+

3α0m(σ2 + u2
max)

Nǫ

≤ 50(α0 + 1)2m2(σ2 + u2
max)

2

Nǫ2
.
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Finally, we have

‖M3 − M̂3‖

≤ (α0 + 2)(α0 + 1)

2
‖C3 − Ĉ3‖F +

3(α0 + 1)α0

2
‖V1 ⊗1 C2 − V̂1 ⊗ Ĉ2‖F

+α2
0‖V1 ⊗ V1 ⊗ V1 − V̂1 ⊗ V̂1 ⊗ V̂1‖F

≤ (α0 + 2)(α0 + 1)

2
‖C3 − Ĉ3‖F +

3(α0 + 1)α0

2
‖V1 − V̂1‖‖C2‖F +

3(α0 + 1)α0

2
‖V̂1‖‖C2 − Ĉ2‖F

+3α2
0‖V1‖2‖V1 − V̂1‖+ 3α2

0‖V1‖‖V1 − V̂1‖2 + α2
0‖V1 − V̂1‖3

≤ (α0 + 2)(α0 + 1)

2
‖C3 − Ĉ3‖F +

3(α0 + 1)α0

2
‖V1 − V̂1‖‖C2‖F +

3(α0 + 1)α0

2
‖V1‖‖C2 − Ĉ2‖F

+
3(α0 + 1)α0

2
‖V1 − V̂1‖‖C2 − Ĉ2‖F + 3α2

0‖V1‖2‖V1 − V̂1‖+ 3α2
0‖V1‖‖V1 − V̂1‖2 + α2

0‖V1 − V̂1‖3

≤ (α0 + 2)(α0 + 1)

2
‖C3 − Ĉ3‖F + 5(α0 + 1)α0kmu

2
max‖V1 − V̂1‖+

3(α0 + 1)α0

2
‖V1‖‖C2 − Ĉ2‖F

+
3(α0 + 1)α0

2
‖V1 − V̂1‖‖C2 − Ĉ2‖F + 3α2

0‖V1‖‖V1 − V̂1‖2 + α2
0‖V1 − V̂1‖3

using the fact that

‖C2‖F =

∥∥∥∥UT
(

diagπ + α0ππ⊤

α0 + 1

)
T⊤U⊤

∥∥∥∥
F

≤ ‖UT‖2F ≤ kmu2
max,

and thus

Prob(‖M3 − M̂3‖ ≥ ǫ) ≤ Prob

(
‖C3 − Ĉ3‖F ≥

ǫ

3(α0 + 2)(α0 + 1)

)

+ Prob

(
‖V1 − V̂1‖F ≥

ǫ

30(α0 + 1)α0kmu2
max

)
+ Prob

(
‖C2 − Ĉ2‖F ≥

ǫ

9(α0 + 1)α0

)

+ Prob

(
‖V1 − V̂1‖2 ≥

ǫ

18α2
0‖V1‖

)
+ Prob

(
‖V1 − V̂1‖3 ≥

ǫ

6α2
0

)

≤ 9m2(α0 + 2)2(α0 + 1)2(σ2 + u2
max)

3

Nǫ2
+

900k2m3(α0 + 1)2α2
0u

4
max(σ

2 + u2
max)

Nǫ2

+
81(α0 + 1)2α2

0m
2(σ2 + u2

max)
2

Nǫ2
+

18α2
0m

3/2umax(σ
2 + u2

max)

Nǫ
+

6mα
4/3
0 (σ2 + u2

max)

Nǫ2/3

≤ 1100k2m3(α0 + 2)2(α0 + 1)2(σ2 + u2
max)

3

Nǫ2
.

B.4 Proof of Theorem 5

Let Û andÛT be column-permuted as described in Algorithm 5.4. Let

δmin := min
i,j
|1/√πi − 1/

√
πj|.
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If max(E3, E
′
3) ≤ δmin/15, Theorem 5.1 of Anandkumar et al. [2012a] implies that for any

η ∈ (0, 1), with probability at least1 − η, the columns of̂U andÛT are matched to the same
permutation of the columns of the trueU andUT , respectively. As in Lemma 5, letU,UT, and
P denote proper permutations of the true matrices. We then have

Prob

(
max(‖U − Û‖, ‖UT − ÛT‖) ≥ ǫσk(rU + (1− r)UT )2

6σ1(UT )

)

≤Prob

(
‖U − Û‖ ≥ ǫσk(rU + (1− r)UT )2

6σ1(UT )

)
+ Prob

(
‖UT − ÛT‖ ≥ ǫσk(rU + (1− r)UT )2

6σ1(UT )

)
.

Let the failure probability for the tensor decomposition method be set toη
4
. Then by Lemma 4

we can bound the first term as follows:

Prob

(
‖U − Û‖ ≥ ǫσk(rU + (1− r)UT )2

6σ1(UT )

)

≤Prob

(
max(E ′

2, E
′
3) ≥

ǫσk(rU + (1− r)UT )2π
3/2
min min(σk(U)2, 1)

6σ1(UT )cmax(σ1(U), 1)

)

+ Prob(max(E ′
2, E

′
3) ≥ σk(M

′
2)/2) +

η

4
+ Prob(E ′

3 ≥ δmin/15),

where the first term in the r.h.s is based on Lemma 4 conditioned on the event thatmax(E ′
2, E

′
3) ≥

σk(M
′
2)/2 and the tensor decomposition method succeeds, the second and the third terms bound

the probability that the event does not occur, and the last term bounds the probability of incor-
rectly matching the columns of̂U andU . To continue bounding these terms we use Lemma 8 to
have

Prob

(
max(E ′

2, E
′
3) ≥

ǫσk(rU + (1− r)UT )2π
3/2
min min(σk(U)2, 1)

6σ1(UT )cmax(σ1(U), 1)

)

≤(2700m2ν2 + 36000m4ν3)σ1(UT )2c2 max(σ1(U)2, 1)

Nǫ2σk(rU + (1− r)UT )4π3
min min(σk(U)4, 1)

≤ 39000m4ν3σ1(UT )2c2 max(σ1(U)2, 1)

Nǫ2σk(rU + (1− r)UT )4π3
min min(σk(U)4, 1)

,

Prob(max(E ′
2, E

′
3) ≥ σk(M

′
2)/2) ≤ 300m2ν2 + 4000m4ν3

Nσk(M2)2
≤ 4300m4ν3

Nσk(M2)2
,

Prob(E ′
3 ≥ δmin/15) ≤ 225000m4ν3

Nδ2
min

.

Thus, by setting the sample sizeN so that

N ≥ 12m4ν3

η
max

(
225000

δ2
min

,
4300

σk(M2)2
,

39000σ1(UT )2c2 max(σ1(U)2, 1)

ǫ2σk(rU + (1− r)UT )4π3
min min(σk(U)4, 1)

)
,

we have

Prob

(
‖U − Û‖ ≥ ǫσk(rU + (1− r)UT )2

6σ1(UT )

)
≤ η

2
, (B.10)
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where the randomness is from both the data and the algorithm.Using similar arguments, we have
that for sample sizeN such that

N ≥ 12k2m3(α0 + 2)2(α0 + 1)2ν3

η
·

max

(
225000

δ2
min

,
4600

σk(M ′
2)2

,
42000σ1(UT )2(c′)2 max(σ1(UT )2, 1)

ǫ2σk(rU + (1− r)UT )4π3
min min(σk(UT )4, 1)

)
,

the following holds:

Prob

(
‖UT − ÛT‖ ≥ ǫσk(rU + (1− r)UT )2

6σ1(UT )

)
≤ η

2
. (B.11)

Combining the two bounds (B.10) and (B.11), we have for

N ≥ 12 max(k2,m)m3ν3(α0 + 2)2(α0 + 1)2

η
·

max

(
225000

δ2
min

,
4600

min(σk(M ′
2), σk(M2))2

,
42000c2σ1(UT )2 max(σ1(UT ), σ1(U), 1)2

ǫ2σk(rU + (1− r)UT )4 min(σk(UT ), σk(U), 1)4

)
,

the following bound holds for anyǫ > 0 andη ∈ (0, 1):

Prob

(
max(‖U − Û‖, ‖UT − ÛT‖) ≤ ǫσk(rU + (1− r)UT )2

6σ1(UT )

)
≥ 1− η,

which by Lemma 5 implies that

Prob(‖P − (rÛ + (1− r)ÛT )†ÛT‖ ≤ ǫ) ≥ 1− η.
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Appendix C

Derivations in Chapter 6
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C.1 Derivation of (6.20)

Using properties of the matrix trace and the kernel trick, weimmediately have

1

2
‖Z2PZ⊤

1 − Ĉ2,1‖2G⊗G ∝
1

2
Tr(P⊤M2PM1)− Tr(P⊤F ),

u

2

(
‖Z2P1− S1

mS

‖2G + ‖Z1P
⊤1− S1

mS

‖2G
)

∝ u

2
1⊤(P⊤M2P + PM1P

⊤)1− u1⊤(P⊤µ2 + Pµ1).

Let λi(·) denotes thei-th Eigenvalue of a matrix. We then rewrite the nuclear norm term:

τ‖Z2PZ⊤
1 ‖∗ = τ

∑

i

√
λi

(
Z2PL⊤

1 L1P⊤Z⊤
2

)

= τ
∑

i

√
λi

(
L⊤

1 P
⊤L2L⊤

2 PL1

)
= τ‖L⊤

2 PL1‖∗,

C.2 Derivation of (6.34)

We begin by defining some notations:

H := Ũ⊤M3Ũ , R := Ṽ ⊤M1Ṽ , u := Ũ⊤1, v := Ṽ ⊤1,

F1 := Φ⊤
1 Z1Ṽ , F2 :=

Φ⊤
2 Z2

n
, F3 := Φ⊤

3 Z3Ũ .

Let vec(X) be the vector resulting from column concatenation of a matrix X, diag(x) be the
diagonal matrix with the vectorx being its main diagonal. Superscripts denote column indices.
Using properties of the matrix trace and the kernel trick, were-write the three terms in (6.34) as
follows. For the first term we have

‖C̃3,1,2({Bl})− Ĉ3,1,2‖2G⊗G⊗G

∝
∑

d

Tr
(∑

l,l′

(Z l
2)d(Z l′

2 )dṼ B
⊤
l Ũ

⊤M3ŨBl′Ṽ
⊤M1

)
−

2
∑

d

Tr
(∑

l

Ṽ B⊤
l Ũ

⊤(Z l
2)dZ⊤

3 Φ3
diag((Φ2)d·)

n
Φ⊤

1 Z1

)

=Tr
(∑

ll′

(M2)ll′B
⊤
l HBl′R− 2

∑

l

B⊤
l F

⊤
3 diag(F l

2)F1

)
,

and then for the second term

‖C̃3,·,2({Bl})− C̃2,1‖2G⊗G ∝
Tr
([
B1v · · · Bmv

]⊤
H
[
B1v · · · Bmv

]
M2

)
−

2Tr
([
B1v · · · Bmv

]⊤
Ũ⊤M32P̃M12

)
=

Tr
(∑

il

(M2)ilB
⊤
i HBlvv⊤ − 2

∑

i

B⊤
i Ũ

⊤M32P̃M
i
12v

⊤
)
,
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and finally for the third term

‖C̃·,1,2({Bl})⊤ − C̃2,1‖2G⊗G ∝
Tr
([
B⊤

1 u · · · B⊤
mu
]
M2

[
B⊤

1 u · · · B⊤
mu
]⊤
R
)
−

2Tr
([
B⊤

1 u · · · B⊤
mu
]
M2P̃M1Ṽ

)
=

Tr
(∑

ij

(M2)ijB
⊤
i uu⊤BjR− 2

∑

i

B⊤
i u(M i

2)
⊤P̃M1Ṽ

)
.

To further simplify these expressions, we re-define the notationB to be ak2-by-m matrix whose
l-th columnBl denotes column concatenation of thek-by-k matrixBl in the above expressions.
With the new notation and the identity:

vec(XY Z) = (Z⊤ ◦X)vec(Y ) (C.1)

where◦ denotes the Kronecker product, we obtain the succinct form (6.34) in which

C := R ◦H + u((vv⊤) ◦H +R ◦ (uu⊤)),

J := (F1 ◦ F3)
⊤
[
vec(diag(F 1

2 )) · · · vec(diag(Fm
2 ))
]

+ u
((

v ◦ (Ũ⊤M32P̃ )
)
M12 +

(
(Ṽ ⊤M1P̃

⊤) ◦ u
)
M2

)
.
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