


a message in [19], namely that, after spending many years trying to characterize the best information on
effective properties in terms of proportions, we had realized that we did not need such a knowledge and
that a large class of Optimal Design problems, with state described by equations like (6) and cost functions
described by functionals like (8), could be solved by generalized solutions corresponding to mixtures. We
could have mentioned that our method could be applied as well to functionals like (18)-(19), which depend
upon grad(u) in a fake way, but we did not think about it. As I have mentioned, our method does not apply
directly to functionals whose dependence upon grad(u) is not fake. It was pointed out by R. KOHN that one
needs to know a little more about the characterization of effective properties in the case where for the same
a one solves (6) with various right side f; and the cost function uses explicitly the corresponding solutions
uj.

At a meeting in Trieste in September 1993, Martin BENDS@E had described a numerical approach which
avoided a precise characterization of effective coeflicients in Elasticity, and this had enraged K. LUR'IE, but
what M. BENDSQE was saying was consistent with our message of twelve years ago: it is important to realize
that Homogenization plays a role in some problems of Optimal Design, but it is also important to realize
that fortunately it is not entirely necessary to characterize which effective properties are possible for given
proportions of various materials used for creating every possible mixture. The efficient method that M.
BENDSQE was describing took advantage of that philosophy, and added to it the necessity of an interacting
procedure: in practical applications no one gives a precise functional to minimize, and it is not always useful
to spend too much time minimizing in detail a functional which is only used at a given instant of the search
for an efficient design, and one might want to use the information about generalized solutions of various cost
functions in order to discover a purely classical efficient design, as the technological cost of creating these
mixtures has not been taken into account.

The purpose of this article is then to try to simplify the technical details of the approach that we had
invented twenty years ago, and as the characterization of effective properties has not yet become a simple
matter, it will have to be avoided.

Position of the problem

Assume that u € H}(Q) is the solution of the equation
~div(Agrad(u)) = f in ©, (20)

where A € M(a,B;Q) is symmetric, ie. al < A < Bl ae. in Q, and A is chosen among some available
materials, which might be in limited quantity. One makes the assumption that all the materials used can be
rotated in arbitrary way, and for simplifying the details, one assumes that only a finite number of materials
M,,...,M,,, are available. The admissible A are then of the form

A=) xiRTM:R, (21)
t=1
with
ReL>(2,50(N)), (22)

and the characteristic functions x;,¢ = 1,...,m, must satisfy

Ex,' =1lae inQ
i=1 (23)

/x.-dz_<_7,-,i= 1,...,m,
fy!
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where v; denotes the given available quantity of material #i, i = 1,...,m. Of course, one assumes that

im > meas(Q), (24)

i=1

so that there is enough material to fill Q with, and there are characteristic functions satisfying the constraints.
The problem studied is then to find if there is a classical Optimal Design A minimizing the cost function

J(A) = /n(i x,-g,-(z:,u)) d:r+ih.- (/nx,- d:c), (25)
i=1 i=1

to introduce a relaxed problem describing generalized solutions corresponding to mixtures of the originally
available materials, to derive necessary conditions of optimality for generalized solutions (conditions which
are of course valid for classical solutions), to describe stable algorithms for computing generalized solutions
(and classical solutions when they exist), and more generally to learn as much as possible about how to
attack more general questions. Of course, the method described applies to other functionals J, but (25)
serves as a prototype, where the important features of this class of problems can be discovered and studied.

One assumes that
u +— g;(z,u) is continuous from H} () weak into L!(Q) strong,i=1,...,m, (26)

which means that g;,7 = 1,..., m, satisfy CARATHEODORY conditions with suitable growth with respect to
u. Such a property generalizes to functionals depending upon grad(u) in a fake way, but it does not extend
to general functionals depending upon grad(u).

The method that we had initially introduced consisted in constructing a relaxed problem where u still
solves (20) but A must satisfy

Az) € K(&l(z), .. .,Gm(z)) ae. z€Q. (27)

where K(61, .. .,6,) denotes the set of all possible effective tensors associated to mixtures using the initially
available materials My, ..., M,,, with local proportions 6;,...,0,,, and to minimize the relaxed functional

Jl(A,01,...,0m)=./n(§m:0,~g,-(z,u)) dz+f:h,<(/no,- dz), (28)
i=1 i=1

61,...,0m, satisfying the constraints

m
0<6;<Li=1,...,m, Y bi=1lae inQ
i=1 (29)

/0,-dz_<_7,~,i=1,...,m.
o)

The main difficulty is that the sets K(6,,...,0,) are not known in general. We had characterized the case
where m = 2 with M, and M, isotropic, but even the case m = 1 with M, anisotropic is not completely
understood yet. Fortunately, the characterization of K(6,,...,6,,) can be avoided.

Presentation of the results

The method that I present here is based on the fact that, although K(6,,...,6,,) is not known, one can

characterize the sets
K(61,...,0m)E = {AE : A€K(8:,...,6m)} E€ R, (30)
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In order to simplify the notation, (4;,...,6,,) will be abbreviated as 6.

Proposition 1. Assume that N > 2. For any symmetric M, let A\;(M) denote the smallest eigenvalue of
M and let An(M) denote the largest eigenvalue of M. Define A_(6) and A, (6) by

1 T 6
A_(6) ~ g (M)

m (31)
A4(6) =Y 6N (M;).
i=1
Then
D € K(6)F if and only if (D - A_(0)E.D - A+(0)E) <0, (32)
or equivalently
K(0)E is the closed ball with diameter [A_(0)E, A4 (6)E], (33)
or .
K@)E={BE:A.(0) < B<A(O)}. (34)

Using this characterization, one shows then that a relaxed problem consists in minimizing J; given by
(28), where 6 still satisfies (29) and u is still given by (20), but where A satisfies now

AeB@O)={B: A (O)I<B< ,\+(9)1}. (35)

Once one has solved this problem, one uses Proposition 1 to replace A € B(6) by some A.;; € K(6) such
that A.ys grad(u) = Agrad(u) a.e. in Q, and one has a generalized solution of the initial problem.

Although the understanding of Homogenization has been instrumental in discovering which relaxed
problem to introduce, it is useful to have a direct proof of the existence of a solution of this relaxed problem
that uses as little as possible from the theory of Homogenization. It is even useful to forget that 6 comes
from proportions and prove the following more general result.

Proposition 2. Let © be a nonempty bounded weak % closed convex set of V', where V is a separable
BANACH space. Let y_, 4 be two maps from © to L*°(Q2) such that

a<p_(0)Lpus(f) <P, ae inQ, forall b€,
(36)

L and p, are (sequentially) weakly * upper semi-continuous on ©,

where the usual order and weak  topology are used for L>(2). Let A be a symmetric tensor satisfying

p-(0)I < A< py(6)I, ae. in Q. (37)

The set of admissible (8, A) is then convex and (sequentially) weak % compact in V' x L™ (Q; L,(RN,RN )),

and if u is solution of (20), the set of resulting (6, u) is (sequentially) weak * compact in V' x H}(Q), so that
every functional which is (sequentially) weak * continuous on © x H{}(f) attains its minimum.

The next step is to derive (first order) necessary conditions of optimality. One assumes now that the
functions h;,i = 1,...,m, are differentiable, and that

v %(z, v) is continuous from H}(S2) weak into H~1(Q) strong, i = 1,...,m. (38)
u

g
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The purpose of that condition is to have a functional which is GATEAUX differentiable with a GATEAUX
derivative which is continuous from H}(f2) weak into H~!() strong, and the following necessary conditions
are valid in the general framework of Proposition 2 under such hypotheses, but in order to simplify the
exposition, only the functional (28) will be considered.

Proposition 3. Assume that (38) holds and that (6*,A*) is an optimal solution which minimizes the
functional (28) under the constraints (29), (35). Denoting the corresponding state by u*, one defines the
adjoint state p* € H(Q) as the solution of

—div (A'grad(p‘)) = i 0:%(2,11') in Q, (39)

=1

and a necessary condition of optimality is that

m
/ [Z Oik] — (A grad(u‘).grad(p‘))] dz is minimum at (7, A")
a i=1
when (6, A) satisfy the constraints (29), (35), and (40)

k! (z) = gi(z, u%) +h;(/ne; d:t), ae. inQi=1,.. m

The only information about the constraints (29) and (35) which has been used in order to derive (40) is
that the set of admissible (6, A) is convex, and the next step is to interpret what (40) means for the precise
constraints (29), (35). Let

Qo = {z € Q,|grad(u”)| |grad(p”)| = 0}. (41)

Taking 6 = 8* and varying A in B(6*), one deduces from (40) some information about A* outside q. Let

_ grad(u”) .
€y = m n Q\Qo,
grad(p®) . (42)
e, = ————=in N\ Qo,
P = Jgrader) " 7\
cos(¢*) = (eu-€p), With 0 < " < 7in Q\ Qo,
then (40) implies e (8) 4 (6" A (0°) — A (6"
preg= MOVAE), | M) D)0\,
. . (43)
Ap (%) =2_(6 Ay (67 -6
Atep = +{ )2 ( )eu+ 3 );'\ @ )epinQ\Qo.

On the set where e, = ey, i.e. the subset of Q\ Qo where ¢* = 0, one can create A* by using a fibered
material with fibers parallel to e,, where the material M; (used with proportion ;) is turned so that e,
is an eigenvector for the eigenvalue An(M;). On the set where e, = —e,, i.e. the subset of Q\ Qo where
¢* = 7, one can create A* by using a layered material with layers perpendicular to e,, where the material
M; (used with proportion ;) is turned so that e, is an eigenvector for the eigenvalue A;(M;). On the set
where e, # *ey, i.e. the subset of Q \ Qo where 0 < ¢* < 7, one can create A* by using a layered material
with layers perpendicular to ey, — ey, where the material M; (used with proportion ;) is turned so that
ey — €p is an eigenvector for the eigenvalue A;(M;) and e, + ¢, is an eigenvector for the eigenvalue An(M;).
With the notations of (42), the necessary condition of optimality (40) becomes equivalent to

/n[i:; 8.k + |grad(u®)| |grad(p')|(—A+(0) cosz(%.) + A_(8) sin? (%))] dr

is minimum at #* when 6 satisfies the constraints (29).

(44)
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As the integrand in (44) is convex in 6, the condition is equivalent to a first order condition

m
/ (Z 0:K; ) dz is minimum at 6* when 6 satisfies the constraints (29),
2 Yo

K; (&) = K (2) = arad(u) lgrad(p)] w49 os? (5) + 2200 oz (20)] )

(@)’

One can then transform the preceding condition by using LAGRANGE multipliers. It is useful to notice that
up to that point, the analysis has only consisted in observing what A* should be in terms of 6*, and that the
set of admissible (8, A) is convex, and therefore everything that was done can be extended to the framework
of Proposition 2, and after one has eliminated A one is led to a problem of minimization on ©.

As one has not obtained information about A* on £, one notices that on the subset where grad(u*) = 0,
one can change A* without changing the solution of (20), and therefore one can choose there a particular
A* corresponding to a layered material. This argument does not work on the set where grad(u®) # 0 and
grad(p*) = 0, and one adapts an argument of RAITUM [24] for changing A* on this set. Let

Q.= {z €EN: (A'grad(u') — A_(0")grad(u*).A"grad(u*) — )«+(0")grad(u‘)) < 0}, (46)

i.e. the set where A*grad(u™) cannot be obtained by a layered material, and the preceding analysis shows
that on Q. one must have grad(u*) # 0 and grad(p*) = 0. Denoting E* = grad(u™) and D* = A*grad(u"),
one defines

0. ={6€ L=, R™): (D" = A_())F".D" = M, (6)F") <O ae. in Q,,

030;51,i=1,...,m,20,’=1, a.e. in Q., (47)

1=1

8; dz = e;dx,i=1,...,m.},
Q. [

which is nonempty as it contains 8, and convex (weakly x compact) because A_ is convex and A4 is concave.
Then one defines the functional J. on ©. by

J(6) =L (m G;g;(:c,u)) dz, (48)
1

c i=

and J. attains its minimum on a weakly * compact convex subset ©°! C ©., containing 6*, and on 2. one
replaces §* by an extreme point 6°P! of ©°*. Using an argument which I learned from Zvi ARTSTEIN in
1975 [25], one shows that one must have (D* — A_(8°*)E*.D* — A, (6°?*)E*) = 0, and the property of A_
and ), which is used in this argument is that if one has 6% = 1 for some i on a subset w C £, then one
has A_(0°P!) = A4(6°7!) a.e. on w.

Proofs
An essential ingredient in the proofs of the preceding results is the following lemma.
Lemma 4. Assume that
E™ — E(®) in L}(Q; RN) weak,
D™ — D(*®) in L*(Q; RN) weak,
(E™.D™) — (E(®).D(*®)) in M(Q) weak =,
(D™ ~ b, EM.D™ — 6, E™) <0 ae. in Q,

(49)
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where
a<b,<a, <PBae inQ,
.bl_ - bi in L®(Q) weak x, (50)

Gn — Go in LZ(R) weak x,

then one has
(D) — boo B D — a5, ) < 0 ace. in 0. (51)

Of course, the information on (E®).D(™)) will usually be deduced by integration by parts (or by applying
the Div-Curl lemma) when E(®) = grad(u,) with u, € H}(Q) satisfying an equation like (20), but it is useful
to realize that if Homogenization has played an essential role in the development of this method, most of
the results can be explained with few technical results from Homogenization, and one must then isolate the
crucial steps in the analysis. Lemma 4 is actually a consequence of the following more general result.

Lemma 5. On the domaina > 4> 0,E,D € RN

(D bE.D - aE) is a convex function of E, D,(E.D),a ,1 (52)
a-b b
More precisely
1 |v]? 2
(D —bED-a E) = sup {—(D.E)+2(E.v)+2Dw)— 2 —2vw)—alw]?}.  (53)
a-b v,w€RN b
Indeed the supremum is attained when
2 +w=EFE,
b (54)
v+aw=D, ‘
ie.
_YaE-D)
T a-b
_D-bE (35)

a-b "’
from which (53) follows. Notice that the function can be extended to be 0 if a = b and D = a E and +o0
elsewhere. R
Lemma 4 follows as one has —(D™.E™) 4+ 2(E(™.v) + 2(D™ .w) — I_Ub|_ - 2(v.w) —alw|? <0 ae. in
Q for all v,w € RV, and therefore the same inequality is true with (n) replaced by (c0), and taking then the
supremum in v, w gives (51).

If D = RTM;RE for some R € SO(N), then elementary arguments of Linear Algebra show that
(D = M\ (M)E.D — An(M;)E) < 0. Let A™) be given by (21) for sequences of characteristic functions

xf ) converging to 6; in L®(Q) weak * for i = 1,...,m, let E(") = grad(u,) where u, solves (20) and
D) = A(")E(“) If E®) — E(®) in L°° (S RN) weak xand D(™) — A,;; E(®) then one can apply Lemma

4 with b, = Zx:',\,(M) and a, = ZX?AN(M) 50 that be = A_(6) and ae = A;(6), and Lemma 4

implies the ﬁrst part of (32), i.e. if D € IC(0) one has (D - A_(8)E.D - AL (6)E) < 0.

Let e,, €2 be two orthogonal unit vectors. If one creates a laminated material with layers perpendicular
to e; by using the material M; with proportion ; and choosing the rotation such that e; is an eigenvector
for the eigenvalue A;(M;) and e; is an eigenvector for the eigenvalue An(M;), then any effective tensor
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obtained (as for N > 3 the rotation is not completely determined) must have e, as an eigenvector for the
eigenvalue A_(f) and e; as an eigenvector for the eigenvalue A, (f). For such an effective tensor one has
(D-=A_(0)E.D - A4(6)E) = 0if E is any combination of e; and es.

The precedings arguments have shown that the set {D = AE : A € K(6)} is included in the closed ball
of diameter [A_(#)E, A4(6)E] and contains its boundary. That it also contains its interior follows from the
following convexity result.

Lemma 6. For any F G_RN the set {AE : A € K(6)} is a (closed) convex set of RY. More generally, for
an)!'vkkz 1,...,N-1,and Ey,...,E; € RN the set {(AE,...,AE}): A€ K(6)} is a (closed) convex set of
(R)".

This follows from the formula for layering two materials with layers perpendicular to the unit vector e.
If one uses material A with proportion 1 and material B with proportion 1 — 7, then the effective tensor is

given by
e®e

n(Be.e) + (1 — n)(Ae.e)
and therefore AeyyE =nAE+ (1-1n)BE if (B— A)E is perpendicular to e. For k¥ < N — 1, there exists
e # 0 orthogonal to (B — A)E; for i = 1,..., k, showing the lemma.

For N = 2, one can have K(8) = {4 : I < A < 21,det(A) = 2}, which is not convex, and therefore
k = N cannot be allowed in Lemma 6.

Aesy =nA+(1-n)B-n(l-n)(B-A) (B - 4), (56)

Proposition 2 follows easily from Lemma 4. Let 6, be a minimizing sequence converging to f., in ©
weak *, let A() satisfy (37) for 6,, let E(™) = grad(u,) and D™ = A(™grad(u,) where u,, is the solution
of (20) for A™). One can apply Lemma 4 with b, = u_(6,) and a, = p+(0,,2 and as (36) implies that one
will have p1_(fos) < boo and ae < 14 (foo), one deduces that D() = A(®) E(®) with some A(*) satisfying
(37) for b .

Once one has noticed that the set of (6, A) is convex, Proposition 3 consists in writing that J(A*,6) <
J(Ae,0.) with 6, = (1 —€)0" + €0 and A, = (1 —€)A* + €A for 0 < € <1, and compute the derivative with
respect to € at € = 0. As u becomes u* + eéu + o(¢), du appears in the expression of the derivative and the
introduction of the adjoint state p* has the effect of eliminating éu and have only 6 — 6* and A — A™ appear,
and (40) is what one obtains by this classical procedure. The rest is interpretation of (40), using elementary
Linear Algebra for the question of maximizing (A grad(u*).grad(p*)) for A satisfying (35) for 6*.

As a final comment, I want to point out that if I have avoided the yet poorly understood question of
characterizing effective properties of mixtures in terms of the proportions used, I have used some general
knowledge about Homogenization which corresponds to what I had taught in my PECCOT lectures in 1977.
The corresponding material is described in the already written part of my lecture notes [26], for which I am
still writing the third part.
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