
was clear that K. LUR'IE knew about our work (but this reference is usually absent from all recent articles),
and J.-L. ARMAND would probably not have traveled so far, had he known that there were some specialists
in France who could answer his questions: after he had made contact with me, we even taught together a
topics course at Ecole Poly technique.

According to J.-L. ARMAND, K. LUR'IE was trying to extend PONTRYAGUIN's theory to partial differen-
tial equations, probably after he had found a problem of optimization without a solution because no function
could satisfy the necessary conditions that he had derived (I suppose that [20] is the right reference). K.
LUR'IE had devised a way to obtain necessary conditions of optimality which improved the one consisting
in just perturbing the interface between two materials: he would cut out many small balls in one region
and many small balls of the same volume in the other region and exchange the contents of these balls, and
then he would estimate the change in the cost function to be minimized, giving a necessary condition of
optimality. Up to this point one can say that this is almost PONTRYAGUIN's idea, but then he thought that
there was no reason to restrict oneself to spherical shapes and he cut out many small ellipsoids and found
that it was better to choose very flat ellipsoids with short axes perpendicular to some direction, and in the
limit it started looking like a layered medium. I do not know the level of mathematical precision that K.
LUR'IE had used for these computations, but my guess is that they were slightly formal, but he certainly had
the right idea, and he was certainly glad to find in [10] a purely mathematical framework that did exactly
what he had discovered in a clever way. As K. LUR'IE pointed out to J.-L. ARMAND, he had been lucky
that [10] had been published in the proceedings of an optimization conference, as this had enabled him to
discover more easily that reference.

The method that we had developped is adapted to minimizing functionals like (8), which are weakly
continuous in u £ HQ(Q), and this is an important limitation for some applications. It is useful then to
consider more general functionals, like

J(a) = f G(x,tx,a,<7rad(u)) dx, (18)

where grad(u) occurs in a nontrivial way, as some cases like

G(x,u,a,pracf(u)J = <p(x, u) (agrad(u).grad{u)J + (grad(u).a rpi(x, u) + xp2(x, u)j + g(x,u}a), (19)

can be handled by our method when v?> ^1*^2,0 have natural regularity and growth properties, so that any
G satisfying (19) can be said to depend upon grad{u) in a fake way. Results for functionals depending upon
grad(u) in a nontrivial way are still very fragmentary, and I have partial results which extend those that I
had described in [21], but I will not discuss them here.

Of great importance for applications are questions related to Elasticity, and the first results following
our ideas were probably those of R. KOHN k Gilbert STRANG [22]. Unfortunately most works have been
concerned with inadequate approximations like Linearized Elasticity and only consider functionals whose
dependence upon the stress is fake. As one aspect of Optimal Design in Elasticity consists in cutting holes
out of plates in order to keep enough strength but use less material, it is useful to point out that the system
of Linearized Elasticity and the presence of holes creates a few technicalities in the mathematical apparatus,
which are often just swept under the rug in many articles which are then incomplete mathematical papers.

It has been suggested by Owen RICHMOND [23] that dealing with plates with holes could lead to theories
with higher order gradients, and although I am not entirely sure about what precise mathematical result to
conjecture, it seems clear that one has better go back to the derivation of the equations for plates, starting
from 3-dimensional Finite Elasticity, which is the only type of Elasticity that real materials can follow, and
then study the various possible limiting behaviours as the thickness and the typical distance between holes
tend to zero.

Most mathematical problems of control are idealizations, as real situations are usually much too complex
to be analyzed with existing mathematical tools, and it does not make much sense then to specialize on
only one particular functional, as is mostly done by those interested in Linearized Elasticity. The role of
mathematicians is to put in evidence general methods for solving large classes of problems, and we had put



a message in [19], namely that, after spending many years trying to characterize the best information on
effective properties in terms of proportions, we had realized that we did not need such a knowledge and
that a large class of Optimal Design problems, with state described by equations like (6) and cost functions
described by functional like (8), could be solved by generalized solutions corresponding to mixtures. We
could have mentioned that our method could be applied as well to functionals like (18)-(19), which depend
upon grad(u) in a fake way, but we did not think about it. As I have mentioned, our method does not apply
directly to functionals whose dependence upon grad(u) is not fake. It was pointed out by R. KOHN that one
needs to know a little more about the characterization of effective properties in the case where for the same
a one solves (6) with various right side / ; and the cost function uses explicitly the corresponding solutions
Uj.

At a meeting in Trieste in September 1993, Martin BENDS0E had described a numerical approach which
avoided a precise characterization of effective coefficients in Elasticity, and this had enraged K. LUR'IE, but
what M. BENDS0E was saying was consistent with our message of twelve years ago: it is important to realize
that Homogenization plays a role in some problems of Optimal Design, but it is also important to realize
that fortunately it is not entirely necessary to characterize which effective properties are possible for given
proportions of various materials used for creating every possible mixture. The efficient method that M.
BENDS0E was describing took advantage of that philosophy, and added to it the necessity of an interacting
procedure: in practical applications no one gives a precise functional to minimize, and it is not always useful
to spend too much time minimizing in detail a functional which is only used at a given instant of the search
for an efficient design, and one might want to use the information about generalized solutions of various cost
functions in order to discover a purely classical efficient design, as the technological cost of creating these
mixtures has not been taken into account.

The purpose of this article is then to try to simplify the technical details of the approach that we had
invented twenty years ago, and as the characterization of effective properties has not yet become a simple
matter, it will have to be avoided.

Position of the problem

Assume that u € HQ(Q) is the solution of the equation

-div (A grad(u)^ = / in fi, (20)

where A € M(a,(3;Q) is symmetric, i.e. al < A < 01 a.e. in fi, and A is chosen among some available
materials, which might be in limited quantity. One makes the assumption that all the materials used can be
rotated in arbitrary way, and for simplifying the details, one assumes that only a finite number of materials
M i , . . . , Mm , are available. The admissible A are then of the form

, (21)

with

ReL^faSOiN)), (22)
and the characteristic functions x«, l = 1> • • • >m> must satisfy

Xi: = 1 a.e. in fi
(23)

Xidx < 7»,*= l , . . . , m ,Ln
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where 7, denotes the given available quantity of material #1, t = 1,. . . , m. Of course, one assumes that

f ) , (24)

so that there is enough material to fill ft with, and there are characteristic functions satisfying the constraints.
The problem studied is then to find if there is a classical Optimal Design A minimizing the cost function

/ (E )) f > ( / ) ( 2 5 )

to introduce a relaxed problem describing generalized solutions corresponding to mixtures of the originally
available materials, to derive necessary conditions of optimality for generalized solutions (conditions which
are of course valid for classical solutions), to describe stable algorithms for computing generalized solutions
(and classical solutions when they exist), and more generally to learn as much as possible about how to
attack more general questions. Of course, the method described applies to other functionals J, but (25)
serves as a prototype, where the important features of this class of problems can be discovered and studied.

One assumes that

u »—• 9i(x, u) is continuous from HQ(Q) weak into LX(Q) strong, i = 1, . . . , m, (26)

which means that </,, i = 1,. . . , m, satisfy CARATHEODORY conditions with suitable growth with respect to
u. Such a property generalizes to functionals depending upon grad(u) in a fake way, but it does not extend
to general functionals depending upon grad(u).

The method that we had initially introduced consisted in constructing a relaxed problem where u still
solves (20) but A must satisfy

A(x)eic{el(x))...,em(x)) a.e. xen. (27)

where K,{6\,..., 0m) denotes the set of all possible effective tensors associated to mixtures using the initially
available materials Mi, . . . ,Mm , with local proportions 0i, . . . ,0m, and to minimize the relaxed functional

Ji(x,fl1>...,flm)= / {£eigi{x,u))dx + Y<hi{

i, • • •»#m» satisfying the constraints

m
0 < 0i < l , t = l , . . . , m , ^2$i; = 1 a.e. in Q

(29)

/

The main difficulty is that the sets K(0\,... ,^m) are not known in general. We had characterized the case
where m = 2 with M\ and Mi isotropic, but even the case m = 1 with M\ anisotropic is not completely
understood yet. Fortunately, the characterization of £(#i , . . . , 6m) can be avoided.

Presentation of the results

The method that I present here is based on the fact that, although K(0i,... ,0m) is not known, one can
characterize the sets

K(0u...,0m)E={AE: A € £ ( * ! , . . . , « m ) } , £ € RN'. (30)



In order to simplify the notation, (0U..., 0m) will be abbreviated as 0,

Proposition 1. Assume that N > 2. For any symmetric M, let \i(M) denote the smallest eigenvalue of
M and let AAT(M) denote the largest eigenvalue of M. Define A_(0) and A+(0) by

1=1

Then
D € K{0)E if and only if (p - \,{0)E.D - \+{0)E) < 0, (32)

or equivalently
K{0)E is the closed ball with diameter [A_(0)£, A+(0)£], (33)

or .
/C(0)£ = < £ E : A.(0)7 < 5 < A+(0)7 >. (34)

Using this characterization, one shows then that a relaxed problem consists in minimizing J\ given by
(28), where 0 still satisfies (29) and u is still given by (20), but where A satisfies now

A £ B(0) = {B : A_(0)7 < B < A+(0)/}. (35)

Once one has solved this problem, one uses Proposition 1 to replace A £ B(0) by some Aejj £ K{0) such
that Aejf grad(v) = Agrad(u) a.e. in fl, and one has a generalized solution of the initial problem.

Although the understanding of Homogenization has been instrumental in discovering which relaxed
problem to introduce, it is useful to have a direct proof of the existence of a solution of this relaxed problem
that uses as little as possible from the theory of Homogenization. It is even useful to forget that 0 comes
from proportions and prove the following more general result.

Proposition 2. Let 0 be a nonempty bounded weak • closed convex set of V7, where V is a separable
BANACH space. Let ̂ - ,^+ be two maps from 0 to L°°(Q) such that

<* < V-(6) < V+W < 0, a.e. in ft, for all 0 € 0 ,
1 (*X(\\

— and fi+ are (sequentially) weakly • upper semi-continuous on 0 ,

where the usual order and weak • topology are used for L°°(ft). Let A be a symmetric tensor satisfying

li-{0)I <A< /x+(0)/, a.e. in ft. (37)

The set of admissible (0, A) is then convex and (sequentially) weak • compact in V x L°° f ft; £S(RN, RN)j,

and if u is solution of (20), the set of resulting (0, u) is (sequentially) weak • compact in V x HQ(Q), SO that
every functional which is (sequentially) weak • continuous on © x HQ (ft) attains its minimum.

The next step is to derive (first order) necessary conditions of optimality. One assumes now that the
functions A,-, i = 1 , . . . , m, are differentiate, and that

v •—• Tr (̂ar, v) is continuous from HQ(Q) weak into H^1(Q) strong, i = 1 , . . . ,m. (38)
ou
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The purpose of that condition is to have a functional which is GATEAUX differentiable with a GATEAUX
derivative which is continuous from HQ(Q) weak into H~l(Q) strong, and the following necessary conditions
are valid in the general framework of Proposition 2 under such hypotheses, but in order to simplify the
exposition, only the functional (28) will be considered.

Proposition 3. Assume that (38) holds and that (6*,A*) is an optimal solution which minimizes the
functional (28) under the constraints (29), (35). Denoting the corresponding state by u*, one defines the
adjoint state p* £ HQ (ft) as the solution of

m r\

-div(A'grad(p-)) = X>,*|£(z,«*) in fi, (39)
1 = 1

and a necessary condition of optimality is that

/ Z^«'*? - (Agrad(u*).grad(p*j\ dx is minimum at (0\A*)

when (6, A) satisfy the constraints (29), (35), and (4 0)

, a.e. in ft,i = 1 , . . . ,m.U

The only information about the constraints (29) and (35) which has been used in order to derive (40) is
that the set of admissible (0,^4) is convex, and the next step is to interpret what (40) means for the precise
constraints (29), (35). Let

fto = {x £ ft, \grad(u0)\ \grad(p*)\ = 0}. (41)

Taking 0 = 0* and varying A in B(6*), one deduces from (40) some information about A* outside fto. Let

grad(u*) . _ . _
\grad(u*)\

_ ^ r a d ( £ ) . (42)
\grad{p*)\

cos(v?*) = (eu .ep) , with 0 < <p* < TT in Q \ Qo,

then (40) implies

-A eu = 2 u + 2 p

_ A , ( n - A , ( n r , A+(g*) + A,(g*) ( 4 3 )

>1 ep = eu -h ep in 12 \ fi0-

On the set where ep = eu, i.e. the subset of ft \ Qo where <p* = 0, one can create 4̂* by using a fibered
material with fibers parallel to eu, where the material M, (used with proportion 0*) is turned so that eu

is an eigenvector for the eigenvalue A;v(Mt). On the set where ep = —eu, i.e. the subset of ft \ ft0 where
(p* = 7r, one can create A* by using a layered material with layers perpendicular to eu, where the material
M{ (used with proportion 0t*) is turned so that eu is an eigenvector for the eigenvalue A^Af,). On the set
where ep ^ ±e u , i.e. the subset of ft \fto where 0 < <p* < TT, one can create A* by using a layered material
with layers perpendicular to eu — ep, where the material M, (used with proportion 0t*) is turned so that
eu — tp is an eigenvector for the eigenvalue Ai(M,) and eo -f ep is an eigenvector for the eigenvalue Ajv(Mt).

With the notations of (42), the necessary condition of optimality (40) becomes equivalent to

jf [f > * * + \grad(u')\\grad(p')\(-X+(0)cos2(£•) + A _ ( 0 ) s i ( ^ ) ) ]

is minimum at 0* when 0 satisfies the constraints (29).
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As the integrand in (44) is convex in 0, the condition is equivalent to a first order condition

9iK*\ dx is minimum at 0* when 0 satisfies the constraints (29),

(« )
*;<*) = *,•(*)- \gvad(v.-)\ \s'ad[p-)\\

One can then transform the preceding condition by using LAGRANGE multipliers. It is useful to notice that
up to that point, the analysis has only consisted in observing what A* should be in terms of 0*, and that the
set of admissible (0,A) is convex, and therefore everything that was done can be extended to the framework
of Proposition 2, and after one has eliminated A one is led to a problem of minimization on 0.

As one has not obtained information about A* on QQ, one notices that on the subset where grad{u*) = 0,
one can change A* without changing the solution of (20), and therefore one can choose there a particular
A* corresponding to a layered material. This argument does not work on the set where grad(um) ^ 0 and
grad(p*) = 0, and one adapts an argument of RAITUM [24] for changing A* on this set. Let

Qc = {x £ Q : (A*grad{u*) - \_{Om)grad(u*).A*grad(u*) - \+{e*)grad{u*)} < o}, (46)

i.e. the set where A*grad(u*) cannot be obtained by a layered material, and the preceding analysis shows
that on Qc one must have grad(u*) ^ 0 and grad(p*) = 0. Denoting E* = grad(um) and D* = A*grad{u*),
one defines

0C = {# € L°°(QC)R
m) : (Dm - \_(0)E\Dm - A+(0)£r) < 0 a.e. in fic,

m

O<0, < l , i = l,...,m,53tft- = l. a e - i n f i c ,

Jci,

(47)
t = l

which is nonempty as it contains 6*, and convex (weakly • compact) because A_ is convex and A+ is concave.
Then one defines the functional Jc on ©c by

{

and Jc attains its minimum on a weakly • compact convex subset Qopt C 0C, containing 0*, and on Qc one
replaces 0* by an extreme point 0opi of Qopt. Using an argument which I learned from Zvi ARTSTEIN in
1975 [25], one shows that one must have (Dm - A.(0opt)E\Dm - \+(0opt)E*) = 0, and the property of A.
and A+ which is used in this argument is that if one has 0°pt = 1 for some i on a subset u) C fic> then one
has \-{0opt) = \+{0opt) a.e. on u.

Proofs

An essential ingredient in the proofs of the preceding results is the following lemma.

Lemma 4. Assume that
() () ^ N

£>(«) . , £>(«>) i n L2(Q;RN) weak,

(£•(*).£>(")) _ (E-C^).^00)) in M(12) weak •,
(n) - 6n^

(n).jD(n> - a n£ ( n )) < 0 a.e. in f2,
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where
a < bn < Qn < 0 a.e. in ft,

* _ J - in L°°(Q) weak •, (50)
On Ooo

dn —k Ooo in L°°(ft) weak •,

then one has
( ( ) ( O ^ ) ^ ) ) < 0 a.e. in ft. (51)

Of course, the information on (E^.D^) will usually be deduced by integration by parts (or by applying
the Div-Curl lemma) when E^ = grad(un) with un G H%(Q,) satisfying an equation like (20), but it is useful
to realize that if Homogenization has played an essential role in the development of this method, most of
the results can be explained with few technical results from Homogenization, and one must then isolate the
crucial steps in the analysis. Lemma 4 is actually a consequence of the following more general result.

Lemma 5. On the domain a>b>0,E,DeRN

T(D-bE.D-aE) is a convex function of E,Dy(E.D),a, - . (52)

More precisely

—!— (D-bE.D-aE) = sup \-(D.E) + 2(E.v) + 2(D.w) - 4 ^ - 2(v -w) ~ <*M2V (53)

Indeed the supremum is attained when

v
Y + w = E,
b (54)
v + aw = D,

_

(55)

from which (53) follows. Notice that the function can be extended to be 0 if a = 6 and D = aE and -hoo
elsewhere.

Lemma 4 follows as one has -(D(n).JE;(n)) + 2(£(n>.v) + 2(L>(n).u>) - M - - 2(v.u;) - a|u;|2 < 0 a.e. in
o

ft for all vyw € iZN, and therefore the same inequality is true with (n) replaced by (oo), and taking then the
supremum in v,w gives (51).

If D = RTMiRE for some fi G SO(N), then elementary arguments of Linear Algebra show that
(D - Ai(Mi)E.D - XN(Mi)E) < 0. Let >i(n) be given by (21) for sequences of characteristic functions
X ^ converging to 0,- in L°°(ft) weak * for t = l , . . . 9 m , let E^ = grad(un) where un solves (20) and
£>(«) = A^EW. If E^ - ^°° ) in L°°(ft; RN) weak • and £>(n) - AtJSE^\ then one can apply Lemma

m
4 with 6n = *%2x?*i(Mi) and an ^^X^siMi), so that fcoo = A_(0) and a^ = A+(0), and Lemma 4

t=i t=i
implies the first part of (32), i.e. if D € K{0) one has (D - \-(0)E.D - A+(0)£) < 0.

Let Ci,C2 be two orthogonal unit vectors. If one creates a laminated material with layers perpendicular
to t\ by using the material M, with proportion 0, and choosing the rotation such that t\ is an eigenvector
for the eigenvalue Ai(Mj) and €2 is an eigenvector for the eigenvalue Ajv(Mf), then any effective tensor
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obtained (as for TV > 3 the rotation is not completely determined) must have t\ as an eigenvector for the
eigenvalue A_(0) and e2 as an eigenvector for the eigenvalue A+(0). For such an effective tensor one has
(D - \-{0)E.D - \+(0)E) = 0 if E is any combination of ex and e2.

The precedings arguments have shown that the set {D = A E : A G K,{0)} is included in the closed ball
of diameter [A_(0)J£, \+(0)E] and contains its boundary. That it also contains its interior follows from the
following convexity result.

Lemma 6. For any E G RN the set {AE : A G K{0)} is a (closed) convex set of RN. More generally, for
any k = 1,... ,7V — 1, a n d E u . . . , E k e RN the set {(AEu...>AEk) : A e K(6)} is a (closed) convex set of
(R»)k.

This follows from the formula for layering two materials with layers perpendicular to the unit vector e.
If one uses material A with proportion 77 and material B with proportion 1 - 77, then the effective tensor is
given by

A.,, = VA + (1 - n)B - V(l - v)(B - * ) _ _ i ® l _ _ ( S - A), (56)

and therefore AejjE = rjAE + (1 — rj)BE if (B — J4)£ is perpendicular to e. For ib < JV — 1, there exists
e ̂  0 orthogonal to (£ - j4)i?t- for i = 1,.. . , i , showing the lemma.

For N = 2, one can have £(0) = {J4 : 7 < A < 2I,det(A) = 2}, which is not convex, and therefore
k = N cannot be allowed in Lemma 6.

Proposition 2 follows easily from Lemma 4. Let 0n be a minimizing sequence converging to 0^ in 0
weak •, let A^ satisfy (37) for 0n, let £*n) = grad(un) and D^ = A^grad(un) where un is the solution
of (20) for A^n\ One can apply Lemma 4 with 6n = /i_(0n) and an = /i+(0n) and as (36) implies that one
will have //-(0oo) < *oo and a^ < Ai+(tfoo)i one deduces that ZJ(°°) = ̂ C00)^00) with some A^ satisfying
(37) for 0oo.

Once one has noticed that the set of (0,A) is convex, Proposition 3 consists in writing that J(A*,6*) <
J(Ae,6£) with $e = (1 - e)0* + £0 and At = (1 - e)j4* + e-A for 0 < e < 1, and compute the derivative with
respect to € at e = 0. As w becomes u* -I- e6u + o(e), £u appears in the expression of the derivative and the
introduction of the adjoint state p* has the effect of eliminating 6u and have only 8 — 6* and A — A* appear,
and (40) is what one obtains by this classical procedure. The rest is interpretation of (40), using elementary
Linear Algebra for the question of maximizing (A grad(u*).grad(p*)) for A satisfying (35) for 0*.

As a final comment, I want to point out that if I have avoided the yet poorly understood question of
characterizing effective properties of mixtures in terms of the proportions used, I have used some general
knowledge about Homogenization which corresponds to what I had taught in my PECCOT lectures in 1977.
The corresponding material is described in the already written part of my lecture notes [26], for which I am
still writing the third part.
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Note: A forthcoming book, edited by R. KOHN and published by Birkhauser, will contain translations into
English of some of the early references on Optimal Design which were originally published in Russian or
in French, namely [10, 14, 15, 19]; the translation of [10, 14] will appear as joint work with F. MURAT, as
indeed they were mostly describing some joint work that we had described separately.
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