
Carnegie Mellon University
Research Showcase

Department of Philosophy Dietrich College of Humanities and Social Sciences

1-1-1988

Intelligent Tutors for Formal & Applied Logic
Preston K. Covey
Carnegie Mellon University, dtrollcovey@gmail.com

Follow this and additional works at: http://repository.cmu.edu/philosophy
Part of the Philosophy Commons

This Technical Report is brought to you for free and open access by the Dietrich College of Humanities and Social Sciences at Research Showcase. It
has been accepted for inclusion in Department of Philosophy by an authorized administrator of Research Showcase. For more information, please
contact research-showcase@andrew.cmu.edu.

Recommended Citation
Covey, Preston K., "Intelligent Tutors for Formal & Applied Logic" (1988). Department of Philosophy. Paper 571.
http://repository.cmu.edu/philosophy/571

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fphilosophy%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/philosophy?utm_source=repository.cmu.edu%2Fphilosophy%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/hss?utm_source=repository.cmu.edu%2Fphilosophy%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/philosophy?utm_source=repository.cmu.edu%2Fphilosophy%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/525?utm_source=repository.cmu.edu%2Fphilosophy%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/philosophy/571?utm_source=repository.cmu.edu%2Fphilosophy%2F571&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

Intelligent Tutors for Formal & Applied Logic

Preston K. Covey

Vice Provost for University Studies
Director, Center for Design of Educational Computing

January 8,1988

CDEC Report 88-02

A Report and Proposal to NCR Corporation

Outline of Contents

Current Status of the CMU Proof Tutor

The Proof Generator (the expert system)

The display-based prototype interface

Communication between the Proof Generator & the interface

Proposed Activities: What NCR Support Will Accomplish

Upgrading the VALID on-line course & integrating the Proof Tutor

Converting the VALID courseware to Kyoto Common Lisp

Integrating the Proof Tutor with the on-line course

Further enhancements to the on-line course

Implementing the display-based interface with help facilities

Formative evaluation + design of student model/diagnostician

Installing our translation facilities in the Proof Tutor

Extending the proof generating capability to predicate logic

Constructing on-line interactive tutorials on proof construction

Constructing a working student model/diagnostician

Significance, Impact & Visibility of the Proposed Project

Appendix: Brochure on the CMU Proof Tutor
(With interface illustrations)

3

The Center for Design of Educational Computing (CDEC), in collaboration with faculty in the
Department of Philosophy, has made major progress with modest funding this year in the
development of a unique intelligent tutor to guide and teach (a) the construction of proofs in
mathematical logic and formal theoretical domains (eg., Boolean algebra, social choice theory,
elementary probability theory . . .) and (b) logical problem solving (eg., the formal
reconstruction of arguments, logic puzzles and word problems presented in natural language).

We have no funding for this project beyond June '88. A grant on the order of $50K would support
(full time) one applications programmer and (part time) a systems programmer and research
scientist to continue our work, with philosophy faculty, for another year, while we seek follow-on
funding. I outline here the significant work we could accomplish even with this level of funding
and the very visible impact it would have, especially on campus, in the coming year.

Current Status of the CMU Proof Tutor

Our brochure (Appendix), prepared for the presentation of our work-in-progress at the recent
December '87 convention of the American Philosophical Association, describes the functions and
ambitions of the CMU Proof Tutor. I further describe below the intellectual agenda and educational
significance of our Proof Tutor. To date we have achieved the following unique functionalities:

* The proof generator. We have developed a proof generating algorithm in a highly
portable, economical but full Common Lisp: (1) that embodies the proof discovery techniques of
expert human logicians (an expert system) in propositional logic (with indirect proof), (2) that
is demonstrably complete (i.e., has been proven to generate all and only valid proofs -• an
important theoretical result), and (3) that has been tested on the standard benchmark problems
and scores of other notoriously difficult proof problems resulting in (from the expert and
pedagogical viewpoints) elegant and perspicuous proofs.

Items (1) and (3) make our tutor unique with respect to resolution-method automated theorem
provers, whose algorithms (while complete) are quite arbitrary from the human expert's
strategic viewpoint and quite unhelpful from the novice's viewpoint: such algorithms are
inadequate bases for apt or intelligent advice to novices because (a) they operate on arbitrary
strategies rather than human-expert heuristics and (b) are not sensitive in any given context to
myriad apt proof strategies that might be elected by the user. Item (2) makes our proof generator
unique with respect to one other human-heuristic based generator, which works 'most of the time'
but is neither formally and demonstrably complete nor any longer in use.

* The display>based interface. We have developed (in CDEC’s own
graphics-oriented programming and authoring language, CMU Tutor) a prototype interface for the
Proof Tutor with four key features that, in combination, make our environment absolutely unique:
(1) it allows the user either or simultaneously (a) to work within the standard top-down proof
format or (b) to work bottom-up by the step-wise subgoaling method logicians actually use and
recommend; (2) it represents the tree-structure of the backward subgoaling reasoning
perspicuously and graphically; (3) it allows the user to make tentative steps in the subgoal tree,
graphically highlighting those steps requiring proof, thus allowing the user to plan and sketch a
proof strategy informally, as is common expert practice; and (4) the execution of steps in a proof
or help requests can be either keyboard/command driven or entirely mouse driven, as the user
prefers (obviating the frustration of typographical errors).

4

I describe the interface, somewhat redundantly, as display-based to highlight two crucial
features: regarding i/o execution, everything the user needs to know is displayed on the screen
and whatever the user needs to do can be done by manipulating what is displayed on the screen with
the mouse; regarding knowledge representation and the intellectual work the tutor is
designed to facilitate, the strategic knowledge (goal structure) of the requisite reasoning is
represented graphically on the screen and the rule-based knowledge the user needs at any step
(rule structure) is formally displayed in a dialog box (see illustration in Appendix). Thus the
interface accomodates all principal styles for proof imaging, planning and i/o execution.

We have yet to implement the Proof Generator's procedural knowledge - about how to indentify
appropriate goals and proceed forwards or backwards among goals by appropriate rules of logic
- as advice specially tailored to an assessment of an individual user's own progress, but generic
procedural knowledge is now presented as dialog as illustrated by the simple example in the screen
photo in the Appendix. The translation of the Proof Generator's procedural knowledge into advice
responsive to individualized diagnoses of users’ needs will be a major project over the coming
year(s), through formative evaluation. The various help facilities will be controllable with
switches that can limit the help available to users for homework or selected problems. As it
stands, this interface design is a major advance on any extant proof construction environment.

* Communication between the proof generator and the display-based user
interface. The Proof Generator (as well as the parsing and proof-checking machinery) is
written in a highly portable, public domain Common Lisp. Common Lisp is especially suited to the
implementation of these functions, but not for the design and implementation of a display-based
interface. The latter is therefore implemented in CMU Tutor, also portable across major
hardware and operating systems. But the Lisp and CMU Tutor facilities are built to be able to call
each other. This has important implications not only for the Proof Tutor itself, but also for its
utilization within a larger instructional environment: an on-line, computer-managed course in
first-order logic and applied domains - the VALID program developed at Stanford University.

Proposed Activities

What would be accomplished with NCR support

Of the following activities, an NCR grant would ensure completion of 1 (a) and (b), 2, 3 and 4.
There would be high probability of completion of 5, some progress on 6, but, with the projected
manpower and the empirical work involved, 7 is an opportunistic wish-list item, as is 1 (c).

The progress assured on items 1 through 4 would nonetheless ensure highly visible deployment in
a large and very important course (the only totally on-line course on campus) and tour de force
presentations at next year's conferences. The resulting system would also be shared and showcased
at Stanford University and, possibly, other schools in the InterUniversity Consortium for
Educational Computing, for which we are headquarters.

Since I am chair of the American Philosophical Association's Committee on Computer Use in
Philosophy, organize its annual software fair and computing conference, and publish the
Computers & Philosophy quarterly, the results of the proposed work (an operational and
deployable version of the proof tutoring environment in an on-line course as well as stand-alone)
would be assured effective showcases in the profession and nationally.

5

1. Upgrading the VALID on-line course & integrating the CMU Proof Tutor.

The on-line, computer-managed course in first-order logic and applied domains (elementary
arithmetic, Boolean algebra, elementary probability theory, social choice theory), called VALID,
was developed at Stanford University over fifteen years ago, has been deployed there since 1973
and is in use at dozens of other sites around the world, including Carnegie Mellon. Our on-line
course enrolls about 100 students a semester, about twice the number that have historically
enrolled in our traditionally-taught introductory logic course or the math department's analogue.
The VALID-based course is popular with technical students because it is self-paced, very
convenient, effective enough, and a novel experience.

The fact is, however, that this program is a dinosaur; its scroll and command driven user
interface is atrocious; so much so that I, for one, cannot stand' to use it for logic problem solving
or theorem proving work. And when I've tutored students from the course, I Ve used my own
proof-checker on the IBM PC to do VALID's problems. (Today I would use our Proof Tutor
environment.) Ideally, an environment such as VALID, apart from its course-support function,
should be eminently inviting and usable for doing such work. It is not.

The power of the environment as it stands derives from several factors: something of the kind (a
proof-checking environment) is vastly better than nothing (although, except for the
error-checking facility, this one is no easier to work with than paper-and-pencil); it allows
self-paced progress through its curriculum (which is very extensive but shallow); it contains
excellent exercises and problem sets on-line, including the theorem-proving exercises in applied
domains (above) to reinforce the transferability and utility of natural deduction skills; and the
computer-management of exercises and grading is invaluable to instructors (and would be
extremely expensive to replicate for more user-friendly systems, including our Proof Tutor).
Another downside of the program is that it runs in an antiquated Lisp on mainframe computers that
CMU (among others) is phasing out.

The basic utility of the VALID program, dated though it is, is nonetheless great, too great to
discard. The sensible thing to do would be to upgrade the program where it is weak and preserve
its unique values (the course-management facilities and variety of excellent exercises and domain
applications). The straightforward upgrade would consist of the following:

a) Porting/converting the program from its antiquated Utah Standard Lisp into a
public domain Common Lisp, namely the Kyoto Common Lisp (KCL) in which we are building our
Proof Tutor. The Stanford team (at the Institute for Mathematical Studies in the Social Sciences,
IMSSS) agrees and is eager to cooperate. KCL is written in and compiles to C code and therefore is
portable across UNIX environments and modern advanced-function workstations. This portability
and the public-domain status of KCL makes the investment worthwhile (and KCL, while slower
than other full Common Lisps that have correspondingly larger core images, is an adequate
performer). This would allow VALID to run and be supported on the growing base of
advanced-function workstations as well as mini's and mainframes. With workstations as cycle
servers, the program could also be run from micros on a network. This move would bring VALID
along into the 1990's. But, more importantly, this port would enable the two following upgrades:

b) Integrating the CMU Proof Tutor with the VALID on-line course. This
would be made possible by the port of VALID to KCL on the workstations. Wide deployment for
these integrated environments would be enabled by running them from micros off cycle servers
over a network (analogous to the current access to VALID on mainframes from micros or
terminals). Large-capacity workstations could support VALID and the Proof Tutor locally.

6

This integration, supplanting the proof construction machinery of VALID with our Proof Tutor,
would have large pay-offs for both systems: (i) the proof-construction and help facilities
available to students doing proofs in the on-line course would be vastly improved and (ii) the
Proof Tutor would be installed, used and tested in a totally on-line, computer-managed course (it
would still, of course, be available as a free-standing environment for deployment in other course
settings or for personal use by students and faculty).

c) Further enhancements to VALID's interface and curriculum. While this
work would not be a priority for next year on the requested funding, the port of VALID to KCL
would allow several further types of opportunistic enhancement.

Given that our graphics-oriented programming and authoring language, CMU Tutor, now
communicates with KCL functions, other improvements to VALID's basic interface (like
interactive on-line help facilities, graphic displays) and VALID's currently shallow tutorial
curriculum could be easily and incrementally built up. In fact, development in CMU Tutor is so
fast and easy that individual faculty could tailor their own tutorial lessons at will. Nifty graphic
displays could be devised with CMU Tutor as illustrations for the Boolean algebra, propositional
and predicate logic tutorials (eg., analogue circuit logic, truth-function and Venn diagrams).

Given that KCL can also call C routines, modules like CDEC's Symbolization Tutor (in C, for
first-order predicate logic) could be integrated as well (to replace VALID's current stilted
translation exercises and machinery). Also, in VALID's social choice theory curriculum, a nice
interface could be built to call CDEC's PD World (a graphic simulation environment for N-person
iterated Prisoner's Dilemma-type games) in an adjacent window, which exists in both C and CMU
Tutor versions.

It makes eminent sense to enhance and build upon rather than abandon the intellectually rich
VALID environment - eminently possible once it is ported to KCL. With the requested funding, we
would be able to port VALID to KCL, integrate our Proof Tutor environment with the on-line
course, and deploy the enhanced course and Proof Tutor in the second semester of 1988-89.(This
in turn would pave the way for similarly upgrading and integrating Stanford's other mighty
behemoth environments for set theory and proof theory, building towards a comprehensive
interactive computer-based 'encyclopaedia' for first- and higher-order logics, with associated
tutors, on distributed advanced-function workstations - CDEC's long-term goal.)

2. Fully implementing the display-based interface, with advice & help facilities.

With the requested funding, we would be able to make our prototype interface fully operational
with help and advice facilities, integral with the Proof Generator, for course deployment
stand-alone as well as in the on-line logic course by second semester of 1988-89.

3. Formative evaluation + design of the student model/diagnostician.

These parallel activities would take place concommitantly with activities 1 and 2 and continue
through AY 1988-89, informing the development of the first-generation help and advice facilities
for course deployment second semester of '88-89. A full-blown student model and diagnostician
able to generate very fine-grained advice optimally tailored to the particular local needs of
individual students would not be fully implemented before several iterations with several classes
had been completed - a long-term, albeit incremental, project.

7

4. Installing translation facilities in the Proof Tutor environment.

CDEC has constructed another intelligent tutor, a Symbolization Tutor called CSYM, for generating
and guiding solutions to symbolization problems -- translations between natural language and the
artificial language of first-order predicate logic, a major bottleneck in logic curricula. The
parsing and generative machinery are already well developed if not fully refined, in C. Because
KCL can call C routines, this machinery can and would be integrated in the Proof Tutor
environment, to allow the user to get (a) automated English translations or paraphrases of
formulae or (b) automated formalizations (complete or partial) of English sentences.

Such a facility for (a) can be very helpful to students inexperienced in the formal language of logic
for reasoning through steps of a proof or understanding the logical force of those steps, even in
totally abstract proof exercises. But this is especially helpful when the proofs relate to a
theoretical domain (like social choice or probability theory) where an intuitive understanding of a
proof or theorem's content can aid or help motivate one's reasoning.

Such a facility for (b) is specifically helpful in applied derivation tasks where one must first
formalize an argument, a piece of discourse, a puzzle or word problem in order to use the formal
apparatus to analyze or solve it. An analogy: imagine the effect on teaching/learning algebra if
students could receive tutorial aid in translating the infamous word problems into equations.

The application of our Proof Tutor environment to the analysis or solution of substantive,
content-ful problems presented in natural language will be an important one, especially for
teaching some formal proof concepts and apparatus to non-technical audiences and (eventually)
high school students, where an intuitive understanding of the concepts and techniques -- and what
difference they make in applied contexts and substantive problem solving- is paramount.

5. Extending the proof-generation capability to predicate logic.

This activity will proceed apace with the above, and will probably be straightforward, but it is
difficult to predict the rate of progress before we are about it. The apparatus for prepositional
logic with indirect proof (easily extended at minimum to monadic predicate logic) will be plenty
powerful for course deployment and support in '88-89.

6. Constructing interactive, on-line tutorials in proof construction.

This is easily done incrementally in CMU Tutor. Short of encyclopedic coverage of all the relevant
concepts and techniques of natural deduction, prototype interactive tutorials can be devised on the
essential concepts, rules, and techniques, with working exampless that can be plugged in for
practice in the Proof Tutor's workbench.

7. Constructing a working student model & diagnostician.

The refinement of such a facility is a long-term project, requiring close user-testing throughout
several iterations of design. During formative evaluation and given long experience with 'buggy'
student proof stratagems, we will be able to devise adequate advice facilities exploiting the Proof
Generator.

8

Significance, Impact & Applicability of the Project

Access to the Proof Tutor environment itself would be useful wherever some formal derivational
work is presupposed. Such courses are not limited to mathematical logic or discrete mathematics
where first-order logic is taught, but could be any (eg., in philosophy, linguistics, mathematics,
or computer science) where first-order predicate logic is used or assumed (such as our series in
logic & computability or logic, Al & probability). The Proof Tutor would be useful to faculty,
graduate or undergraduate students for individual work as well. The Proof Tutor provides not just
a learning environment, but also a widely applicable toolkit, like a spreadsheet.

Thus, the impact is potentially very widespread across the curriculum. The most visible
impact would be in the introductory on-line logic course, whose popularity is bound to increase.
This course would become far more inviting and accessible to non-technical students for one thing.

Additionally, the on-line course cum Proof Tutor could provide one solution to a widespread
problem noticed by several faculty in a variety of contexts: the lack of literacy In the basic
concepts and techniques of formal proof or argument among technical and non-technical
students alike. Even students with extensive and successful course experience in executing the
mechanics of proof construction typically do not articulately and reflectively internalize either
the concepts or strategies of formal proof and argument construction. Conceptual understanding
and transfer of proof strategy typically requires explicit training in the very process of practice
that only a tutor (human or computer) can provide. Practically, this means reliance on a
computer tutor that can be available to prompt and assist a student reflectively (rather than
mechanically) through her work whenever she sees fit to do her work.

The self-paced course, taken in whole or in part (as a mini or short course) could provide
self-study recourse for students wanting to enhance their formal-logical literacy. This
applies to non-technical students in non-formal fields (eg. rhetoric or writing) where formal
models of argument provide heuristic constraints for informal modes of argumentation.1,2’3

The domain-specific parts of the curriculum, with the help of the Proof Tutor, could provide
accessible supplements to topical studies (eg., Arrow's Paradox) in other courses (eg.,
economics, social philosophy or social choice theory). The application of formal proof techniques
across substantive topics or domains pregnant with intuitive meaning to students would be useful
for reinforcing the transferability and applicability of literacy in formal proof structures.

Such domain-specific applications could be garnered from the VALID curriculum or
provided by substantive word problems tailored by different instructors to fit their own course
contexts (either on-line, using CMU Tutor, or on paper, to be entered and solved in the Proof
Tutor environment by the students - the Proof Tutor will operate with student-entered problems
or stored problem sets entered by an instructor). The Proof Tutor's domains of application are
easily extensible and can be tailored by individual faculty in myriad ways.

The bottom-line utility of the Proof Tutor - as either a widely applicable stand-alone
facility or an integral part of the on-line course - is that it makes an important intellectual
toolkit more accessible and intelligible to students on many different levels: first-order logic,
natural deduction skills and formal proof techniques are fundamental to a very broad range of
intellectual work and theoretical domains. The pity is that the subject is typically taught as a
specialized technical topic rather than as a widely applicable organon, because it is not readily
accessible or intelligible as such to students. The Proof Tutor will help us redress this problem.

9

References

1. See Covey "Logic and Liberal Learning” and "Formal Logic and Philosophical Analysis,”
Beardsley "Logic and Rhetoric," Schwartz "Logic as a Liberal Art,” inter alia , in Preston K. Covey
(Editor) Formal Logic and foe Liberal Arts , a conference volume published as a special double
issue of the journal Teaching Philosophy, 4 (3/4) July/October 1981.

2. See also the sections on the applications of computer proof construction environments to the
reconstruction of natural language arguments and other modes of philosophic analysis in Preston
K. Covey "Computer Assisted Instruction in Philosophy" in Solvieg Olsen (Editor), Computer Aided
Instruction in the Humanities, New York: Modem Languages Association of America, 1985.

3. For illustration of formal proof concepts applied as heuristic constraints (per the programme
in the references above) in teaching writing and rhetoric, see David S. Kaufer and Christine M.
Neuwirth "Integrating Formal Logic and the New Rhetoric in Teaching the Argumentative Essay: A
Four-Stage Heuristic,” College English April 1983, and the Comments and Responses on this
article in College English February 1984.

	Carnegie Mellon University
	Research Showcase
	1-1-1988

	Intelligent Tutors for Formal & Applied Logic
	Preston K. Covey
	Recommended Citation

