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Abstract

We prove that under CH there is a homogeneous family over u which
is maximal with respect to inclusion.

Introduction
Homogeneous families of sets were first studied in [GGK]. The class of homoge-

neous families over an infinite set is a proper sub-class of the class of independent
families over the set.

The study of homogeneous families is related to set theory of the continuum,
model theory and — as every homogeneous family is studied together with its
automorphism group — also to permutation groups theory.

Interrelations between homogeneous families over u and their automorphism
groups were discussed in [KS], where it was also proved that there are 22* isomor-
phism types of such families. In this paper we address a problem raised in [KS]:
does a maximal homogeneous family exist? As an increasing union of homoge-
neous families is not, in general, homogeneous itself, this is a non-trivial problem.
The construction of a maximal homogeneous family of sets has to take into ac-
count the way the automorphism groups of one family and another containing it
are related.

* We wish to thank Ferna Hartman for her beautiful typing.
t The second author was partially supported by the German-Israeli Foundation for Scientific

Research Development Grant No. G-294.081.06/93. Number 568 in publication list.



We give a partial answer to this problem here by proving that CH implies
the existence of a maximal homogeneous family over u. The proof uses CH to
diagonalize over all permutations of CJ.

A simple variation on the proof gives 22*0 = 2Kl many isomorphism types of
maximal homogeneous families over u; from CH.

Notation

We denote by LJ the set of natural numbers. A natural number n is the set
{0,1,..., n — 1} of smaller natural numbers. A subset X C w i s sometimes called a
"real". Sym u is the group of all permutations of u. A function is a set of ordered
pairs, in particular, f\ C / 2 means that the function $2 extends the function / .

We use Forcing terminology in a non-essential way: more for notational con-
venience then as a real mathematical tool. Let us specify all that is needed: the
Cohen forcing for adding a single Cohen real is
P = {p : p is a finite function from u to 2} . P is partially ordered by inclusion
(Pi < P 2 ^ P i C p 2 ) . A s e t D C P is dense if Vp e P3q e D (p < q). G C P is a,
filter if and only if G is downward closed and Vpi ,p2 £ G 3p3 e G(pi < pz A p2 < P3)
A filter G is generic for a countable transitive model N of set theory if and only
if G n D ^ 0 for every dense D C P which belongs to N. For every countable
transitive N there is a generic filter G for N. (N will be no more than a concise
way to list No many relevant dense subsets of P). If G C P is generic for iV, let
rG = r = {n G w : 3p G G(p(n) = 1)} be a Cohen real over N. We say that a
condition p forces some property cp of r if and only if ip holds for all r = re with
pGG, and write p \\-(p.

Definition 0.1. Suppose T is a family of subsets ofev.

(0) FF T = {r : r finite function from ^ to {-1,1} }

(1) If AC LJ let A1 = A and A"1 = u\A = -A. For reFFP let

^*r = riA€dornT^T^^ Denote TT also as J5T and call it a "boolean com-
bination" .

We say that A participates in TT (or in BT) if A G dom r.
Let F/f={Br:r6FFf}.

(2) T is independent if and only if TT is infinite for all r G F F T.

( 3 ) f C P (a;) is dense if and only if for all 77 G <CJ2 there is X e J7 s.t.
x G X if and only if rj(x) = 1 for rr G dom 77.
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(4) Let idjr = {X C u): (Vr e FF 7") ( 3 / € FF T) T* D r and

ITr' fiX < N0J. id;r is an ideal over a; and is proper if and only if
T is independent. If T is dense then X e id? if and only if for all
r e FF T there is / D r in F F X and f r ' f l l = 0.

Definition 0.2.

(0) Let T C P (a;) be a family of sets. Let At/i J7 =
{a e Sym u : VX C a; X € T & a [X] € T) (where
a [X] := {(T(X) : x G X}). AutT is the automorphism group of ,F. If
a € Symu, let a : V(u>) -> P(a;) be defined by a(ar) = a[X]. If
a € ^wi^" then aJF e SymT.

(1) A demand on T C P(a;) is a pair d = (/i,/> s.t. h : u ^ u finite
1-1 function, / : T —> T finite 1 - 1 function and a; G I if and
only if h(x) E f (X) for # € dora h, X e dom / . We say that an
automorphism a G Aut T satisfies a demand d if and only if h C a
and / C a.

(2) For a permutation a € Symu, let Suppa = {# e t<; : cr (#) ^ rr} and
Fix a = {x £ LJ : a (x) = x} . Let 1 denote the unit in Symu.

(3) If G is a group of permutations and r C UJ a real, then
<2 [r] = {cr [r] : a € C?} , the orbit of r under the action of G on ? (u>).

The following four examples of T satisfy Aut T = Sym u : T = {0} ,
T = {a;} , ^" = {{#} : ar e a;} , T = {a;\ {x} : x e a;} . Therefore, for each of
these four families it is trivially true that every demand on T is satisfied.

Definition 0.3.

(1) T C P (a;) is homogeneous if and only if every demand on T is satisfied
by an automorphism of T and Aut T ^ Sym u.

(2) A group of permutations G C Sym u acts homogeneously on T C P (a;)
if and only if G C Aut J7 and every demand on T is satisfied by a member
of G.



We quote some basic facts about homogeneous families.

Fact 1.2 ([GGK], § 1):

(0) Every homogeneous TCP (u) is independent.

(1) Every homogeneous family TCP (cu) is dense.

(2) All countable homogeneous families over u are isomorphic. Moreover,
any countable dense independent family over CJ is isomorphic to the
countable homogeneous family over u.

Lemma 0.4. (See also GGK 2.2) IfT C P (u) is homogeneous, then Fix a G id?
forallid / a G Aut T. Consequently, for every finite list 0-0,02, ....,0"fc-i of distinct
automorphisms of T and r G FF T there is some r C r1 G FF T s.t. the points
0"o (x), G\ (x), ...0fc_i (x) are distinct for all x G BTt.

Proof: We repeat the proof here for completeness of presentation. The second
part of the Lemma follows from the first by considering Fix \ViVj) f°r all
i < j < &, the fact id? is closed under finite unions, and the density of T\ which
implies that if X G id? then BT* n X = 0 for some r7 extending a given r.

Let us prove the first part. Suppose id ^ a G Aut T and let r G F F T be
given. Pick x G u; such that a (#) ^ x. By density of T, there are infinitely many
X e T with x G X and a (x) # X. Pick one such X so that X and a (X) do not
participate in BT. Clearly, X ^ a (X) G T as a (x) G a (X) \X, and consequently
Xn-a (X) G F / T. For all a: G X\a (X) we have a (x) G ff (X), so a (x) ^ x as
x G X Let r1 D r be defined by r7 = r U {(X, 1), (0 (X), -1)} . It follows that
a{x)±X for all x e BT, C BT.

We shall need the following generalization of Lemma 0.4:

Lemma 0.5. Suppose f 0 Q f i , TQ homogeneous and T\ independent. If
a G Aut To, f G Aut T\ and a ^ / , then {x € u : f (x) = a (x)} G id^.

Proof: Find x G u> s.t. 0-""1 (x) 7̂  Z"1 (x) and let y = a / " 1 (x). Clearly t/ / x.
Any A G Fo for which x € A and y & A satisfies that Z"1 (x) G 7"1 (>1) and
cry = Z"1 (x) £ 0-~x (A), and therefore that a"1 (A) ^ j ~ l (A). As ^ is dense
(Fact 1.2 above), there are infinitely many A G To satisfying this requirement.
Given r e FF T. Find such A G To so that A, 5 := a"1 (A) and C := / - 1 (A)



are distinct elements of T, and do not participate in BT. This is possible by the
above.

Let r" be defined by domr" = {B,C},T"(B) = 1 and r"(C) = - 1 . Let
r / = r U r / ' . S o r / e F F f 1 and B^ e FI T. U x e BT* then x e B\C and
cr (x) G A, f (x) e - A This proves the Lemma.

Lemma 0.6. ifT is countable homogeneous d, G C Aut T is countable and acts
homogeneously on T, and r is a Cohen real over a countable transitive model N
with T,G 6JV, then

(0) G[r] n G[X] = 0 for all X € TV, X C u.

(1) f UG[r] is countable homogeneous.

(2) GCAutTUG[r].

Proof: I f l C w a n d l e i V then y = or"1 (X) e iV for all <j € G. The set
-Dy = {p e P : 3n € dorap (p(n) = 0 ^ n 6 l ) } also belongs to N and is dense
in P.Ifpe Dy then p ||- "X ̂  r", and there is one such p in the filter defining r
by genericity.

As T is dense, so is T U G [r]. It is obvious that G C Aut f U G [ r ] . All that
is left to show, then, is that T U G [r] is independent, because a countable dense
independent family is homogeneous by Fact 1.2(3).

Let r G FF (T U G [r]) and break r into two parts r = n U r2, dom Ti C T
and dora r2 C G [r]. The two parts are disjoint because of (0).

Let p be a condition in the Cohen forcing and let n € u) be arbitrary that for
some pf > p. We show

p'|f-"#rW0".
This implies that BT is infinite.

BTl is certainly infinite. Let &$, G\, ..., cr^-i be the list of all automorphisms in
G for which o [rQ] participates in BT2. Using Lemma 1.3 find 7J Dri , r[ € FF T,
such that for all x € BTl, we have that O{ (x) ̂  Oj (x) for i < j < k. B^ is infinite.
Pick x G J3rj\n such that af1 (x) g domp for all i < k. This is possible, as damp
is finite. Now p' = pUp' forces that x € J5r if dom p; = |<rfx (a:) : i < kj and
y ((jr1 (a:)) = r2 (ff,- [r]) for t < *.

Theorem 0.7. ("CHJ There exists a homogeneous T C P(cv) which is maximal
with respect to inclusion in the class of all homogeneous families over u.



Proof: Fix an enumeration (fQ:a< u) of Symu;\ {1} . By induction on a < CJI
we construct (Ta^Ga) satisfying:

(0) f a C P (u) countable, GQ Q Aut Ta countable and Ga acts homoge-
neously on Ta.

(1) a < /3 => TaC Fp and Ga C Gp and if a is limit then

(2) Ta+i = f a U G a [$a] where 5a C u. [Ta+i is obtained from Ta by
adding the orbit Ga [sa] of a single real sa under Ga] -

(3) If T D Fa+i is an independent family and fa G Aut T then fa G Ga.

Suppose first that this construction can be carried out. Let T = Ua^i^a,
G = Uft<WlGtt. By (0) and (1) it is clear that G C Aut T and G acts homoge-
neously on T. Therefore, T is homogeneous. We now argue that T is maximal
with respect to inclusion among the homogeneous families over u. Suppose to the
contrary that T*Z)T is homogeneous and T1 ^ T\ By Fact (1.2) T1 is indepen-
dent. Let A e F'XF and let B 6 f . We show that no automorphism of T1 carries
B to A. Let / = fa € Aut T1 be any automorphism of T[\ By condition (3), and
as T1 2 fa+i is independent, fa G Ga C G. Therefore, / a (B) G T and cannot
equal A.

The proof will be complete once we prove:

Claim: The induction can be carried out.

We concentrate on successor stages, the limit stages presenting no problems.
As To, Go pick any countable homogeneous family and a countable group acting
homogeneously on it.

Once .FQ+I = ^ Q U Ga [sa] is defined, and shown to be independent, it follows
by 1.2(3) that J^+i is homogeneous. Then Ga+i can be generated from Ga Q
Aut TQ.+\ by adding countably many automorphisms needed to satisfy all demands
on ,Fa+i.Thus, we need only define .Fa+i, show it is independent and see that
condition (3) holds.

Suppose Tot, Ga are defined. Let ra be a Cohen real over a countable transi-
tive model M with fa,Ga,Ta G M. By Lemma 6 we know that Ta U GQ [ra] is
independent. Now we distinguish two cases.

Case 0: fa G Ga or fa g AutT for all independent TD f a UG Q [ra].



In this case let T^+x = Ta\J Ga [ra]. By Lemma 0.6 -Fa+i is homogeneous.
Ga+i is readily chosen so that (0)-(3) hold.

Case 1: fa £ Ga and for some independent family T 2 Ta^Ga [ra] it holds that
fQ eAutF.

Claim: Ta, Ga [ra] and Ga [/"VJ are pairwise disjoint and TaUGa [rQ]UGa f/"1^
is independent.

Proof: Let ta := f~lra. Clearly ra $• N being generic over N. Therefore ra ^Ta.
It follows that Ga [ra] and T* are two different orbits under the action of Ga on
V (UJ) , and are therefore disjoint. Similarly, f^1^ & N and therefore Ta and
Ga [ta] are disjoint.

Finally, we check that Ga [ra] n Ga [ta] = 0. Let a e Ga be arbitrary. As
a 7̂  /~x and f~x E AutT, Lemma 2.3 assures us that {x : a (x) = f~x (x)} € id?.
Therefore, A = {x : o-(x) ^ Z"1 (a:)} is infinite (as J7 is independent). Also,
AeN.

Now if p is a condition in the Cohen forcing, find x € A s.t. x, a"1 (x)
and fa(x) are distinct and do not belong to domp. Let p' extend p so that
p7 (cr""1 (x)) = 1 and pf(fa(x)) = — 1. pf Ih/o^1 [ra] 5̂  ^ [ra] and now the claim
follows.

Suppose now that T& U Ga [ra] U Ga [ia] is not independent, and we will show
that fa € Ga, contrary to the assumption. Let p be a condition in the Cohen
forcing, r e FF (Ta U Go [ra] U Ga [ta]) and

partition r = ri U r2 U T3 such that T\ 6 F F ^ a , r2 G FF G [ra] and
r3 € F F Ga [/"VJ .

Let dom r2 = {a0 [rQ],..., ̂ - i [ra]} and dom r3 = {^ [fa
 1ra],..., orfc4.m-i [fa

 lra]}

By Lemma 1 we may assume that a (a;) = {0",7"1 (^) ' * < k \ and

b' (x) = jcrj"1 (x) : k < j < k + w\ are without repetition for all x € Bn. There-

fore, also b(x) = (fal(7jl (oo) : k < j < k + mj is without repetition.
This can be acnieved by extending T\. By further extending ri, we may also

assume that Bn D a~x [dom p] = 0 for all i < k + m.
If for some x G BT, we had a ( i ) n b (x) = 0, we could define p1 with dom p' =

a (x) U b (a:) and p' (af1 (a:)) = r2 (cr,- [rQ]) for i < k and
j / (*Jl (x)) = r3 ( ^ [/-VQ]) for A; < i < * + m.



In this case p U pf is a condition, p U p1 > p and pUp' \\- "x G J5r" — a
contradiction. Therefore, a (a;) n b(x) ^ 0 for all x G Ba. This means that for
some i (x) < k and k < j (x) < k + m we have

(o.i) ^ i (*) = / r 1 ^ (x)
and therefore
(0.2) Z"1 (x) = a^x)am (x)

By enumerating all possible v^l)<Tj(x) for x G BTl in a list (ae : £ < £(x)) we
obtain for every x G BT:

(0.3)

If / - 1 ^ cj£ for all £<£(*) , apply Lemma 2.3 to obtain T* D TU T € FF F
and Vx G BT>Vi<i(*) (/~x (x) ^ a* (x)). This clearly contradicts (3) above. We
conclude, then, that for some £ < £(*) we have f~l = oi, and therefore / a G Ga

— a contradiction to the assumption.
Let sa be a Cohen real over a countable transitive model N with Ta^Ga^r^^fa G

N. By Lemma 5, TaU Ga [ra] U Ga [ta] U Ga [5a] is independent, and GQ [sa] n
( ^ U G a [ r a ] n G a [ t a ] ) = «.

Let ^ a + 1 = f a U G a [sa n ra] U Ga [ta].
Claim: ^"a+i is independent.
Proof: Let B = a < ^ r ( 0 n V[k<j<k+m°3 (*<* n r a ) r ( i ) n a<fc+m+»P/ (*«)r(£) be a
boolean combination. 5 = fl A]{i) n fl ^i (r a) r r ( l ) n f| ^ (5a) r ( i ) n fl P£ (*a)rW •

Because the orbits under Ga of ta, 5a, ra are distinct and ^ U Ga [ra] U Ga[rQ]
is independent, we are done.

Now we claim that if T 5 ^a+i is independent, then / £• ^Itxt^*. Indeed,
Z "̂1 [5a n ra] C Z^1 [ra] = ta and 5a n ra, ta G ̂ "a+i- As no two members of an
independent family are contained in each other, necessarily /J"1 (sa PI ra) £ T,
and therefore fa £ Aut T.

Variations

We use the proof of Theorem 7 to obtain a few more results. First, let us see
that there are 22 * non-isomorphic maximal independent families over u under
CH. It is enough to construct 2**1 different maximal homogeneous families over
a;, under CH, because dividing by isomorphism does not change this number (see
also [GGK], [KS]).
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We imitate here the proof in [GGK] §2, and construct 22* maximal homo-
geneous families under CH, one for every 77 G Ul2. The key observation is the
following:

Claim: sa in the definition of Ta+i = T* U Ga[sa] in the proof of Theorem 7 can
be chosen as one of two disjoint sets s£, s^.
Proof: sa was either ra (a Cohen real over N containing T&, Ga,fa) or sa D ra

with sa Cohen real over M containingTa,Ga,ra,fa. In each case, the Cohen real
can be replaced by its complement (by symmetry of the definition).

Corollary 0.8, (CH) There axe 22* non-isomorphic maximal homogeneous fam-
ilies over uo.

Proof: For every 77 G Wl2we construct a maximal homogeneous Tn C V(u>) by
induction on a < o;i, as in the proof of Theorem 7. At stage a+1 we let sa = s$a\
when s£, s^ are two disjoint sets that satisfy (0) - (3) in the proof of Theorem 7.
The proof gives that T^ is maximal homogeneous for every 77 G Wl2. Moreover,
1)15^% and 771,772 G Wl2 imply that for the minimal a s.t. 771 (a) ^ 772 (a) we have
sa € Fm *> si G Tm for i jt j in {0,1} . Therefore, Tm ^ Tm if 771 # 772. Dividing
{ ^ : 77 G Wl2} by isomorphism we obtain 2** isomorphism classes, as each class
contains 2Ko = w\ many members of {T^ : 77 G Ul2} .

Another observation we make if the following:

Claim: If T = J7^ is any of the families constructed above, then

(0)
(1) KFDT is independent, then Aut T1 C Aut T.

Proof: Clear.
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