


modify random searches; additionally, an auxiliary filter is adopted to av-
erage stochastic gradients and to produce more stable estimates of feasible
directions.

The algorithm is based on the scheme given in [12], and results are
computed for the two dimensional Ericksen-James energy functional. In the
following section, the macroscopic formulation of the problem is outlined.
The stochastic optimization strategy, together with the ideas behind it, is
covered in Section 3.

2 Two-Well Problem and Young Measure Ap-
proximation

We consider a simplified formulation of the Ericksen-James variational prob-
lem; more detailed accounts may be found in [8,15]. An outline of the algo-
rithm proposed in [12] for the approximation of the associated generalized
solutions is also presented.

Below Q C IR2 will be a bounded domain, and we shall denote by
u: Q —• IR2 a stable, continuous, and piecewise differentiable deformation of
a crystal lattice that has undergone a phase change; the austenite-martensite
phase transformation in two dimensions. We consider the problem of mini-
mizing the total free energy of the form

I(u) = / F(Vt* (x), 8) dxy u € Wl*(Q; IR2). (2.1)

Here, the energy density F depends on the deformation gradient Vu and
temperature 6. (Below we will assume that the temperature is fixed, and
the dependence on the variable 9 will be suppressed.) As mentioned in the
Introduction, our numerical algorithm will be discussed in the context of the
Ericksen-James density given by

where,

#(C7) = ici (trC - 2)2 + K2 c?2 + K3 [ j (cn - on? - * 2 ] 2 , (2.2)

with constants /q, *2, *3 and £ derived from physics, and C = [c,j] is a
2 x 2 matrix. The bulk energy function F satisfies the principle of frame



indifference, and is right invariant under the symmetry group of the lattice.
In other words,

F(QA) = F(A), QeSO(2)
and

where Q is the symmetry group of the lattice generated by
( - . : ) •

rotation of TT/2. At a fixed temperature 0, the functional $ has an absolute
minimum at 2 x 2 matrices U belonging to the union of two wells that are
generated by the action of SO (2) on two fixed positive definite symmetric
matrices Uo and Ux of the form

where iji = v l̂ — £> % = VT+T. When boundary conditions of the form
u |#n= Bx are specified, with

minimizing sequences {u^} of (2.1) are known to develop finer and finer
oscillations, so it is necessary to admit the generalized solutions of this vari-
ational problem. A generalized solution is a pair (u, i/), where v = {vx}xen
is a parametrized probability measure, the Young measure, that gives the
limiting probability distribution of the values of {Vu^} in a vanishingly
small neighborhood of each point x € fJ as j —¥ oo (see, e. g., Ball [2]).

Following [12, 15], we recall that the Young measures is a macroscopic
quantity, and can be computed as the solution of the problem

V X , ( , ) > , ( ) , M, (2.3)
n

subject to the constraint
<ifc,Jd) = Vu(x). (2.4)

(The angled brackets denote the expected value of the indicated function
with respect to the given probability and Id is the identity function). In
this notation, yM(Q) represents the set of gradient Young measures; that



is, measures derived from sequences of gradients of functions bounded in
l

A numerically subtle issue here is how to approximate a parametrized
Young measure v € yM(Q) in the present vector-valued situation. As
shown in [9], the Young measure can be approximated by a measure that
is piecewise constant in x. Accordingly, the algorithm proposed in [12] uses
the standard piecewise linear approximation for the function u on a given
triangulation, {Th} of ft, and approximations are constructed by minimizing
(2.3) over V̂  x yMh- Here V̂  denotes the space of piecewise linear functions
on {Th} and yMh the sub-space of Young measures that are piecewise
constant on each triangle of {%}, and are a finite linear combination of
Dirac distributions on each such triangle. (Such a combination is dense in
the space of probability distributions!) This corresponds to approximating
probability distributions by a traditional quadrature rule.

We consider here the simplest case where the discrete measure vx consists
of precisely two Dirac distributions S(-)

vx = A (x) SM(x) + (1 - A (x)) SAl(x),

where 0 < A(x) < 1 varies measurably with x. Piecewise constant ap-
proximations for Ao, A\ and A are considered on {7/*}. The algebraic con-
straint (2.4) now implies that

so that
Ao = Vu - (1 - A) b and Ai = Vu + A 6,

with b = A\ — AQ. In order to guarantee that v € yM, a compatibility
condition (arising from the fact that the curl of a gradient vanishes) requires
Ao — A\ to be a rank one matrix, i.e.,

A\ - Ao = o ® n, (2.5)

where n = (cos0,sin0)T and a is a piecewise constant vector field on
In our example, while the matrices Ux and Uo do not differ by a rank

one matrix, we have

for some Q € SO (2). Furthermore, if linear boundary values of the macro-
scopic deformation u in our problem are considered as above, a minimizing



sequence of (2.1) will develop oscillations, and the generalized solution (u, u)
corresponding to such a sequence will have u = Bx and v = A SAQ + (1 — A) SA
with AQ and A\ satisfying (2.5) and having n parallel to (-1,1). In addi-
tion, A = a where B = Ba. Hence, our discrete problem reduces to finding
parameters A € (0,1), a € IR2 and 8 € [0,2TT) that minimize

tl>(\,a,e) = \F[Ba-(l-\)a®n]+(l-\)F[Ba+\a®n)^mxn (2.6)

which has a global minimum energy of zero.
In summary, a generalized solution (u, v) of the minimization problem

(2.3), with the function u satisfying the given boundary conditions, can
be exactly represented by our discrete scheme and will produce the global
energy minimum. Nevertheless, numerical algorithms for minimizing (2.6)
encountered local minima from which the classical descent algorithms could
not escape. To eliminate this drawback, an implementation of the method
of the stochastic gradient is considered.

3 Stochastic Numerical Optimization

In this section a method of finding feasible descent directions using a stochas-
tic optimization technique, is introduced. We illustrate the operation of this
algorithm by minimizing the functional t/> introduced in the previous section
with physical constants K\ = 10, KI = 3, K% = 10, and the parameters e and
a are chosen to be 0.1 and 1/3, respectively.

The macroscopic formulation of the problem outlined in the previous sec-
tion requires minimizing a finite-dimensional non-convex variational prob-
lem. Such a problem poses two conflicting goals. On the one hand, a numer-
ical strategy must be capable of learning while searching, gathering global
information about the structure of the landscape, and to use it in order to
concentrate the search effort in the most promising regions. On the other
hand, every such a strategy must also be capable of global exploration, as
focusing on the apparently most promising region does not necessarily lead
to the discovery of an optimal solution. Therefore, the search strategy must
be able to move to various regions of the configuration space and continue
searching. In view of these remarks, stochastic algorithms are natural in
that they can guarantee extremization of non-convex problems. However,
the simple random schemes that search and save the best must be discounted
because of efficiency requirements.
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A commonly used approach in stochastic numerical optimization is to
map an optimization problem into the simulated annealing framework, a pro-
cedure that can be highly nontrivial. The following conflicting requirements
highlight the practical difficulties encountered with the simulated annealing
algorithm (as pointed out in the work undertaken by Gremaud in [6]):

(i) if the temperature is lowered too slowly, the convergence (if any)
towards a global minimizer might be too slow to be of any prac-
tical use;

(ii) if insufficient time is spent at each temperature (i. e., if the tem-
perature is lowered too abruptly), especially near the freezing
point, then the probability of attaining a very low energy config-
uration is greatly reduced. That is, the solution may get stud:
in some local minimum.

Here the "temperature" of the system is a variable that is initially at a high
value and is gradually reduced during the search. Since there is always the
risk that the system may freeze without having found a global minimum, the
selection of an annealing schedule, that is, a decreasing set of temperatures,
together with the amount of time to spend at each temperature, requires a
substantial amount of art (and, probably, a supercomputer). Up until now,
different approaches have been undertaken in order to improve the relative
performance of simulated annealing. Ackley [1] proposed an iterated version
of the simulated annealing algorithm which restarts if the temperature drops
below a minimum threshold. Davis and Ritter [4] have applied a genetic
algorithm to determine better annealing schedules. In addition, Gremaud
[6] used simulated annealing to construct a numerical test of quasiconvexity.

It is important to recognize that a randomized search does not necessarily
imply directionless search. This basically inspired our strategy for solving
the given problem: Given an arbitrarily chosen initial condition, some form
of a stochastic fluctuation in the direction finding step of the traditional
gradient algorithm is implemented. Once a local minimizer is attained in
a descent direction, further improvement may be sought through a random
restart in our search strategy, in order to "jump" away from such a point.
In order to fully test this strategy, our initial data will be chosen as the local
minimum of ij> given by



Figure 1: Level surface ofX and 0 components oftp for a\ ' and a^ . Algo-
rithm started at the local minimum x^.

obtained by a routine Maple calculation and having the values

» 0.99786045
« 0.69792791

« -1.9104128
ss 1.87752784,

«i0 )

The corresponding local energy minimum is V w « 0.0006. It is a priori
known that the correct solution of (2.6) has A = 1/3, o » [0.1342,0.1483]r

and 0 = 3 TT/4, and for these values of the parameters a global energy mini-
mum of zero is attained. Figure 1 plots a 3D level surface of the the func-
tional ^, with a[ ' and a^ fixed. This plot shows that V> is very flat in the
region near the point x*0). This could render the algorithm quite "depen-
dent" on the number of correct decimal places used for computation.

3.1 Stochastic gradient algorithm

We begin here with a simplified formulation of the stochastic gradient method
for minimizing a nonconvex function <f>: TR,d —* IR. The method is defined
in following terms: Given initial condition x®\ we set

_ hk ( (3.1)
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where, at every iteration step fc, a sequence of random vectors £W
called stochastic gradients corresponding to Vt/>(x^), is generated, having
expectation IE(£W|xW) equal to a gradient of $ at x&K Additionally,
hk = hk(xW) is the stepsize at the fc-th iteration. We remark that, for the
sake of numerical simplicity, all probabilistic characteristics of the vector £ ^
are assumed to be fully determined by the point x ^ and do not depend
on the past of the search process. It is possible to show, using stochastic
analysis techniques, that such a sequence of iterates will tend to a global
minimizer of <f> "in some probabilistic sense", provided that the sequence
{hk} satisfies certain summation properties; namely,

f ; 2
k <oo, (3.2)

*=0

and the sequence {IE(|| £(*> ||2 | x(*>)}gi0 is uniformly bounded. This result,
and the more details, can be found in, e. g., [5,14]. However, conditions (3.2)
are not necessary to guarantee the corresponding computational scheme to
converge efficiently to a global minimum (take, for example, the harmonic
sequence {h^ = l/(& + 1)})« Therefore, a direct implementation of such an
algorithm can result in a numerically inadequate search strategy.

We use a modification of the basic approach to (3.1) by introducing an
auxiliary sequence of filters, z^ which "average" stochastic gradients to
produce more stable estimates of the feasible directions that are, in turn,
used to compute x ^ . To be more precise, we first set

where g^ = Vtp(x^) and r ^ is a standard Gaussian randomly gener-
ated vector. A control parameter a* is used in order to weigh the random
deviations in the components of r W, which are in turn found to be quite sen-
sitive to the way random numbers are generated. To this end, the filtering
is introduced in the following way:

o. (33)

Now (3.1) becomes

hk * ', k = 0 , 1 , . . . ,

9



The parameter hk plays the role of the diffusion coefficient, and is decreased
at an experimentally determined rate that is analogous to tuning the anneal-
ing rate with simulated annealing (see, e.g., [10]). In fact, the appropriate
choice of hk of the form

hk = . * , . , (3.4)

with c € (0,1), turned out to lead to convergence of our algorithm, as shown
below.

This algorithm has no explicit switch for detecting when it is at a local
minimum. Instead of actually detecting local minima and restarting, it
primarily relies on its ability to accept uphill moves to escape local minima.
Although the uphill random moves are as likely to be accepted as those that
are downhill, the numerical implementation of the filtering procedure (3.3)
was shown, in turn, to provide a greater chance for the moves that were
supposed to improve the search.

The method we propose here has close connections with the work of
Ruszczynski [13], where related analytical issues may be found. Such algo-
rithms can be adapted to more general settings; for example, to the method
of stochastic *ubgradients (or e—subgradients) which arises in nonsmooth
optimization (see e.g., [14]).

3.2 Numerical Results

This modified stochastic gradient algorithm with filtering is found to be
moderately effective for computating the optimal solution to the problem
(2.6). After 80 Maple iterations, each requiring only a single function evalu-
ation of t/>, the algorithm gets close to the global minimum. Indeed, it gives
a very satisfactory answer of the form

A(1) « 0.4017524

a}1* « 0.13873311

a{2] « 0.14478447

« 2.38171172,

when we use c = 0.3. The associated energy is ^ ( 1 ) « 0.000725. A 3D level
surface plot of Ŝ corresponding to a[ ' and a^ fixed as above is exhibited
in Figure 2 below.

As can be clearly observed from this plot, the region around the global
minimum is small and is contained in a very narrow and long valley between

10



Figure 2: Level surface of \ and $ components ofip for a[ ' and <4

two high peaks. In fact, the gradient V^ at the point * ( 1 ) = [\w, o f \ 4 ,
is

« [0.01015,0.118804,-0.096992,-0.023771]r.

The functional V is locally convex in the neighborhood of the global min-
imizer; therefore, the stochastic fluctuations cause rapid variations in the
gradient directions as the algorithm gets closer and closer to the global min-
imum. Hence, in order to gain further improvement in minimizing rp at
this point, additional "numerical trickery" is applied. In fact, after just 9
iterations of the simple downhill descent via conjugate gradients, a solution
of

A(2) « 0.39618443
ss 0.13175634
as 0.14201515

0(2) « 2.3568941,
42 )

gives tpW » 0.000063, before the algorithm starts leading to an underflow
in the computation of the gradient.

We remark here that the numerical performance of the proposed al-
gorithm has been considered by repeating the computations with various
different values of physical constants K\, K2, K3, e and a, as well as varying
the annealing coefficient c in (3.4). As an overall comparison, the efficiency
of the procedure does not change significantly from case to case, requiring

11
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Figure 3: Rotationally Invariant Wells, 8x8 Mesh.

about 60 - 120 Maple iterations with the noise terms, before the algorithm
gets close enough to the global minimizer. Figure 3 shows a layered mi-
crostructure corresponding to the Young Measure computed here having a
ratio of widths A = 1/3, and layer normals n are at 135 degrees from the
horizontal.

3.3 Concluding Remarks

In conclusion, the overall approach is a useful one: The algorithm allows us
to start from a local minimum as the initial condition without getting stuck
there, in order to get to a well where a global minimum lies, contrary to tra-
ditional descent methods. Nevertheless, the performance of these algorithms
is very problem dependent.

Moreover, a subtlety associated with the proposed algorithm is the fact
that it is very sensitive to the way random numbers are generated. The
computations presented above have been performed using a DEC 5000/25
work station, in conjunction with Maple's built-in random number gener-
ator. Some interesting but undeveloped ideas involving the use of genetic
algorithms [1] to improve such randomized searches and implement them
into a more general case are currently under consideration.
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