






by its very definition, a jump point for v is a density point for its domain A and

that, because t; is continuous in each fit region intCj, no density point of Cj can

be a jump point for u. Thus, relation (3.13) tells us that, to within a set of area

zero, the set T(u) is included in the union of the sets F*/. The immeasurability of

T(v) follows from the relation T(v) = T(u)\eby A\ indeed, eby A is immeasurable

because A is a set with finite perimeter, and T(u) is ^-measurable because it is

the set of jump points of a function in BV [6, Sect. 5.1.6]. •

We now wish to establish a version of the integral-gradient formula (3.10) for

vector-valued functions u : A —* W, where U is a finite-dimensional inner product

space. First of all we note that the definition of approximate limit, given by

relations (2.7), (2.8) and (2.10), can be extended to vector-valued functions u,

with the only change that the symbol | • | in (2.8) now denotes the norm in U

instead of the absolute value. The same observation applies to the concepts of

a point of approximate continuity of u, a jump point for u, and traces of u. By

contrast, we modify the definition (2.11) of directed jump at a jump point x as

follows:

Ju{x) := (ua(x) - u-a(x)) ® a. (3.23)

We collect together some properties of vector-valued functions in the following

proposition.

Proposition 3.3. Let U an n-dimensionaJ inner product space, A and C subsets

of£, x € Af and u : A —• U be given. For each ortbonormal basis {cf |

i € {!,•••*n}} oftt, let u,, t € {!,•••>"}* denote the components ofu. Then:
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(i) u has an approximate limit relative toCatx if and only if for all

i € {l,...,n},Ui has an approximate limit relative to C at x.

(ii) u has an inward trace u+(x) [outward trace u~(x)] at a point x € eby C

if and only if, for all i € {l,.. . ,n}, txt has an inward trace u?(x) [outward

trace tit~(x)] at x; in this case,

ut(x)e\ (3.24)
•si

«-(*) = £ «r(*y, (3.25)
•si

(111) x is a jump point ofu with determining vectors {a,—a} if and only ifxis

a regular point for every component ofu,xisa jump point for at least one

component ofu, and all components ofu having x as a jump point have the

same pair {a, —a} as determining vectors at x.

(iv) If x is a jump point ofu, then the directed jump Ju defined in (3.23) and

the directed jumps Jut of the components ofu, as defined in (2.11), satisfy

n

•M*)=]£ ef® Ju,(x). (3.26)

Proof. Item (i) follows immediately from the definitions of approximate limits

for u and ut- and from the inequalities |ut| < \u\ <T |ut|, and item (ii) follows
•si

from the definition of approximate limit relative to C. To verify item (iii), we

assume first that x is a jump point for u with determining vectors {a, —a}. Then

the approximate limits limits uQ{x) and u_a(x) both exist but are not equal. It
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follows from item (i) that, for all s € { l r . . ,n} , the approximate limits (ut)a(x)

and (ui)_o(x) both exist, so that x is a regular point for every component of u.

Moreover, because ua{x) ^ u-*(x), we have (ut)a(x) ^ (ut)_a(x) for at least

one i € {l,.. . ,n}. For every t € {l,...,n} at which (ut)a(x) = (ut)_o(x), ut-

is approximately continuous at x. This verifies the "only i f part of item (iii).

To prove the "if part it suffices to observe that the three conditions on the

components of u specified in item (iii) imply that there is a single pair of unit

vectors {a, —a} for which the one-sided approximate limits (u,)(x) and (u,)_a(x)

exist for all s € {l,.. . ,n}. By item (i), uQ(x) and u_a(x) both exist. However,

because there is at least one component of u that has a jump point at x9 it follows

that {a,—a) is the only pair of vectors for which both uQ(x) and u_o(x) exist.

Thus, xi has a jump point at x. This completes the proof of item (iii).

Lastly, to prove item (iv), we assume that x is a jump point for u and use the

definition (3.23) to write

Ju(x) = (ua(x) - u_a(x)) ® a

= t (M*) • e*)e* - («-«(*) • «V) ® <*
•si

(3.27)

a.

The last equality above follows from the relation
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which is valid whenever u has an approximate limit with respect to C at x. Rela-

tions (3.27) and (2.11) immediately yield (3.26).•

Item (iii) of Proposition 3.3 provides the following relation between F(u), the

set of jump points of u, and {r(u,)|t € {1,..., ^}}, the sets of jump points of the

components of u:

T(u) C U TK). (3.29)

Again, according to item (iii), in order that a point x € S satisfy

x € U r(u t)\F(ti), it must be either that x is not a regular point for at least one
•sl

component of u or that there are at least two components of u having jump points

at x with different pairs of determining vectors. We prove below that Q F(ut)
•sl

and T(u) are area-equivalent.

Proposition 3.4. Let A be a piecewise fit region, and let u : A —• U be a

vector-valued function satisfying the following requirement: there is a finite cover

{Aj J j € {1,..., J}} consisting of fit regions such that, for each j € {1,..., J} , tie

restriction u\^ ofu to Aj has a Cl extension to €. Moreover, let an orthonormal

basis {c*ji € {I,—,**}} of U be given. The jump sets F(u) and r(u,), t €

{l, . . . ,n}, then satisfy not only (3.29), but also

T(u) 4 (J T(ut) (3.30)
•sl

Proof. For each u , : A —• R, we have from Lemma 3.1 that the function

m(x) for x € A
(3.31)

0 for x € €\A
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is of bounded variation. By (BV2), the set of points of € which axe not regular

points of u? form a set of area zero. Because the points in dens A that are not

regular points for ut* also are not regular points for u*, it follows that the set 5 t

of points of dens A that are not regular points of u» has area zero. Consequently,
n
U Si has area zero. The observation following the proof of Proposition 3.3 tells

•si

us that (3.30) is satisfied if the set

{ there are at least two components 1
x € dens A of u having jump points at x with > (3.32)

different pairs of determining vectors J

has area zero. In order to verify that V has zero area, we consider the partition

{Cj \j € {l , . . . ,«0} °f ^ obtained as in (3.2) with the scalar-valued function t;

there replaced by the given vector-valued function u, and we again use the lemma

[5, Sect. 2.5] cited prior to (3.13) to write
A J J

dens A « | J densCj U |J T*/, (3.33)

with Tkt given by (3.14). Moreover, according to the same lemma, at all points

x0 in Tki the outward normals P*(XO) and *v(x0) to C* and Ct satisfy

%(«*) +%(*o)«0. (3.34)

We observe that, at each density point of C,-, u is approximately continuous,

because ti|tnjc, extends to 5 as a C1 function. Therefore, no component of u

can have a jump point in U densCj. Consequently, the intersection of V and

U densCj is empty. To complete the proof, we only need to prove that the
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intersection of V and U Tkt is also empty, i.e., that

J
U (r^nD) = 0. (3.35)

Moreover, the fact that each Tut is a subset of the reduced boundaries of both

Ck and d and the fact that u\ck and u\ct each extend to € as a C1 function

imply that each component ut of u has approximate limits with respect to both

Ck and Ct at every point in Tkt> Therefore, (3.34) permits us to conclude that every

point xo in Tki is a regular point for each component u«, and {i/±(z0), vt{xo)} =

{^(^o)>—^(^o)} is a pair of determining vectors for each u,-. Consequently, all

components of u share a pair of determining vectors at x0, and this implies that

V and Tiu are disjoint. •

R e m a r k 3.5. By ^ i n g the f&ct that, iftiie BV, then the set F(u t) is a set of

the class T as defined in [6, Sect. 5.J.5], one can prove that the relation (3.30)

holds for all mappings u:E -*U whose components are in BV [4].

We are now in a position to extend Theorem 3.2 to vector*valued functions.

Theorem 3.6. Let A be a piecewise fit region, and let u : A —>U be a vector-

valued function satisfying the smoothness condition in Proposition 3.4. Then

=-Jju(x)dAx+ J u+{x)®p{x)dAx. (3.36)
T(u) rbyA
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Proof. We choose an orthonormaJ basis {c*\i € {l, . . . ,n}} of U and note that

each component u, = u • e' of u satisfies the hypothesis of Theorem 3.2. Writing

(3.10) for each u,-, taking the tensor product with e\ and summing the resulting

equations, we obtain:

(3.37)

By (3.30), we have

r(«*») C j j T(UJ) & I\u), (3.38)

and we note that yt-almost every point of r(u)\r(u t) is a point of approximate

continuity for u,. Therefore, Ju{(x) = 0 for j4-almost every x in r(u)\F(ut). Thus,

T(ui) can be replaced by T(u) in (3.37), and (3.36) follows from (3.26) and the

relations

~ )> (3.39)
tsl

tssl

4. Integral-gradient formulae for structured deformations

Integral-gradient formulae appropriate for the classes of deformations introduced

in [1] can be deduced easily from Theorem 3.6. Here we consider the classes of
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deformations Sid, LirnSid, Std defined in [lj, and for each of them we write the

appropriate integral-gradient formula.

According to Definition 3.2 in [1], a simple deformation from a piecewise fit

region A is a pair (*,/), where K is a subset of A of volume zero such that

A\K is a piecewise fit region, and / , the transplacement associated with the given

simple deformation, is a Cl mapping of A\K into € which, among others, has the

following property: there is at least one finite cover of A\K by fit regions Aj such

that the restriction of / to each Aj has a C1 extension to €.

For the point-valued mapping / : A\K —• £, one can define approximate limits,

traces and the directed jump as done for vector-valued functions. If we choose a

fixed arbitrary point o of S and define u : A\K —• V by

«(*) := /(») - o, (4.1)

we can relate the gradient, the inward trace and the directed jump of / with those

of u by

V/(x) = Vu(ar), /+(*) = o +«+(*), Jf(x) = Ju(x). (4.2)

For a simple deformation {*, / ) , tt satisfies the assumptions of Theorem 3.6, and

therefore Eq. (3.36) holds. Note that the fact that K has volume zero implies

A « A\K and rbyA = rby(A\K), so that Eq. (3.36) can be written with A

instead of A\K. This equation, together with relations (4.2), yields

s + J (/+(*) - o) ® v{x)dAx. (4.3)
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This is the integral-gradient formula for simple deformations. Note that the last

integral in the formula is independent of the choice of the point o.

Let A be a piecewise fit region of S. According to [1, Def. 4.1], a limit of

simple deformations from A is a triple (#c,£,G) with K C *4, g € L°°(A,€), G €

L°°(AyLinV)y for which there is a sequence n «-• (/cn,/n) of simple deformations

from «4, called a determining sequence for (*,£,C7), such that:

oo oo

K SB liminf /cn = M f | *cn, (4.4)

\ (4.5)

Urn \\G - Vfn\\L~(AJAnV) « 0. (4.6)

It can be proved [1, Theorem 4.10] that K has volume zero and that g and G

have representatives <7o,Go which are continuous in A\K. Moreover ([1, Lemma

4.11]), n*-> fn and n *-+ V / n converge to go and Go uniformly, in the sense that

for every e > 0 there is an nc € N such that, for all n > ne,

sup |/n(*)-*o(*)|<e, (4.7)
\ ( )

*)-Go(*) |<e. (4.8)

We now prove an analogous property of uniform convergence for the inward traces

of the functions fn on the essential boundary of A.

The proof of Theorem 3.6 shows that each of the functions

un(z) := /n(s) — ° has an inward trace u+ defined j4-almost everywhere and

Bummable on eby (A\Kn) = eby A. By (4.2), the same holds for / + , the inward
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trace of /n . We denote by Tn the domain of /+, i.e. the set of all points x € eby A

at which the trace f£(x) is d<

We also denote by To the set

at which the trace /+(x) is defined, and we observe that Fn&tbyA by (BV3).

To := 0 *>, (4.9)

which also is a subset of thy A with full area measure.

Theorem 4.1. Let A be a piecewise fit region and Jet n •-* (*n» /n) be a sequence

of simple deformations from A. Assume that the sequence n n / n has a uniform

limit go : A\K —* E in the sense of relation (4.7), with K given by (4.4). Then the

sequence n *-* f+ of the inward traces of the functions /„ on eby A has a uniform

limit defined over the set To defined in (4.9). Moreover, this limit is summable in

eby A and is the inward trace of go on eby A.

Proof. Let c > 0, n € N, x € Tn be given. For every S > 0, define

Vt(n, x, 6) := {y € B(«, 6) n «4\(«n U K) \ |/+(x) - /n(y)| < e } . (4.10)

It is clear from the definitions of approximate limit and of trace given in Section

2 that

Now let * € To and m,n € N be such that rn,n > ne, where nc € N is such

that the inequality (4.7) holds for all n > nc. We also choose S such that the set

Z>c(m,z,£) n 2>c(n,x,£) has positive volume; in view of (4.11)9 this can be done
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by choosing S such that

min { V(P«(m, *, S))t V(Pt(n, x, 6))} > ±V(A n B(x, 6)). (4.12)

We then choose y € 2>t(m,x,^) n Z>((n,z,6) and consider the inequality

- go(y)\
(4.13)

+ My) -/»(y)l + l/»(y) -/+(*)!

which, by (4.10) and the property (4.7) of uniform convergence o f n M /n(y)>

allows us to write

^o. (4.14)

This implies that for every x € T* the sequence n •-• /+(x) is a Cauchy sequence

and, therefore, converges to a point which we call fo(x). In this manner, we have

constructed a mapping fo: fo—> £ such that the sequence n H-> / + of the inward

traces converges pointwise to /0 . Moreover, the inequality (4.14) tells us that the

convergence is uniform on To, because ne does not depend upon the point x in

To* Finally, /o is summable because it is the L°°-limit of a sequence of summable

functions. It remains to prove that /o is the trace on eby A of the limit go of the

sequence n *-+ fn. First of all we note that the uniform convergence of n •-• / + to

/o on To implies that for every e > 0 there is an n[ € N such that n>n't implies

\f+(x) - / 0 (x) | < e Vx € To. (4.15)

26



For a fixed c > 0, we then choose x € To and n > max {n«, n'€]. We also let S > 0

be given and choose y € Vt{n,x,6), to get the inequality

\f*(x) - /n(y)| + |/n(y) - »(v) | . (4.16)

In the right-hand side, we have \fo(x) - /+(x)| < e by (4.15), |/w(y) - #>(y)| < e

by (4.7), and |/+(x) - /n(y)| < c by (4.10). We then conclude that

l / o (* ) -* (* ) !<& V x € ^ o , V»€P.(n,» f«), (4-17)

and we deduce from (4.11) that the set T>t(n,x,6) is sufficiently large to ensure

that fo(x) is the inward trace of g0 at x.t

It is now easy to obtain an integral-gradient formula for limits of simple defor-

mations. Indeed, if n i-» («„,/„) is a determining sequence for the limit of simple

deformations (*,£, G), writing the integral-gradient formula (4.3) for each («„, /„)

] Vfn(x)dVx m - J Jfn(x)dAs + J U*(s) - o) ® u{x)dAs, (4.18)
* T{Jn) rh»A

in the limit as n —» oo we obtain from Eqs. (4.6) and (4.15)

J G{x)dV. = - Hm J Jfn(x)dAs + J (g+(x) - o) ® u{x)dA,. (4.19)
* T ( ) rt4

Note that, whereas the limits of the first and third integral in (4.18) take an

explicit expression in terms of the limiting fields G and g^, the same does not

occur for the second integral. Nevertheless, Eq. (4.19) tells us that the limit of

the second integral exists and is determined by the two remaining integrals in

(4.19).
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In [1, Sect. 5], a structured deformation from a piecewise fit region A has

been defined to be a triple (*,£,(?), in which (*, y) is a simple deformation from

A and G is a tensor field defined on A\K and subject to appropriate regularity

assumptions. The Approximation Theorem, also proved in [1, Sect. 5], shows that

every structured deformation is a limit of simple deformations. Consequently, for

a structured deformation both formula (4.3) for simple deformations and formula

(4.19) for limits of simple deformations hold. Subtracting (4.19) from (4.3), with

/ replaced there by <7, leads to the equation

J(Vg(x)-G(x))dV, = - f Jg(x)dAx + Jim j Jfn(x)dAx. (4.20)

5. Applications to continua undergoing fracture

In this section we review our earlier interpretation [1] of simple deformations,

limits of simple deformations, and structured deformations as mathematical ob-

jects that describe geometrical changes in a continuous body undergoing macro-

scopic fracture (macrofracture) and microscopic fracture (microfracture). The

integral-gradient formulae of Section 4 then permit us to identify measures of to-

tal deformation due to fracture, total deformation due to microfracture, and total

deformation due to macrofracture, as well as a volumetric density of deformation

due to microfracture.

We consider in a three-dimensional Euclidean space a continuous body that

occupies a given piecewbe fit region A. The points of (int doA)\A are viewed

as pre-existing crack sites or unopened cracks. Each simple deformation (*, / )
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from A is viewed as introducing new cracks in the body at the points of K and

then moving each material point x in A\K to the point fix) in f{A\n). The set

of jump points T(f) is included in ic U ({int doA)\A), the points on the new and

on the pre-existing crack sites. At a point x in F(/), the determining vectors

{f(x), — v(x)} distinguish the two sides of the crack, and f^){x) — /-*(*)(*) gives

the displacement of points near x on the +i/(x)-side of the crack, relative to points

near x on the — i/(x)-side of the crack. Of course, there is no reason to choose as

the reference for measuring displacements one side (here — v{x)) over the other.

The tensor Jf(x) = (/*(*)(*) — /-*<*)00) ® Kx) keeps track of the relative dis-

placement without the necessity of making a choice of one side of the crack site

over the other, and we call Jf(x) the tensor of deformation due to macrofracture

at the point x in T(f). The area integral / Jf(x)dAx then represents a net
r(/)

or total deformation in A due to macrofracture for the simple deformation (*, / )

from A. At a point x in A\K, f is differentiate, no fracture occurs, and we call

V/(x) the macroscopic deformation at x. Similarly, we call / V/(x)<fVi the total

macroscopic deformation in A. The integral-gradient formula for simple defor-

mations (4.3) can be interpreted as follows: for a simple deformation, the total

macroscopic deformation of A plus the total deformation in A due to macrofrac-

ture is determined by the displacements of the boundary of A.

Next we consider a limit of simple deformations (#c, g, G) along with a determin-

ing sequence of n •-* (**, fn) of simple deformations. Because G = lim V/n and

measures deformation away from sites of fracture, we have called G the tensor
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of deformation without fracture, [1, Sect. 6], and we here call / G(z)dVx the total

deformation in A without fracture. Similarly, we call the limit lim / Jfn(x)dAx

the total deformation in A due to fracture. The integral-gradient formula (4.19)

for limits of simple deformations then admits the interpretation: for a limit of

simple deformations the total deformation in A without fracture plus the total

deformation in A due to fracture is determined by the displacements of the bound-

ary of A.

For a structured deformation (*,£,G), not only is (*,£) a simple deformation

but also (*, <7, G) can be regarded as a limit of simple deformations. The integral-

gradient formula (4.20) results from subtracting the two corresponding versions,

one for simple deformations and one for limits of simple deformations. In par-

ticular, the displacements on the boundary of A do not appear in (4.20). The

right-hand side of (4.20) is the total deformation in A due to fracture minus the

total deformation in A due to macrofracture; therefore, we interpret the difference

lim / Jfn(x)dAx- I Jg(x)dAx

r(/n) ru)

as the total deformation in A due to microfracture. Relation (4.20) now yields

the result: the total deformation in A due to microfracture has a volume density

which is given by the tensor M :=Vg — G.

In [1], we have called M the Burgers microfracture tensor, and we showed

there that M is a density of deformation due to microfracture along lines. The

present analysis extends the interpretation of M from a one-dimensional density

to a three-dimensional density.
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