








Claim 1. Assume K > (1 + ^)#i(A/) , e < min{&-£-, (jffijfr))»»^sir}* Then

(i) AO Q Wo) Vt > t0 > 0 (monotonicity),
and for all z € £(t)
(ii) k*(*>OI>«7tM*>0)| (exponential growth).

First, let us prove (i). By (4.30), (4.31), (4.29) and the choice of c

I I ^ IU~<»? forall<>0, (4.32)

i

^(u«(0)ll ^ a^ for all * > 0,
o ""

for all t > 0.

Now the interval [-0poj0po] is, at each point z € (0,1), a negatively invariant interval for the
nonautonomous one-dimensional ODE

(4-33)

=: /<*)(,(r,0,t), (4.34)

because at |?| = 0po we have (using |us| = \$ + $\<i) + f>o = P and sign(us) = sign(g))

(435)

- (4.86)

-1 - V - V) = <ro{p - 4*7) > 0. (4.37)

This proves (i). To show (ii), fix t and fix i € C(t). By (i), x € £(«) for all s € [0,t], and thus in
particular |ur(x,«)| < p for all s € [0,i]. Consequently from (4.28)

£|«.(.,.)| = sign(gg(x,.)

> k(*«)l

Thus because |«,(x,«)| > 0(K - Ki) > &Ki at « = 0, |«,(x,«)l > If ^ i for all s € [O.t], and
consequently

^ M * . « ) l > 0l?«(*.*)l = Tl?«(*,*)l for all x € C(t) and al l*€ [0,t).

Integrating this differential inequality gives (ii), completing the proof of Claim 1.

Claim 2. Assume K > Ki(M) max{l + £ ,4 } , and let e be as in Claim 1. Then £,/s(f) C C(t) C
^ (0 ) , and |uM(x, <)| > fe1" «» ̂ / a ( 0 . for all t > 0.

Indeed, if x € £,fi(t), then |u,(x,OI < p/2, hence (by (4.32)) | i i | ^ | = |« r - §| < p/2 +17 < p0,
hence x € £(0> and furthermore by (4.32), (4.27), Claim 1 and the fact that K >

I«~OM)I > 1 ^ 1 - 1 ^ 1

26



This establishes Claim 2.
Next, we show that the number of zeros of tf*(*,0 and the number of connected components

of CPi2{t) is conserved, and that the zeros and the connected components depend continuously on
t. From Claim 2 and the fact that | |ti(-,0llc < oo for all t > 0, it is clear that at every t € [0, oo)
Zp/iit) possesses a finite number of connected components M0»M01 (0 < a i M < MO < — <

aN(t) < 1>N(t) < l)i in each of which vx(-,t) is strictly monotone and has exactly one zero *,-(<).
Also, N(t) > 1 because the boundary condition ti(O,f) = u(l, t) = 0 implies that u r(-,0 must have
at least one zero. We would like to prove that N(t) is constant and that the a,, t t, xt depend
continuously on < 6 [0, oo). To this end, we apply the implicit function theorem, respectively, to
the equations

I -P /2
•P/2 = 0 ,

I ti,(x,f)
noting that by Theorem 2.1(d), y, yr £ C((0,1) x [0,oo)) and that at each zero (xo,to) € (0,1) x
[0,oo) of p, \gx\ > K/2 by Claim 2. That is, for each t0 the set {g(xO}to) : (xo,to) is a zero of g)
does not contain a critical value (with respect to x) of y(*,fo). Hence by the implicit function
theorem, the number of zeros of y(-,<) is independent off (i.e. N(t) = const =: AT), and the zeros

)> *<(<)» *<(*) d«P«nd continuously on i. This proves (PI) and (P2).

Proof of (P3). From Claim 1 and from arguing as in our above analysis of Cp/^(t)y we can write

AO = Ul!Li[**(O.ft(*)] for ° < ° i (0 < AM < - < a ^ ( 0 < A^M < !» wherc t h e a«» ft d e P e n d

continuously on t. Now from Cfi/2(t) C £(f) C £p(0) we deduce

[«*M.M01 £ [a«W, AMI £ [a?,6?] for all i , (4.38)

proving the first part of (P3).
The second part of (P3) was already proved in Claim 2.
The third part of (P3) is a trivial consequence of the second part: For all t, t we have

P =

Proof of (P4). The key to understanding (P4) lies in the monotonicity property stated as Claim
l(i) above, which implies [<»,•(<),&(<)] Q M<o)> A(<o)] for all t > t0 > 0. That is, the [<*,(<), ]
form a nes<e(f family of intervals. Since

*i(t) e M0, MO] £ M 0 . AMI £ M.*a.

it is enough to prove

x6"1*- (440)

But this follows readily as in (4.39):

2p > 2po m
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Proof of (P5). We introduce the sets

:= {x € (0,1) : ^ € *(*([-Pi, *]))} (• = 1,2,3),

where pi € (3rjr,po] = (Sfl.P "" $ (further restrictions on pi will be imposed later). Note that if
pi s po, then £2(f) = £(<). As proved in Claim 1, £(i) C £(t0) for t > t0 > 0, since the unstable
interval [-Ppo,0Po] i* negatively invariant for the ID nonautonomous ODE (4.34). Similarly:

Claim 3. Assume e < atrj2 • min{^r, /KaAj\\*» ab)- Then:

(0 &{t) 2 ^§(<o) for all t > t0 > 0 and i = 1,3.

(ii)

The proof of (i) is very similar to that of Claim l(i). By (4.30), (4.31), (4.29) and the choice of e

<

ir- 7, (4.42)

< <r-V (443)

for all t > 0. We claim that if q(x,t) = /?*j(*(±/>i)), then «**(*>*) l i e s between Zj(<r(pi +17)) and
Zj(a(pi — 17)) (hence in particular sign(ur(z,<) — 2j(0)) = sign(^(x,f) — f3zj(Q)) and tr(ux(x,t)) €

). Indeed, by (4.41)

and similarly

Consequently, the interval Ij = [Pzj(a(pi))t f}zj(c(—pi))] is for j = 1,3 a positively invariant
interval for the ODE (4.34), since for q(x,t) € dlj

0.

This proves (i). Now we prove (ii). Without loss of generality, assume u,(x,f) < 0. If x £ £l(0»
then (ii) follows from (i), for any r > 0. So assume x $ C1^). Hence for all * > t with x € Cx(s)

by estimating as above. Also, tiat{q(x,t),\Pzi(*(pi))t0zi(v(-pi))]) < Kx(M) by (4.26). Hence if
x $ Cx(8) for all s € [t,i + r] and some r > 0, then

,< + r),
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Since the left hand side is greater or equal to sero, this implies r < g / f c ^ A , proving (ii).
Now assume that p\, 77 are so small that the interval [-r, r] from Definition 3.1 contains cr([-pi —

liPi + »?])• Then since <r(ur(x,t)) € *([-pi - f?,Pi +1?]) whenever x € &(t) (j = 1,3), we have

This together with Claim 3 allows to calculate ^>(t£): Assume without loss (tio)*l(rj,*j j < 0.

Then (t«o)*ltf.(«),«H*(f» < 0 for all < > 0, hence 1>(ux(,t + •))|<*<t)loH.1(t)) = 1 for all « > r, by
Claim 3. Consequently,

Since Ut>0(A(0>a i+i(0) = (*?>*?+i)> ^ i s proves the last part of (P5). Now it is clear that
ti* is discontinuous at the x* (since il>(ul) jumps), and continuity on (xj,x*+1) follows from the
equilibrum equation: *(t£(x)) = a / * um + A for some A € JR, and hence

t£ = Zj(aJ^um + A) in (xj ,xj+ l ) for some j € {1,3} independent of x,

consequently u e C2((xJ,xj+1)) (€ C°° if cr is C00). (P5) is proved.

Proof of (P6) . We will apply Lemma A2 (or more precisely: Corollary Al) with A, / , z(t) =
(p(0, q(t))y a = 1/2 as in Section 2, but X = L\ x L\ and 2>(,4) = {p € H^2'2 : p*|{0,i} = 0} x L\
unlike in Section 2. Unless cr is globally lipschitz — which we have no intention to assume —, / is
now not defined on the whole of X1'2, but x is a global solution € C([0,00); Xll7)C\Cl((Q> T); X)f)
C((0tT);V(A))t as required. We set xo := (0 ,^ ) := (0,/9ti;) so that x(f) = (p(<),«(0) - (0,**) =
xo in Wi*2 x l j = X 1 ' 2 as f —• 00, and let B be the Gateaux derivative of / at xo- Let us write
out what x(t) - xo, B and g(x(t)) are:

We verify hypotheses (i), (ii), (iii) of Corollary Al.
(i) is clear: in fact, B is a bounded linear map from X to X.

(ii) is taken care of by (P5) (which implies infr€(O,i)^'(ti*(x)) > 0) together with a Lemma of Ball,
Holmes, James, Pego and Swart:

Lemma 4.1 (BHJPS, Theorem 3.3) With A, B as above and X = L\xU>a, V(A) = {p € W2'2 :
pr|{o,i} = 0} x lPa (I < p < 00^, the spectrum of A — B lies in

{\€C:Rt\> min{£ JnWVto) . f »•

(In [BHJPS] the result is stated with p = oo, but their proof in fact does not require any knowledge
about p.)

It remains to verify (iii). Since ||(p,9)|| = ||p|U» + I Mix.',

< 4 f k(u,(0) - <r(*l) - •«)(«.(<) - ul)\7dx.
Jo

Now at each time t, we split the domain of integration into two parts, a "stable" and an "unstable"
region:
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First, let us deal with the stable region.
Since c is continuously differentiate, there exists c(A) —• 0 (A —• 0) such that

Z-Zo

Now if x € fl,(<), then ux(xyt) lies between zj(*(pi + *))) ̂ ^ *j(<K-Pi " *?)) f o r 8 o m e i 6 O»3}-
By the monotonicity of the Qs(t) (by Claim 3, Qs(t) D fij(*o) for t > to > 0), so also must tij(x),
with the same j , hence

M * , < ) - n;(x)| < \zj(a(Pl -h i?)) - ziW-H - f?))| < ^ | p i - f t ? - ( -Pi- f?) | = J t • 2(pi + 17).

Now choose pi < 417, and then

where c(iy) —• 0 as rj —• 0.
In the unstable region, the integrand is not small, but the unstable region itself shrinks expo-

nentially: By Claim 3, f2w(t) C C(t - r) for t > r, hence by (4.40)

,0.(01 s
and thus by (4.25)

KM<) - *{ul) - <r'(ul)(ux(t) - u
t)

Consequently by combining (4.44) and (4.45)

Now note that \\x(t) - *0 | | < ||*(<) — *o||i/2> ^nd choose 17 small enough so that ^ ^ < r0, where
r0 is the constant supplied by Corollary Al. Then Corollary Al applies and we obtain:

for some constant M and all i < min{7,2«} = minfr,^, 2inT*W*y '(**(*»} ^ ^ hence in parti-
cular for

7 {^ ,^ inf

This establishes (P6) in the case p = 2, because

HK<),
and the inverse Pego transform V~l : W*'2 x i j —• W^f2 x X2 is continuous (see Lemma 2.1).
Finally, for p € (2,00) we can estimate using (4.26) and Holder's inequality
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A straightforward calculation shows that the operator norm of V'1 in C(W^2 x Lg, WQ* X I 2 )
is bounded independently of p, precisely:

H*"1(P,*)lki.pxL» < ( | + l)ll(P,«)lk*.»KLP for all (p,f) € Wl2 x 2£,

and (P6) follows.

Proof of (P7). The local minimization property of (ti*,0) is a consequence of the (non-elementary)
fact (P5), which implies <r'(t£(x)) > inf {*'(z) : z € « iWhp,p] ) )U: 3 Whp,p] ) ) } > 0 for all
x € (0, l ) \ {xj , ...,*AT}» together with the following (elementary) lemma on the variational integral

Lemma 4.2 Let u0 € WQ'°° be a stationary point of J (that is to say j;\,=oJ(vo + €$) = 0 for
all 4> € W^°°) with ^((«o)«(x)) > a > 0 a.e. TAcn ti0 M a /oca/ mtntmuer o/ J in W^00.

Proof of the Lemma. This is a standard fact from the calculus of variations, but for convenience
of the reader we include a proof. Let u € W£l0°» ||u* - (IIO)C||L~ < *, c € (0,1). Since W is C2,
^(tix) = W((uo)x) + c((uo)r))(u, - (uo)t) + ^ ( t i r - (tio)r)2 for some function ^ (which can be
chosen to depend measurably on z) with values ((*) strictly between ux(z) and (UQ)X(Z) . Now if €
is small enough, then <r'(£(*)) > a/2 > 0. Also, since uo is a stationary point of J (or equivalently:
(tio,0) is an equilibrium of (2.1)), there exists A € 1R such that c((uo)x(z)) — a f* uo = A a.e.
Hence we compute

/(tt)-J(tto) = ^ ( ^

T\ f1 ̂ ( ( « - «o)x)2 + | ( « - «o)2)
=0

> o.
The last part of (P7) is taken care of by another elementary lemma:

Lemma 4.3 Let a > 0. Then J does not possess any local tninimizers in WQ>P (I < p < ooj.

Proof. (For W(z) = fr*"1)* the argument is sketched in [BHJPS, p. 23].)
Fix p € [l,oo). First, we prove that UQ S 0 is not a local minimizer. Let A s= M *+M_, w

f 2 . , 0 < x ̂  A ^ ^ j = . j * ^ t e n d e d periodically to the whole of R, tin(x) = ̂ ti(n

"(l)> e l i X - 1 / n Then

J(«n) - J(oo) = -^^(0) + ~ I u7 < 0 for n large enough,
n n ° Z Jo

but 5n -+ tio in M^1^ as n -* oo.
Now we prove that tio & 0 is not a local minimizer. To this end, let x0 € (0,1) be a point where

|uo| achieves its global maximum. Since u0 ̂  0, tto(xo) # 0. Without loss of generality, assume
t*o(xo) > 0. Set un SB min{uo,t*o(xo) + fin(#+ £ - xo)}. Then for n large enough,

J{un)~ J («o)<0 ,

but un —̂  tio in WlJ> as n - • oo. The proof of the lemma is complete.

This concludes the proof of Theorem 4.1 and our discussion of layer dynamics.
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Appendix: Two results on the abstract parabolic equation
zt + Ax — f(t,x).
Our first result is a simple a-priori estimate which follows immediately from standard estimates
(Henry [Hel, 1.4.3]) for fractional powers of sectorial operators.

Our second result generalizes a conclusion of Henry [Hel, Theorem 5.1.1] on exponential con-
vergence to equilibrium via linearization. Namely, we extend Henry's result to nonlinearities / (t , x)
which are not Frechet-differentiable at the limiting equilibrium but only possess directional deri-
vatives. This more complicated situation is not an esoteric peculiarity of the partial differential
equation studied in this paper, but occurs whenever one wants to study the approach of smooth
solutions of a partial differential equation to discontinuous patterns as time t tends to infinity; see
Remark 5 in Section 4.

Notation. As in Henry [Hel, Section 5.1], A denotes a sectorial operator on a Banach space X,
V(A) denotes the domain of A, X* (0 < 0 < 1) are the associated fractional power spaces, || • ||
and || • Up denote the norm in X and, respectively, in X*% V is an open subset of XQ (for some
fixed a € [0,1)), and / : [0,oo) x V —• X is a mapping which is locally lipschitz continuous in x
and locally Holder continuous in t, that is, given (ii, x\) € [0,00) x V there exists a neighbourhood
V of (*i, xx) in [0,00) x V and constants 0, L > 0 such that for all (t, *) , (5, y) € V,

Note that by [Hel, Thm 3.3.3], for such A and / the initial value problem

x(O)lxY <A 1>
possesses for all xx € V a unique local solution x € C([0,T);Xa)nC1((0,T);X)nC((0,T);V(A))
on some time interval [0, T(xj)).

Lemma A l Let y € [0,1) and |M7zo|| < Mt0, let T € (0,oo], and assume z(t) is a solution on
[0,T) of (Al) such thai sup te[0 X ) ||r(t)|| < Mt, sup,€[0 T ) \\f{z(t),t))\\ < Mj. Then there exists
C(7,M i 0 ,M,,Mj) independent of T such that

sup
«€[0,T)

Proof. Let T(t) denote the semigroup generated by A. Fix r € (0,T) and estimate differently in
the intervals [0,r] and [r, oo):

( ^ ) V<€[0,r]

and

The proof of the Lemma is complete.
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Lemma A2 Let A, a, V, f be as above, let x<> € V be an equilibrium point o/(Al) (i.e. x0 £
V(A), and Ax0 = /(t,x0) V* > 0), and let x : [0,oo) - • V be a solution of (Al). Suppose in
addition that

/(*, *) - /(<, *o) = B(x - *0) + 9(t, *)
where

(i) B : Xa —• X is a bounded linear map,

(ii) the spectrum ofA — B lies in {ReX > 6} for some 6 > 0, and

(iii) |b(t,*(f))|| = o(\\x(t) - «o||a) + 0(e-^) as \\x(t) - xo|U - 0, /or some y > 0.
7%tn iAere crts/ p, M >0 such that provided

||x(0 - xo|U < Me-™*^'* Vt > 0.

Proof. Clearly A - B is a sectorial operator. Pick 6' such that 0 < 6 < 6' < Re Spec(A - B), and
let T(t) be the semigroup generated by A — B . By standard estimates [Hel, Sections 1.3, 1.4],

U < Cr*e-Sit\\z\\ Vr€X, Vt>0

with some constant C. Let m := min{7,6}, and choose ro > 0 so small that

r0 r s-Qe-V'-m*ds < ^ . (A2)
Jo 2C7

Choose p > 0 so small that

|M<,*)|| < rol lx-xol la-f / fe^ (A3)

for ||x - xollo < P,i > 0. Let z(t) = x(t) - x0. Then z solves

hence

o

+ cj\t - ^"^-''('-^(rollzWIU + Ae^') ds. (A4)

Now define «(i) := sup,€l0 tje
m'||z(«)||,», let T € (0,i] and compute using (A4) and (A2)

emr||*0-)IU < C\\z(0)\\a + C J\T - *)

< C\\z(0)\\a + C(ro ti(t) + AT)

hence by taking the supremum over r € (0,1]

The proof of the Lemma is complete. In fact, since the assumptions (iii) and ||x(<) — *o||o < P
were only needed to obtain (A3), the above proof yields
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Corollary A l Assume all hypotheses of Lemma A2 except (iii) hold. Then there exist r0, M > 0
such that provided

\\9(t, *(t))\\ < ro\\x(t) - solU + Ke~1% for allt>0 and some Kt 7 > 0

then
I WO - *olU < Me" • fa^- l>< Vt > 0.
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