Optimal Multi-Agent Scheduling with Constraint Programming

Willem-Jan van Hoeve
Cornell University, vanhoeve@andrew.cmu.edu

Carla P. Gomes
Cornell University

Bart Selman
Cornell University

Michele Lombardi
University of Bologna

Follow this and additional works at: http://repository.cmu.edu/tepper

Part of the [Economic Policy Commons](http://repository.cmu.edu/tepper), and the [Industrial Organization Commons](http://repository.cmu.edu/tepper)

Published In
Optimal Multi-Agent Scheduling with Constraint Programming

Willem-Jan van Hoeve, Carla P. Gomes, Bart Selman
Dept. of Computer Science, Cornell University
4130 Upson Hall, Ithaca, NY 14853

Michele Lombardi
DEIS, University of Bologna
Viale Risorgimento 2, 40136, Bologna, Italy

Abstract

We consider the problem of computing optimal schedules in multi-agent systems. In these problems, actions of one agent can influence the actions of other agents, while the objective is to maximize the total ‘quality’ of the schedule. More specifically, we focus on multi-agent scheduling problems with time windows, hard and soft precedence relations, and a nonlinear objective function. We show how we can model and efficiently solve these problems with constraint programming technology. Elements of our proposed method include constraint-based reasoning, search strategies, problem decomposition, scheduling algorithms, and a linear programming relaxation. We present experimental results on realistic problem instances to display the different elements of the solution process.

Introduction

Multi-agent planning and scheduling problems arise in many contexts such as supply chain management, coordinating space missions, or configuring and executing military scenarios. In these situations, the agents usually need to perform certain tasks in order to achieve a common goal. Often the agents need to respect various restrictions such as temporal constraints and interdependency relations. Furthermore, depending on the application at hand, these problems may be subject to several uncertainties, for example the actual outcome and duration of executing a task, and changing environmental conditions. Multi-agent planning and scheduling problems are among the most difficult problems in Artificial Intelligence. While the centralized deterministic version is already NP-hard, the non-deterministic distributed version is even NEXP-complete (Bernstein et al. 2002).

In this paper we present an efficient method to compute provably optimal solutions for centralized deterministic multi-agent scheduling problems. The motivation for our work stems from the application studied in the DARPA program COORDINATORs. In this application, agents correspond to military units that need to achieve a common goal. Initially, each agent has its own local view of the situation, and an initial schedule of tasks to execute. During the course of action, the actual duration and quality of executed tasks as well as environmental changes typically force the agents to adapt their schedule. Because of interdependency relations between the tasks, proposed changes must be communicated and negotiated with the other agents. The aim of the project is to automate the coordination process of negotiation and rescheduling in a distributed fashion.

Our system, described in this paper, is able to compute provably optimal centralized solutions for deterministic scenarios sketched above. Within the program, our system is applied in several ways. Most importantly, it is used to evaluate the performance of distributed approaches. Namely, for a given (simulated) problem, we create a deterministic problem by replacing all uncertainty with the actual outcomes. The optimal centralized solution to this problem serves as an upper bound for the performance of a distributed approach. To obtain an average expected performance bound to a problem, we average the optimal solutions for a sufficiently large number of samples instead. Furthermore, sampling the outcome space has also been applied to evaluate the test problems themselves. Problem instances containing rare outcome outliers resulting in extremely low or high solution quality should ideally be avoided for performance evaluation. We recognize such problems by analyzing the distribution of optimal solutions over a large number of samples. Finally, our system is also in use to study adaptive algorithm selection procedures (Rosenfeld 2007), and as part of an environment to simulate user interaction (Sarne & Grosz 2007), within this program. Hence, the main requirements for our system are guaranteed optimality and computational efficiency. As the experiments will show, we can optimally solve large problem instances involving 2250 actions and 100 agents, in only 13 seconds of computation time.

Our approach is based on constraint programming technology. This has several advantages. First, it allows us to specify the problem in a rich modeling language, and to apply the corresponding default constraint-based reasoning. As we will see below, our model is very close to the original representation of the problem. Second, in the constraint programming framework we can specify detailed search heuristics, tailored to the specific needs of the problem. In addition, we have implemented a problem decomposition scheme to further improve our search process. Third, we have implemented an “optimization constraint”, based on a linear programming relaxation of the problem, to strengthen
the optimization reasoning. Fourth, we optionally apply advanced scheduling algorithms, such as the edge-nding algorithm. The constraint-based architecture of constraint programming allows us to implement all these technologies efficiently in one system.

In the following section we provide a detailed description of the problem class that is the subject of this paper. Thereafter, we present our constraint programming model. This is followed by a description of the solution process. Finally, we present extensive computational results.

Problem Description

The problems that we consider in this work consist of a set of agents that may execute certain methods. Each executed method contributes an amount of quality to a hierarchical objective function. Furthermore, the problems contain temporal constraints and interdependency relations that need to be respected. The goal is to find for each agent a schedule of methods to execute at a certain time, such that the total quality is maximized. To represent these problems, we make use of the modeling language TAEMS: a framework for Task Analysis, Environment Modeling, and Simulation (Horling et al. 1999). In fact, we consider a subset of this framework, called cTAEMS, which is particularly suitable to represent coordination problems (Boddy et al. 2007).

In cTAEMS, a problem is represented by tasks and methods, which are linked to each other in a hierarchical way. An example is depicted in Figure 1, consisting of 9 tasks and 13 methods. A method is owned by a single agent . Each agent is restricted to execute at most one method at a time. If a method is executed, it generates a certain quality , while its execution takes a duration . A task is not owned by an agent, but serves to accumulate quality via its subtasks (or submethods). This is done via a quality accumulation function, or QAF. The possible QAFs are: min, max, sum, sync-sum, exactly-one, and sum-and. Here min, max, and sum represent the minimum, maximum, or sum, respectively. The sync-sum represents the sum of all subtasks (or submethods) that are synchronized, i.e., starting at the same time. The exactly-one restricts at most one subtask (or submethod) to have positive quality. The sum-and requires all subtasks (or submethods) to have positive quality, or none. The accumulation of quality only takes place after a method has been completed. The total quality of the problem is represented by the root task (called TaskGroup1 in Figure 1). The goal is to execute a subset of methods such that the quality of the root task is maximized. For example, Figure 2 presents an optimal solution for the problem in Figure 1.

The execution of a method takes place from its start time until its end time. The integer time representation is such that the duration includes the start and end time. For example, in Figure 2, Method6 starts at time 7, ends at time 10, and has a duration of 4. The start and end time of a task are inherited recursively from the start and end time of its children. Both methods and tasks may be subject to a time window, representing the earliest start time and latest end time (denoted by TW in Figure 1). Time windows also apply to the tasks and methods underneath a task. Hence, the time window of a method is defined by the intersection of the time windows of all tasks on the path from the method to the root task of the hierarchy.

Finally, there may exist precedence relations between tasks and/or methods. The possible precedence relations are:
Related Work

In the last decade there has been an increasing interest in centralized and distributed approaches to solve multi-agent planning and scheduling problems. In the context of distributed multi-agent systems representable with cTAEMS, several approaches have been developed. In those approaches, the main target is the coordination problem under changing environmental conditions. Naturally, each of the approaches also includes a ‘scheduler’ to compute and evaluate alternative solutions.

One approach, introduced by (Musliner et al. 2006), represents the non-deterministic cTAEMS problem as a Markov decision process (MDP). When computing a schedule (in fact a policy), the MDP is only partially ‘unrolled’ in order to keep the computational complexity under control. Another approach, proposed by (Szekely et al. 2006), applies a selective combination of different heuristic solution methods, including a partially-centralized solution repair, and locally optimized resource allocation. Finally, (Smith et al. 2006) represent cTAEMS problems as Simple Temporal Networks, and apply constraint-based reasoning to compute a solution to the deterministic version of the problem. However, none of the above methods computes provably optimal solutions to (non-)deterministic cTAEMS problems. The main contribution of this work is to present the first scalable solver that efficiently computes optimal solutions to the centralized deterministic cTAEMS problem.

Constraint Programming Model

Variables

For each method i, we introduce the following decision variables: a binary variable x_i representing whether or not i is executed, and an integer variable $start_i$ representing the start time of i. Together, they determine any potential schedule.

Furthermore, we make use of the following auxiliary variables. For each task i we introduce an integer variable $start_i$, representing its starting time. For each task or method i we introduce an integer variable end_i, representing the end time of i, and a floating-point variable $qual_i$, representing the quality of i. For each method i we further introduce a floating point variable dur_i representing its duration. Finally, for each precedence relation r we introduce floating point variables Q_{factor} and D_{factor}, representing the factor of r applied to modify quality and duration, respectively.

Temporal Constraints

The temporal constraints are expressed as follows. For each method i with duration $D[i]$ and time window $[L, U]$:

$$dur_i = D[i] \cdot x_i,$$

$$start_i + dur_i - 1 = end_i,$$

$$start_i \geq L,$$

$$end_i \leq U.$$ \hspace{1cm} (1) (2) (3) (4)

In case method i is the target of facilitate or hinder relations, we need to augment equation (1), which is described below.

Resource Constraints

The resource constraints ensure that the methods of an agent do not overlap (each agent corresponds to a unary resource). For each agent a and each two different methods i and j with $A[i] = A[j] = a$, we state:

$$(start_i > end_j) \lor (start_j > end_i).$$

Alternatively, we can group together all non-overlapping constraints for each agent in one UnaryResource constraint. This allows to reason over all disjunctions together, for example using the edge-finding algorithm (Carlier & Pinson 1994; Vilim 2004). For each agent a, we then state

$$\text{UnaryResource}(S_a, E_a, R_a),$$

where $S_a = \{start_i \mid A[i] = a\}$ represents the start variables, $E_a = \{end_i \mid A[i] = a\}$ the end variables, and $R_a = \{x_i \mid A[i] = a\}$ the ”requirement” variables of methods i with $A[i] = a$.

![Figure 2: The optimal schedule for the agents corresponding to the problem of Figure 1, with total quality 34.](image-url)
Quality Accumulation

Next we consider the constraints to link together the quality of the tasks and the methods. For each method i with quality $Q[i]$ we state:

$$\text{qual}_i = Q[i] \cdot x_i. \quad (5)$$

For each task t with subtasks s_1, \ldots, s_k and quality accumulation function $f \in \{\min, \max, \sum\}$ we state:

$$\text{qual}_t = f_{i=1,\ldots,k} \text{qual}_{s_i}. \quad (6)$$

If the quality accumulation function is sync-sum we state:

$$\text{qual}_t = \sum_{i=1,\ldots,k} \text{qual}_{s_i}, \quad (7)$$

$$(x_{s_i} = 1) \Rightarrow (\text{start}_{s_i} = \text{start}_t) \quad \text{for } i = 1, \ldots, k. \quad (8)$$

If the quality accumulation function is exactly-one we state:

$$\text{qual}_t = \max_{i=1,\ldots,k} \text{qual}_{s_i}, \quad (9)$$

$$(x_{s_1} = 1) + \ldots + (x_{s_m} = 1) \leq 1. \quad (10)$$

If the quality accumulation function is sum-and we state:

$$\text{qual}_t = \sum_{i=1,\ldots,k} \text{qual}_{s_i}, \quad (11)$$

$$(x_{s_1} = 1) \land \ldots \land (x_{s_m} = 1) \lor (\text{qual}_t = 0). \quad (12)$$

In case the method or the task is the target of precedence relations, we need to augment the corresponding quality constraints. This is described below.

The objective function value is represented by the quality of the root task, $\text{qual}_{\text{root}}$. Hence, to maximize its quality, we add the 'constraint': $\text{maximize } \text{qual}_{\text{root}}$.

Precedence Relations

First we model the effect of precedence relations to the quality variables. If method i is the target of precedence relations r_1, \ldots, r_m, we replace equation (5) by:

$$\text{qual}_t = \text{Qfactor}_{r_1} \cdot \ldots \cdot \text{Qfactor}_{r_m} \cdot Q[i] \cdot x_i. \quad (5)$$

If task t is the target of precedence relations r_1, \ldots, r_m, and has a quality accumulation function f, we replace the corresponding quality constraint (6), (7), (9), or (11) by:

$$\text{qual}_t = \text{Qfactor}_{r_1} \cdot \ldots \cdot \text{Qfactor}_{r_m} \cdot f_{i=1,\ldots,k} \text{qual}_{s_i}. \quad (6)$$

The duration variables are similarly updated. If method i is the target of facilitate and/or hinder relations r_1, \ldots, r_m, we replace equation (1) by:

$$\text{dur}_i = \text{Dfactor}_{r_1} \cdot \ldots \cdot \text{Dfactor}_{r_m} \cdot D[i] \cdot x_i. \quad (1)$$

Next we describe how we model the factor variables. Recall that the precedence relations depend on the quality of the source at the start time of the target. For a precedence relation r from source i to target j (with coefficient c_r, where applicable), we state:

$$\text{Qfactor}_r = \{\text{QExpr}(i, \text{start}_j) > 0\} \quad (\text{enable}),$$

$$\text{Qfactor}_r = 1 - \{\text{QExpr}(i, \text{start}_j) > 0\} \quad (\text{disable}),$$

$$\text{Qfactor}_r = 1 + (c_r \cdot \text{QExpr}(i, \text{start}_j)/\max_\text{Qj}) \quad (\text{facilitate}),$$

$$\text{Dfactor}_r = 1 - (c_r \cdot \text{QExpr}(i, \text{start}_j)/\max_\text{Qj}) \quad (\text{facilitate}),$$

$$\text{Qfactor}_r = 1 - (c_r \cdot \text{QExpr}(i, \text{start}_j)/\max_\text{Qj}) \quad (\text{hinder}),$$

$$\text{Dfactor}_r = 1 + (c_r \cdot \text{QExpr}(i, \text{start}_j)/\max_\text{Qj}) \quad (\text{hinder}),$$

where $\text{QExpr}(i, \text{start}_j)$ is a recursive expression representing the quality of i at the start time of j, and \max_Qj is the maximum possible quality of i. The expression $\text{QExpr}(i, \text{start}_j)$ contains both temporal conditions and quality accumulation functions following from the subtree rooted at the source of the relation. For example, if r is an enable relation from method i to method j, we have

$$\text{Qfactor}_r = \{(\text{end}_i \geq \text{start}_j) > 0\}.$$

Linear Programming Constraint

The objective function is composed of the functions \min, \max, \sum, and complex nonlinear expressions following from the precedence relations. In order to potentially improve the optimization reasoning of the constraint programming solver, we have additionally implemented a (redundant) optimization constraint, based on a linear programming relaxation of the problem. We state the constraint as:

$$\text{LP-constraint}(x, \text{start}, \text{end}, \text{qual}_{\text{root}}),$$

where x, start, end and $\text{qual}_{\text{root}}$ are shorthands for the arrays consisting of the variables x_i, start$_t$ and end$_t$ for all methods i, and $\text{qual}_{\text{root}}$ represents the quality variable of the root task. Each time the LP-constraint is invoked, it builds an internal linear programming model, taking into account the whole cTAEMS problem structure. Based on the continuous solution of this model, the upper bound of $\text{qual}_{\text{root}}$ is potentially improved. Furthermore, we apply reduced-cost based filtering to remove inconsistent values from the domains of the variables x_i (Focacci, Lodi, & Milano 1999).

Solution Techniques

Search Strategy

In constraint programming, the variable and value selection heuristics determine the shape of the search tree, which is usually traversed in a depth-first-order. We have experimented with several different heuristics, and report here the most effective strategy, following from our experiments.

Our model consist of two sets of decision variables; the assignment variables x_i and the start variables start$_t$ for each method i. We apply a two-phase depth-first search, consisting of a selection phase and a scheduling phase. In the selection phase, we assign all assignment variables, in a greedy fashion. Namely, we choose first the variable x_i (for method i) for which the quality $Q[i]$ is lowest (ties are broken lexicographically). As a value selection heuristic, we first choose value 0, and then value 1. By applying this strategy to the depth-first search, we start with an empty schedule that is gradually augmented with methods having the highest quality.

In the scheduling phase we assign the start variables. As variable selection heuristic we choose first the variable with the smallest domain size (ties are again broken lexicographically). As value selection heuristic we choose first the minimum value in the domain.

Problem Decomposition

When certain parts of a problem are independent, one can decompose the problem and solve the parts independently.
In constraint programming, independent subproblems are usually detected by means of the constraint \((\text{hyper-})\text{graph}\). In the constraint graph of a model, the nodes represent the variables, while relations between variables (the constraints) are represented by (hyper-)edges. Independent subproblems are equivalent to connected components in the constraint graph, which thus represent distinct subsets of variables and their corresponding constraints. As the connected components can be found in linear time (in the size of the graph), problem decomposition can be very effective.

In our case, it suffices to build the constraint graph on the decision variables \(x_i\) and \(s(t)\) for all methods \(i\). In fact, we can simply group them together and create one node for each method \(i\). We add an edge between two nodes \(i\) and \(j\) if there is a constraint involving method \(i\) and \(j\). For example, if methods \(i\) and \(j\) belong to the same agent, and their time windows overlap, the non-overlapping constraint will place an edge between the nodes representing \(i\) and \(j\). Naturally, at most one edge needs to be maintained for each pair of nodes.

Unfortunately, all decision variables are linked together via the objective function and the quality constraints. Hence, the constraint graph consists of one connected component, which prevents the application of problem decomposition. We have circumvented this restriction by decomposing the objective function more carefully. Namely, as we are maximizing, the arguments of the functions \(\text{sum}\) and \(\text{max}\) may be evaluated (and maximized) independently, while preserving optimality. For the \(\text{min}\) function this is not the case, because its arguments are dependent in case of maximization. Consequently, while building the constraint graph, we consider the quality accumulation functions of the objective function individually. When this function is a \(\text{min}\), \(\text{sync-sum}\), \(\text{exactly-one}\), or \(\text{sum-and}\), we add an edge between all methods underneath this function. We don’t add any edges when the function is a \(\text{sum}\) or a \(\text{max}\). Doing so, we are able to effectively decompose the problem in many cases.

Experimental Results

Our model is implemented in ILOG CP Solver 6.3, and uses the default constraints and corresponding domain filtering algorithms, where applicable. We have implemented our two-phase search strategy, the problem decomposition, and the \(\text{LP-constraint}\) within ILOG CP Solver 6.3. For the \(\text{LP-constraint}\) we use ILOG CPLEX 10.1 to solve the linear programming relaxation. The \(\text{UnaryResource}\) constraint applies the edge-finding algorithm of ILOG Scheduler 6.3. All our experiments are run on a 3.8GHz Intel machine with 2GB memory, and we apply a time limit of 300 seconds per instance.

We have performed experiments on benchmark instances originating from the DARPA program COORDINATORs. They represent realistic problem scenarios that are designed to evaluate different aspects of the problem, such as the tightness of time windows, the number and types of precedence relations, and different quality accumulation functions. Problem set 1 consists of 2550 small to medium-sized instances, containing 8 to 64 methods (up to 128 decision variables), and 2 to 9 agents. We have used this set to evaluate the performance of our different solution strategies. Table 1 presents the computational results for this problem set, aggregating the results over all 2550 instances. We report the median and average time and number of backtracks, and the percentage of problems that could be optimally solved. We compare our results with the previously best known solutions, computed by a heuristic solver developed by Global InfoTek, Inc.\(^1\) (unfortunately we were not able to determine the corresponding running times).

The column ‘base’ represents the results for our base settings: apply problem decomposition, omit the \(\text{LP-constraint}\), and apply the \(\text{UnaryResource}\) constraint. With these settings we obtain the best results: all problems are solved to optimality, in the fastest time. The column ‘no decomposition’ shows the results if we omit the problem decomposition. In that case, only 99% of the instances are solved optimally (within the time limit of 300 seconds), while the time and number of backtracks increase drastically. The next column, ‘LP constraint’ shows the results when we activate the \(\text{LP-constraint}\). Although we can solve all problems within the time limit, and the number of backtracks slightly decreases, the application of this constraint is too costly in terms of running time, for these instances. However, we note that for instances containing more \(\text{sum}\) functions (not reported here), the \(\text{LP-constraint}\) can be crucial to compute an optimal solution efficiently. Finally, column ‘disjunctions’ shows the results when we replace the \(\text{UnaryResource}\) constraint with the disjunctive representation. In other words, the edge-finding algorithm is replaced by individual non-overlapping constraints. The results indicate that the two

<table>
<thead>
<tr>
<th>aggregate over all instances</th>
<th>base</th>
<th>no decomposition</th>
<th>LP constraint</th>
<th>disjunctions</th>
<th>best known</th>
</tr>
</thead>
<tbody>
<tr>
<td>optimal solutions</td>
<td>100%</td>
<td>99.0%</td>
<td>100%</td>
<td>100%</td>
<td>74.7% *</td>
</tr>
<tr>
<td>average time (s)</td>
<td>0.03</td>
<td>0.75</td>
<td>1.28</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>median time (s)</td>
<td>0.02</td>
<td>0.02</td>
<td>0.44</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>average backtracks</td>
<td>78.3</td>
<td>4253.2</td>
<td>71.7</td>
<td>82.4</td>
<td></td>
</tr>
<tr>
<td>median backtracks</td>
<td>59</td>
<td>103</td>
<td>58</td>
<td>59</td>
<td></td>
</tr>
</tbody>
</table>

* no proof of optimality

\(^1\)http://www.globalinfotek.com/
agents, respectively. The columns under ‘Cornell’ represent
the previously best known solutions, as computed by Smith
et al. (2006). Time limit is set to 300 seconds.

<table>
<thead>
<tr>
<th>instance</th>
<th>#methods</th>
<th>#agents</th>
<th>obj. value</th>
<th>time (s)</th>
<th>obj. value</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>big100s</td>
<td>2250</td>
<td>100</td>
<td>2050.25 (opt)</td>
<td>12.6</td>
<td>2050.25 *</td>
<td>3.7</td>
</tr>
<tr>
<td>big100EVA1</td>
<td>2250</td>
<td>100</td>
<td>2046.50 (opt)</td>
<td>12.9</td>
<td>2046.50 *</td>
<td>4.2</td>
</tr>
<tr>
<td>big100EVA2</td>
<td>2250</td>
<td>100</td>
<td>2059.25 (opt)</td>
<td>12.4</td>
<td>2059.25 *</td>
<td>4.0</td>
</tr>
<tr>
<td>big100EVA3</td>
<td>2250</td>
<td>100</td>
<td>2110.00 (opt)</td>
<td>13.9</td>
<td>2110.00 *</td>
<td>4.0</td>
</tr>
<tr>
<td>big100EVA4</td>
<td>2250</td>
<td>99</td>
<td>2040.25 (opt)</td>
<td>13.0</td>
<td>2040.25 *</td>
<td>4.4</td>
</tr>
<tr>
<td>big100EVA5</td>
<td>2250</td>
<td>99</td>
<td>2041.75 (opt)</td>
<td>12.7</td>
<td>2041.75 *</td>
<td>4.4</td>
</tr>
<tr>
<td>big70s</td>
<td>1350</td>
<td>70</td>
<td>1314.12 (lb)</td>
<td>300.0</td>
<td>1303.83</td>
<td>3.0</td>
</tr>
<tr>
<td>big70EVA1</td>
<td>1350</td>
<td>70</td>
<td>1312.00 (opt)</td>
<td>83.5</td>
<td>1298.04</td>
<td>3.3</td>
</tr>
<tr>
<td>big70EVA2</td>
<td>1350</td>
<td>70</td>
<td>1310.81 (opt)</td>
<td>109.7</td>
<td>1293.34</td>
<td>3.1</td>
</tr>
<tr>
<td>big70EVA3</td>
<td>1350</td>
<td>69</td>
<td>1321.87 (lb)</td>
<td>300.0</td>
<td>1307.34</td>
<td>3.3</td>
</tr>
<tr>
<td>big70EVA4</td>
<td>1350</td>
<td>70</td>
<td>1309.00 (lb)</td>
<td>300.0</td>
<td>1293.75</td>
<td>3.0</td>
</tr>
<tr>
<td>big70EVA5</td>
<td>1350</td>
<td>70</td>
<td>1298.38 (opt)</td>
<td>238.0</td>
<td>1278.19</td>
<td>2.8</td>
</tr>
</tbody>
</table>

* no proof of optimality

Table 2: Computational results for problem set II. Columns ‘#methods’ and ‘#agents’ denote the number of methods and agents, respectively. The columns under ‘Cornell’ represent the objective function, optimality, and running time of our method, respectively. The ‘Smith et al.’ columns refer to the objective function value and corresponding running time of the previously best known solutions, as computed by Smith et al. (2006). Time limit is set to 300 seconds.

Finally, we have tested our solver on large problem instances to test its robustness and scalability. For this we used problem set II, that consists of 66 medium-sized to large instances, containing 135 to 2250 methods (up to 4500 decision variables), and 8 to 100 agents. We have solved these problems with our base setting (with and without decomposition), and present the experimental results in Table 2. The upper part of Table 2 shows aggregated results over all instances, while the lower part presents detailed results on the largest instances. For these instances, we also report whether the solution is optimal (opt) or a lowerbound (lb). We compare our method with the previously best known solutions, which were computed using the method proposed by (Smith et al. 2006) (that does not take into account optimality, however). In many cases our solver is able to compute an optimal solution, and to improve or meet the current best solution. Moreover, even for the largest instances, our running times are often very fast. These results indicate that our method is both robust, efficient and scalable.

Conclusion

We have presented an efficient and scalable method to compute optimal solutions to multi-agent scheduling problems, based on constraint programming. We have focused in particular on problems that are representable by the cTAEMS language. Our system computes deterministic centralized optimal schedules to such problems, and has been applied successfully to evaluate distributed approaches, to analyze problem structure, to design adaptive algorithm selection procedures, and to simulate user-interaction in multi-agent systems.

Acknowledgments

This material is based upon work supported by the Intelligent Information Systems Institute (IISI) at Cornell University (AFOSR grant FA9550-04-1-0151), DARPA (COORDINATORs grant FA8750-05-C-0033), and NSF (grant 0514429). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of AFOSR, DARPA, NSF, or the U.S. Government.

References

