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1 Introduction

The clique cover number 6\(G) of a graph G is the minimum number of

cliques required to cover the vertices of graph G. In this paper we consider

#i((7n>p), for p constant. (Recall that in the random graph Gn#, each of the

(2) edges occurs independently with probability]?). Bollobas, Erdos, Spencer

and West [1] proved that whp (i.e. with probability l-o(l) as n —• 00)

- o(l))n2

(logn)2 * 6l{Gn>5> *
cn2lnlnn

4(log2n)2 * 6l{Gn>5> * (Inn)2 '

They implicitly conjecture that the In In n factor in the upper bound is un-

neceessary and in this paper we prove
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Theorem 1 There exist constants c, = c,(p) > 0, * = 1,2 such that whp

Remark 1: a simple use of a martingale tail inequality shows that 9\ is close

to its mean with very high probability.

2 Proof of Theorem 1

We write an « bn if an/bn —• 1 as n —> oo.

The lower bound is simple as the number of edges m of Gn# whp satisfies

up2

m « —

and the size of the largest clique LJ = u(GnyP) whp satisfies

n

where 6 = 1/p. We may thus choose c\ « (lnb)2p/2.

The upper bound requires more work. Our method does not seem to yield

the correct value for C2 and so we will not work hard to keep c<i small. Let a

be some small constant and let

k = [a log6 n\.

We consider an algorithm for randomly selecting cliques to cover the edges

of G = Gn#. It bears some relation to part of the algorithm described in

Pippenger and Spencer [2]. At iteration i we randomly select cliques of size

\k/i\ none of whose edges are covered by previously chosen cliques. We do
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this for to = [4 In Inn] iterations. At the start of iteration i there is a set Ei

of edges which have not yet been covered. Let Ctj denote the set of i-cliques

all of whose edges are in E{. At iteration i we choose randomly cliques from

Ct\|*/tj with probability pt- (to be defined). p, is chosen so that for most of

the edges of 2£,-, the number of chosen cliques which contain that edge is

approximately distributed as a Poisson random variable with mean close to

one. (A few edges may be in few cliques and so we have to choose some

random edges as well.) The process is thus designed so that for u € 25,-,

Pr(u € J5,-+i | u € Ei) « c"1.

So if

then Csjj is close to the expected number of cliques in CJ?t- which contain a

particular fixed clique in Caj.

We now need to describe our clique choosing process a little more formally:

for a clique S G C8yi we let

Xsu = \{C € CM :CDS}\

and for integer s > 0,

X5j,i = max{X5jft- : S G £,,-}.

Algorithm COVER

begin

E\ := E(GniP); CQOVER •= 0;

for % =1 to i'o do



begin

A: independently place each C G C|*/sj,s into CCOVER with probability

y-l

B: for each u G Ei which is not covered by a clique in Step A, add u

(as a clique of size 2) to CCOVER with probability pu where

e ~~ X-2 = ( 1 7p- ) (1 — /?u))

\r v* *x̂ 1̂ V V
-A 2 — 2,|ik/tJ,t a n d .Aw — -^tiJit/tJ,!'

end

CCOVER := CCOVER U ^t0+i-

end

Observe first that the definition of /9W assumes that X2 is large (which it is

whp) and so

and pu is properly defined.

The following lemma contains the main core of the proof:

Lemma 1 Let Ei refer to the following two conditions:

XSj,i < (1 + A)c,Al-, 0 < s < j < k/i and S G CSfh
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where /?,- = in l/4,

XuJji > (1 - A)c2j,«, e € Ei and 2<j< k/i

for all but at most in15/8 edges.

Then

= 1-oin-1), (1)

> l-Oin-1'8). (2)

We defer the proof of the lemma to the next section and show how to use it

to prove Thereom 1. Observe first that

and

c.j,i > n>'2 (4)

when a is small and 0 < s < j < k/i.

Next let Yi and Zt- denote the number of [fc/ij-cliques and edges respectively

added to CCOVER in iteration i.

on using (3)



Since Y{ is binomially distributed, we see using standard bounds on the tails

of the binomial, that

Thus

and so

Pr ( *o to

Now a simple calculation gives

Pu =

and so

= O(n15/8lnn).

Thus

and so

Pr(31 < i < i0 : Z{ > n

and
«0

(8)

Also

Pr(u G ̂ ,+i | u e Ei) =

< e"1.
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Thus

and

Theorem 1 follows from (6), (8) and (9) and

\CCOVER\ =
i=i t=i

As we only use estimates for X0,|fc/;j,,- and X2i[k/i\,i the reader may wonder

why it is necessary to prove Lemma l(a) for 0 < s < j < k/i. The reason is

simply that the lemma is proved by induction and we use a stronger induction

hypothesis than the needed outcome.

3 Proof of Lemma 1

Let us first consider E\. Fix a set S of size s, 0 < s < k. Assume it forms

a clique in G. This does not condition any edges not contained in S. For

a set T let NC(T) denote the set of common neighbours of T in G. We can

enumerate the set of j-cliques containing S as follows: choose X\ G NC{S),

x2 € NC(S U {xi}),... ,Xj-s G NC(S U {xux2}.. . , ^ . 1 } ) . The number

of choices vt for xt given xi, x2,... ,x*-i is distributed as Bin(n — (s —t +

!) ^+t-i) T h u s for o < 6 < 1

Pr < 2exp< ^
- P \ 3
< 2exp{-62n1-a/4}.



Putting e = n x/3 we see that since there are n°^lnn^ choices for x\, X2,..., Xj-8

Prf ;
<

There are n o ( l n n ) choices for S and (1) follows.

Assume now that £, holds. We first prove

Lemma 2 Suppose e\, e^..., et € Ei;. Then

Pr(e( € ^ , + i | ei, e 2 , . . . , c«_i € Ei+i) = e~l (1 + O
\ \ "• / /

uniformly for 1 <t < n1/2.

Proof

Pr(et € ^ t + i | e l t e 2 , . . . , et_i € £",+1) > Pr(et € ^,+1) (10)

Here Xu = Xw>^/tj,t a^d -^2 = -^2,|*/ij,t a n ^ inequality (10) follows from

the fact that knowing ei, C2,... e^i 6 JB1,̂ ! tells us that certain cliques (and

edges) were not chosen for CCOVER- On the other hand

Xw-tX3

( 1
1~T
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where X3 = X3j[k/iiii. If £, holds then X3/X2 = O(lnn/n). D

Now fix a set S € C,,,- and let X = Xsj,i+i for some j < k/(i + 1). Condition

on S e C.-+1. Let C5j,, = {C G Ci)t- : C 3 S } . Then

Pr(C G Ci>

on using Lemma 2.

We axe going to use the Markov inequality

Pr(X > x) < 5 ^ 1 (12)

where (x)r = a:(x - l)(a: - 2) . . . {x - r + 1) and r = [n1/2j.

Let B(e2,e3,...,£r) = { (d ,C 2 , . . . ,C r ) : (i) Ct ? C, for * ̂  f, (ii) C« €

Csj,,-, (iii) |Ct n (Ci U C2 U • • • C*_i)| = 5 + £t, for t,t ' = 2 ,3 , . . . , r} . Then

Prom (11)

Pr(C, 6 (^.IS e C,,+1) = exp { g ) - Q } (l + O

and

74lnn>



Also,

\B(e2,e3,...,er)\ <

r

Hence,

(14)

for a sufficiently small.

Hence, using (12),

u s i n 6 ( 4 )

There are n°(lnn^ choices for 5 and j and so part (a) of the lemma is proven.

It remains only to deal with Xujji+i for an edge u € Et. It follows from (11)

that if X — Xujti+\ then
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and from (14) that

V(X(X - 1)) < (l + J j ) ^ , + 1 . (16)

Suppose now that Xujyi > (1 - /?i)c2j,j. Then (15) and (16) imply that

Pr(X < (1 - A+1)c2J i t+1) < 3n"1 '4. (17)

Now let Z,+i denote the number of edges u € 2S,-+i for which Xujti+i < (1 —

/?i+1)c2j)f-+i and Zj+i those u counted in Zi+\ for which Xujti > (1 - /3,)c2j)t-.

Then

and from (17)

So

Pr(Z,-+1 > (i + I)n15/s | Si) < Pr(Z t+1 >

this completes the proof of Lemma 1.
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