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Interactive Multi-Modal Robot Programming 
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1 The Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 
2 Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, 
Pennsylvania, USA 
3 Systems Realization Laboratory, G. W. Woodruff School of Mechanical Engineering, 
Georgia Institute of Technology, Atlanta, Georgia, USA 

Abstract. The goal of the Interactive Multi-Modal Robot Programming system is a 
comprehensive human-machine interface that allows non-experts to compose robot 
programs conveniently. Two key characteristics of this novel programming approach are 
that the user can provide feedback interactively at any time through an intuitive interface 
and that the system infers the user's intent to support interaction. The framework takes a 
three-step approach to the problem: multi-modal recognition, intention interpretation, and 
prioritized task execution. The system is demonstrated by interactively controlling and 
programming a mobile vacuum cleaning robot. The demonstrations are used to exemplify 
the interactive programming and plan recognition aspects of the research. 

1 Introduction 

The number of vacuum cleaning robots being manufactured and sold to household 
consumers is rising as they become increasingly popular as technical gadgets [1]. 
Depending on the price range, these robots can navigate, avoid obstacles, localize 
themselves, and cover an area autonomously or through manual control by the 
user. However, none of them offers a novice-friendly interface to control and 
program a robot for particular tasks. As robots enter the human environment and 
come in contact with inexperienced users, they need to be able to interact with 
users in a multi-modal fashion - keyboard and mouse are no longer acceptable as 
the only input modalities. 

This paper introduces a novel approach for programming a robot interactively 
through a multi-modal interface. The key elements behind this novice-friendly 
system are intuitive interfaces based on speech and hand gesture recognition, 
intention modeling and recognition, and interaction capabilities that allow the user 
to take over the control of the robot at any given time. Such interaction 
capabilities give a sense of assurance to users and help them in dealing with a 
robot by including a human in the control loop. 

Designing and building such a system involves multiple problems. The system 
needs to infer underlying robot commands from a sequence of multi-modal user 
inputs to formulate a robot program. The system also needs to allow preemptive 
interaction between the user and the robot, which involves suspension, arbitration, 



and resumption of a robot task. Furthermore, it is desirable to reduce user 
interaction with a graphical user interface in order to allow direct interaction 
between the user and the robot. 

There have been many approaches to improving task automation. The current 
state-of-the-art in user-friendly task automation is based on iconic programming 
[2] and/or programming by human demonstration [3]. The goal of these paradigms 
is to translate the burden of programming robotic systems from robot experts to 
task experts. The problem arises in these approaches when the programmed 
system is diverted from its intended task, and the user is required to re-execute, or 
even worse, to reprogram the task all over again. Our approach adds an intuitive 
multi-modal interface and interactive programming and execution capability so 
that the user can take over and correct the system with ease. The use of multi-
modal interfaces in human-robot interaction is an active field with numerous 
applications such as teleoperation [4] and navigation [5]. We use voice and hand 
gestures to convey a combination of symbolic and parametric information to the 
robot. 

2 System Design 

The framework is composed of three functional modules, as illustrated in Figure 1. 
The first module (multi-modal recognition) translates hand gestures and 
spontaneous speech into a structured symbolic data stream. The second module 
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Figure 1. The framework is roughly divided into three modules: multi-modal recognition, 
intention interpretation, and prioritized execution, and each roughly corresponds to
providing an intuitive interface, robot programming and suggestion, and an interactive
control capability of the overall system. 



(intention interpretation) selects the appropriate set of primitives based on the user 
input, current state, and robot sensor data. Finally, the third module (prioritized 
execution) selects and executes primitives based on the current state, sensor inputs, 
and the task given by the previous step. 

The vacuum cleaning robot used in our experiments is Cye, a 10” by 16” two-
wheeled robot which carries a portable vacuum cleaner on its tail. It uses dead 
reckoning to localize itself with respect to the starting position, and is subject to 
cumulative error as it navigates. The robot comes with a graphical user interface 
that allows users to control Cye using a mouse, and to program it using an iconic 
programming framework. We added the three modules on top of the graphical 
user interface to provide features such as: (1) A hand gesture and spontaneous 
speech recognition interface; (2) A robot simulator for users to control and execute 
a program in the virtual environment; (3) Capability to preemptively interrupt a set 
of instructions; (4) Capability to create and adjust the program on-the-fly; (5) 
Capability to suggest a program that the user may want to execute based on the 
partial sequence of robot trajectory. 

3 Multi-Modal Recognition 

The system is capable of recognizing two different modalities: hand-gestures and 
spontaneous speech. The primary motivation for multi-modality is that no single 
mode provides a highly competent human-robot interface. Verbal cues are most 
appropriate when either party needs to convey symbolic information with an 
unambiguous context, such as “stop”, “move forward”, “turn right”, etc.  Motion 
cues are an essential supplement when deictic elements are involved, as in the 
verbal commands “go there” and “move this way”. Such instructions are 
ambiguous without accompanying gestures, which are inherently more suitable to 
express position and geometry.  
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Figure 2. Left (drawings): The list of gesture vocabulary by Quek [6]. Gestures used for 
our system are circled with the corresponding three-letter gesture symbols (in upper-case). 
Right (pictures): Gesture symbols recognized by our HTK-based gesture recognition 
module, along with the gesture phonemes (in lower-case). 



The list of hand gestures was selected based on work by Quek [6], who 
compiled the list of gestures necessary to express spatial information in 3D space 
(Figure 2). The gesture recognition module is implemented using the Hidden 
Markov Model Toolkit (HTK) [7] customized to recognize gestures at 60Hz from 
temporal data streams from two 22-sensor CyberGloves [8], each with a Polhemus 
6DOF inductive position sensor. Using HTK, which was primarily developed for 
speech recognition research, we were able to treat hand gestures as words, and a 
sequence of hand gestures as a sentence. HTK offers versatile tools and the 
capability to build HMMs for recognition purposes. Using model adaptation 
techniques and triphone modeling (e.g.: gpw-tno1+tno2) strategy to capture inter-
word transitions as well as intra-word transitions provided by the HTK, the 
gesture recognition module is able to achieve an average accuracy of 92% for 
previously unseen users. 

The spontaneous speech recognition is implemented on a public domain large-
volume speech recognition engine. In our implementation, spontaneous speech is 
translated into words using Microsoft Speech SDK [9], an off-the-shelf speech 
recognition package. It is responsible for recognition, adaptation, and grammatical 
parsing of the spoken words. The package’s TTS (Text-To-Speech) capability is 
used for recognition acknowledgments and making user suggestions, as described 
in Section 5. List of a basic speech vocabulary consists of motion, deictic, name, 
attribute and programmable command terms [10]. The choice of words is task-
dependent and experience-based. Readers interested in vocabulary selection for 
speech-based robot interactions should refer to [11], which deals with a 
vocabulary-based human-robot instruction system. 

The temporal streams of results from hand gesture recognition and spontaneous 
speech recognition are combined to generate a semantically correct interpretation 
to control and program the robot. Results from both recognition processes are 
streamed into a buffer that gives a one-second window to decrease ambiguity in 
the speech recognition result (e.g. “this”, “that”) by grounding proper parameters 
from the gesture recognition result. Interpretation module uses the semantics 
database, which is described in [10] to interpret multi-modal recognition results to 
intended robot task symbols. It is implemented as a lookup table of candidate task 
symbols and their priorities from input symbols from the multi-modal recognition 
module. 

4 Interactive Robot Control and Sequential Programming 

Preemptive execution is crucial in providing the user real-time interaction to 
control and program a robot on-the-fly. Tasks are prioritized according to a pre-
defined rule, and sequential robot actions in the tasks are executed and sometimes 
overridden based on the arbitration policy. This allows the user to handle 
situations such as making an emergency stop or avoiding an obstacle during the 
execution of other tasks. A robot program (task) is stored during interactive robot 



control. The user sets the module to a learning mode and executes primitives 
sequentially; the system remembers the sequence as a task. 

An illustrative example of task arbitration is given in Figure 3. Imagine that the 
user first points to a particular position, P1, and asks the robot to “go there”, then 
points to a different position, P2, and asks the robot to “go there” while the robot is 
moving toward P1. There are three potential outcomes to the above sequential 
instructions: FIFO, Preemption, and Override. The outcome is decided by the 
arbitration policy tree described in Figure 3 by using features such as priority, 
precondition, and post-condition attribute. For the given example with two 
consecutive “go there” instructions, the outcome is an Override, since they have 
no preconditions and their priorities (given by the Semantic Database) and post-
condition attributes (position) are the same. On the other hand, if the second 
instruction were “go this way” for a given direction, the outcome would be 
Preemption, since the post-condition attributes are different (position vs. direction). 

To generate a sequential robot program, the user should execute the instructions 
in the intended order. When an action is overridden during the programming phase, 
the action up until the point of the override is programmed. The user can edit the 
program by interrupting its execution and showing an alternative action. In order 
to compose a non-sequential program which contains loops or if-then statements, 
the user may edit the program on the iconic programming interface, which is more 
suitable to display and edit the program flow. 

5 Intention Awareness 

The system’s intention awareness is composed of two capabilities: intention 
recognition and adaptation. Instead of merely mapping the sequence of multi-
modal recognition results to the set of actions using the semantics database, the 
intention-aware system should suggest which task the user may want to execute 
based on an incomplete sequence of instructions executed by the user. The 
recognition ability is similar to the auto-completion ability in a text-editing 
program. It is especially helpful when there is a large number of programs, and 
explicitly searching for any particular program may be time-consuming. In order 
to perform such recognition in the real world, we represent tasks in a probabilistic 
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Figure 3. Arbitration Policy Tree and the possible actions for the sequence of instructions 
Goto(P1) followed by Goto(P2). Based on the policy tree, Override will be the correct 
action for the given example. 



framework rather than as a discrete sequence of commands. A Hidden Markov 
Model (HMM) provides a way to model the task in a probabilistic framework, 
where both state transitions and observations can be expressed stochastically. Sets 
of tasks represented in HMMs are organized and compared to the current 
observation sequence to detect which task, if any, the user may want to execute. 

For each program, a continuous-density HMM representation is generated from 
a discrete sequence of actions and observations collected during the programming 
phase. All program HMMs are integrated into a single HMM network, λnet, which 
is then used to recognize the user’s intended program based on the new 
observation sequence (Figure 4). When a robot is programmed interactively, the 
system collects an observation sequence On = {o0,n o1,n … ot,n} for program action 
n, where ot = {xt, yt, θt} corresponds to the robot position at time t. The sequence 
O is the collection of observations On resulting from program actions 1 to N. The 
robot program is then converted into an HMM by assigning one action per state, 
and its transition and observation probabilities are calculated from On=1..N. HMMs 

spi= state i of program p = {1…P}, 
where P = # of program models

Np =
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Figure 4. HMM network used for task recognition 

Initialization: 
Assign a token with value of 1 to the initial shared state s00. 
Assign a token with value of 0 to all other states. 
For all arcs not originating from state s00, compute and store the value ψij. 

Algorithm: 
for each time t do 

for each state i ≠ s00 do 
Compute and store the Mahalanobis distance between ot and µij; 
Pass a copy of the token in state i to each connecting state j, multiplying its value by aijbij(ot). 
If the new token value underflows to 0, let the value be ε; 

end; 
Pass a copy of the token in state s00 to each connecting state j, multiplying its value by aij•ψmn. Choose 
the ψmn for which the Mahalanobis distance between µmn and ot is the smallest; 
Discard the original tokens; 
for each state i do   

Find the token in state i with the largest value and discard the others; 
end; 
Normalize all tokens such that their sum equals 1; 
Find the state qt with the largest token value; 

end; 

Figure 5. Viterbi Algorithm with Dynamic Garbage Collection 



describing different programs are connected in a network forming a single HMM 
network, λnet  

During recognition, the current observation sequence is evaluated and 
compared to the HMM network. To find the single most likely state out of all 
states in the shared HMM network for the current observation sequence, we use a 
modified Viterbi Algorithm described in Figure 5.  The Viterbi algorithm, based on 
the Token Passing paradigm [12], has been modified by adding dynamic garbage 
collection, that is, recognizing the state s00 of the HMM network in which none of 
the programs is being executed. It is dynamic, in the sense that the state needs no 
prior training and the evaluation of whether or not the observation sequence is 
garbage depends entirely on the rest of the HMMs. A model update of each HMM 
provides online seamless adjustments of the statistics that describe the robot 
program. The update is performed after execution of the corresponding action 
associated with the state. The update does not require the entire sequence of 
previous observations, but rather it is updated using the previous statistics and the 
most recent observation sequence. 

6 Demonstrations 

We have conducted two demonstrations to exemplify the interactive programming 
and plan recognition aspects of the research. The first demonstration is to verify 
the operation of the overall system through sequential programming and 
adjustment of a mobile vacuum cleaning robot. The second is to demonstrate 
intention-awareness by letting the system detect the most likely program the user 
wants to execute, and having the intention model adapt to the current observations. 
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Figure 6: Task level sequential robot programming demonstration 



6.1 Task Level Sequential Robot Programming 

We have considered an interactive programming scenario, which has a user 
register numerous via-points to which the robot should navigate using its path 
planning capability. The robot can accept the user’s preemptive speech and hand 
gesture commands to deal with unforeseen events. Figure 6 illustrates the 
sequences of the scenario including a sequence of camera snapshots with the 
corresponding conceptual illustrations of the framework, and the cropped images 
of the GUI. 

In this scenario, the user first verbally commands that the subsequent actions be 
stored as “Program One”. The user then executes the Goto primitive by combining 
the voice command “Go There” with the gestural command ”Point” to indicate the 
destination (step 1). In general, deictic terms such as “This”, “That”, and “There” 
must be accompanied by a referential gesture to specify the corresponding task 
parameters. For the Goto primitive, the Cartesian coordinates are extracted from 
the intersection between the extension of the index finger and the ground. In step 2, 
the user enters another Goto primitive, but with a different end-position.  After 
having saved these two primitives in “Program One” with the “Complete” 
command, the user can re-execute the program with the voice command “Execute 
Program One”. However, in step 4, when the robot navigates to the second 
position from the first, it encounters an unknown obstacle.  At this point, the user 
gestures the ”Wave” command, which has a higher task priority and can be used 
to control the robot around the obstacle. When the obstacle has been cleared and 
the user stops waving, the robot returns to the execution of “Program One” (step 
5). 

6.2 Making Suggestions based on the Intention Awareness 

This demonstration was conducted to verify the system’s intention awareness.  
Assume that the database of robot programs contains three test programs: 

Φ1 = {Goto(P1), Vacuum(On), AreaCoverage(P2, P3), Vacuum(Off), GoHome()} 
Φ2

 = {Vacuum(On), Goto(S1), Goto(S2), AreaCoverage(S3, S4), GoHome()} 
Φ3 = {Goto(T1), Goto(T2), Goto(T3)} 

where Pi, Si, Ti all represent positions on the map in (x, y). Their trajectories and 
the combined probability distributions of the converted HMMs are shown in the 
first and second columns in Figure 7. The last three columns in Figure 7 describe 
the output of the task recognition results from three test observation sequences τ1, 
τ2, and τ3. Scores in the figure show that for the first test observation sequence, τ1, 
the most probable state sequence follows that of the first program, Φ1. This makes 
sense, because the trajectory of τ1 was generated from Φ1. The second observation 
sequence, τ2, was generated by traversing regions covered by both the second and 
third programs, Φ2 and Φ3. The score in the figure also shows that is indeed the 
case. The third test observation sequence, τ3, is a random traversal, which is 
captured by the dynamic garbage collection state, s00, as “non-program”. 



In each case, suggestions to the user are made through the text-to-speech 
system and the GUI projected on the wall. When the algorithm determines that 
there is a most probable state other than the dynamic garbage collection state, the 
application announces to the user through the text-to-speech system that there is a 
suggestion to be made. The suggested program is then executed on the simulated 
robot starting from the instruction associated with the most probable state. Based 
on the suggestion displayed by the simulated program, the user may or may not 
choose to execute the suggested program. It is important to note that the user is 
free to stop or alter the suggested program at any time, so the suggestion does not 
need to be a perfect match. 

7 Conclusion and Future Work 

In this paper, we have described an overall framework for interactive multi-modal 
robot programming and have illustrated the framework using two demonstrations. 
The programming approach offers, through an intuitive interface using hand 
gestures and speech recognition, the ability to provide interactive feedback to the 
robot to coach it throughout the programming and execution phases. The user’s 
intent is captured in the form of a sequential robot program, and the flexibility 
given to the user by the framework through real-time interaction and an intuitive 
interface allows the captured intent to be closer to the user’s true intent. 

The first demonstration verified interactive multi-modal programming and 
execution, including the capability to interrupt commands preemptively. The 
second demonstrated that the system can determine the most likely high-level goal 
the user is trying to achieve, given a limited, initial sequence of task primitives.  
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Figure 7. Task recognition results on three test observation sequences τ1, τ2, and τ3. The 
images describe the state likelihood at any given time. 



To attain a comprehensive multi-modal interactive robot programming system, 
several elements still need to be added in the future. Although the programs 
generated by the current system can be re-executed, they are limited to fixed task 
sequences. To expand the generality of the paradigm, we need to add the ability to 
define non-sequential flow structures such as conditional branching and looping. 
Also needed is the ability to learn new primitives from demonstrations. The 
current implementation assumes that the given primitives cover the entire task 
space, and it would be convenient to be able to use the current programming 
paradigm to create new primitives. Discerning user preferences is also an 
important issue. Currently all programs in the HMM network are equally preferred 
prior to incoming observations. 
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