
Carnegie Mellon University
Research Showcase @ CMU

Institute for Software Research School of Computer Science

2004

Interactive Multi-Modal Robot Programming
Soshi Iba
Carnegie Mellon University

Christiaan J.J. Paredis

Pradeep Khosla
Carnegie Mellon University, pkhosla@cmu.edu

Follow this and additional works at: http://repository.cmu.edu/isr

This Working Paper is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been accepted
for inclusion in Institute for Software Research by an authorized administrator of Research Showcase @ CMU. For more information, please contact
research-showcase@andrew.cmu.edu.

Published In
.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fisr%2F502&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/isr?utm_source=repository.cmu.edu%2Fisr%2F502&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fisr%2F502&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/isr?utm_source=repository.cmu.edu%2Fisr%2F502&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

Interactive Multi-Modal Robot Programming

Soshi Iba1, Christiaan J. J. Paredis3, Pradeep K. Khosla1,2

1 The Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
2 Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA
3 Systems Realization Laboratory, G. W. Woodruff School of Mechanical Engineering,
Georgia Institute of Technology, Atlanta, Georgia, USA

Abstract. The goal of the Interactive Multi-Modal Robot Programming system is a
comprehensive human-machine interface that allows non-experts to compose robot
programs conveniently. Two key characteristics of this novel programming approach are
that the user can provide feedback interactively at any time through an intuitive interface
and that the system infers the user's intent to support interaction. The framework takes a
three-step approach to the problem: multi-modal recognition, intention interpretation, and
prioritized task execution. The system is demonstrated by interactively controlling and
programming a mobile vacuum cleaning robot. The demonstrations are used to exemplify
the interactive programming and plan recognition aspects of the research.

1 Introduction

The number of vacuum cleaning robots being manufactured and sold to household
consumers is rising as they become increasingly popular as technical gadgets [1].
Depending on the price range, these robots can navigate, avoid obstacles, localize
themselves, and cover an area autonomously or through manual control by the
user. However, none of them offers a novice-friendly interface to control and
program a robot for particular tasks. As robots enter the human environment and
come in contact with inexperienced users, they need to be able to interact with
users in a multi-modal fashion - keyboard and mouse are no longer acceptable as
the only input modalities.

This paper introduces a novel approach for programming a robot interactively
through a multi-modal interface. The key elements behind this novice-friendly
system are intuitive interfaces based on speech and hand gesture recognition,
intention modeling and recognition, and interaction capabilities that allow the user
to take over the control of the robot at any given time. Such interaction
capabilities give a sense of assurance to users and help them in dealing with a
robot by including a human in the control loop.

Designing and building such a system involves multiple problems. The system
needs to infer underlying robot commands from a sequence of multi-modal user
inputs to formulate a robot program. The system also needs to allow preemptive
interaction between the user and the robot, which involves suspension, arbitration,

and resumption of a robot task. Furthermore, it is desirable to reduce user
interaction with a graphical user interface in order to allow direct interaction
between the user and the robot.

There have been many approaches to improving task automation. The current
state-of-the-art in user-friendly task automation is based on iconic programming
[2] and/or programming by human demonstration [3]. The goal of these paradigms
is to translate the burden of programming robotic systems from robot experts to
task experts. The problem arises in these approaches when the programmed
system is diverted from its intended task, and the user is required to re-execute, or
even worse, to reprogram the task all over again. Our approach adds an intuitive
multi-modal interface and interactive programming and execution capability so
that the user can take over and correct the system with ease. The use of multi-
modal interfaces in human-robot interaction is an active field with numerous
applications such as teleoperation [4] and navigation [5]. We use voice and hand
gestures to convey a combination of symbolic and parametric information to the
robot.

2 System Design

The framework is composed of three functional modules, as illustrated in Figure 1.
The first module (multi-modal recognition) translates hand gestures and
spontaneous speech into a structured symbolic data stream. The second module

Vacuum Cleaning
Robot (Cye)

ApplicationUser

Action DB

TrainerTrainer

Speech DB

P
rio

rit
iz

ed
 ta

sk
 s

ym
bo

l

+
pa

ra
m

et
erMulti-modal

Recognition
Module

Gesture DB

Task DB

Primitive DB

Motor

Sensori-Motor

Sensor

Trainer

Semantic DB

G
es

tu
re

 S
ym

bo
l +

 p
ar

am
et

er

W
or

d
S

ym
bo

l +
 p

ar
am

et
er

2x
22

 s
en

so
r g

lo
ve

 in
pu

t

A
co

us
tic

 In
pu

t

Sensor Readings & Robot Parameters

User Observation of Robot Actions

Intention
Interpretation

Module

Program Suggestions (GUI/Projector)

2x
6

po
si

tio
n

se
ns

or
 in

pu
t

Prioritized
Execution

Module

Multi-Modal
Recognition

Intention
Interpretation

Prioritized
Execution

C
on

tro
l v

ec
to

r

Figure 1. The framework is roughly divided into three modules: multi-modal recognition,
intention interpretation, and prioritized execution, and each roughly corresponds to
providing an intuitive interface, robot programming and suggestion, and an interactive
control capability of the overall system.

(intention interpretation) selects the appropriate set of primitives based on the user
input, current state, and robot sensor data. Finally, the third module (prioritized
execution) selects and executes primitives based on the current state, sensor inputs,
and the task given by the previous step.

The vacuum cleaning robot used in our experiments is Cye, a 10” by 16” two-
wheeled robot which carries a portable vacuum cleaner on its tail. It uses dead
reckoning to localize itself with respect to the starting position, and is subject to
cumulative error as it navigates. The robot comes with a graphical user interface
that allows users to control Cye using a mouse, and to program it using an iconic
programming framework. We added the three modules on top of the graphical
user interface to provide features such as: (1) A hand gesture and spontaneous
speech recognition interface; (2) A robot simulator for users to control and execute
a program in the virtual environment; (3) Capability to preemptively interrupt a set
of instructions; (4) Capability to create and adjust the program on-the-fly; (5)
Capability to suggest a program that the user may want to execute based on the
partial sequence of robot trajectory.

3 Multi-Modal Recognition

The system is capable of recognizing two different modalities: hand-gestures and
spontaneous speech. The primary motivation for multi-modality is that no single
mode provides a highly competent human-robot interface. Verbal cues are most
appropriate when either party needs to convey symbolic information with an
unambiguous context, such as “stop”, “move forward”, “turn right”, etc. Motion
cues are an essential supplement when deictic elements are involved, as in the
verbal commands “go there” and “move this way”. Such instructions are
ambiguous without accompanying gestures, which are inherently more suitable to
express position and geometry.

PTI
PTL
PTX

GPC
GPW

WVF
WVB

WVF
WVB

WVF
WVB

TNI
TNO

WVF
WVB

PTX:
ptx

PTL:
ptl

PTI:
pti

WVB:
wvb1+wvb2+sp

WVF:
wvf1+wvf2+sp

TNO:
tno1+tno2

TNI:
tni1+tni2

OPN:
opn+sp

GPW:
gpw

GPC:
gpc

Figure 2. Left (drawings): The list of gesture vocabulary by Quek [6]. Gestures used for
our system are circled with the corresponding three-letter gesture symbols (in upper-case).
Right (pictures): Gesture symbols recognized by our HTK-based gesture recognition
module, along with the gesture phonemes (in lower-case).

The list of hand gestures was selected based on work by Quek [6], who
compiled the list of gestures necessary to express spatial information in 3D space
(Figure 2). The gesture recognition module is implemented using the Hidden
Markov Model Toolkit (HTK) [7] customized to recognize gestures at 60Hz from
temporal data streams from two 22-sensor CyberGloves [8], each with a Polhemus
6DOF inductive position sensor. Using HTK, which was primarily developed for
speech recognition research, we were able to treat hand gestures as words, and a
sequence of hand gestures as a sentence. HTK offers versatile tools and the
capability to build HMMs for recognition purposes. Using model adaptation
techniques and triphone modeling (e.g.: gpw-tno1+tno2) strategy to capture inter-
word transitions as well as intra-word transitions provided by the HTK, the
gesture recognition module is able to achieve an average accuracy of 92% for
previously unseen users.

The spontaneous speech recognition is implemented on a public domain large-
volume speech recognition engine. In our implementation, spontaneous speech is
translated into words using Microsoft Speech SDK [9], an off-the-shelf speech
recognition package. It is responsible for recognition, adaptation, and grammatical
parsing of the spoken words. The package’s TTS (Text-To-Speech) capability is
used for recognition acknowledgments and making user suggestions, as described
in Section 5. List of a basic speech vocabulary consists of motion, deictic, name,
attribute and programmable command terms [10]. The choice of words is task-
dependent and experience-based. Readers interested in vocabulary selection for
speech-based robot interactions should refer to [11], which deals with a
vocabulary-based human-robot instruction system.

The temporal streams of results from hand gesture recognition and spontaneous
speech recognition are combined to generate a semantically correct interpretation
to control and program the robot. Results from both recognition processes are
streamed into a buffer that gives a one-second window to decrease ambiguity in
the speech recognition result (e.g. “this”, “that”) by grounding proper parameters
from the gesture recognition result. Interpretation module uses the semantics
database, which is described in [10] to interpret multi-modal recognition results to
intended robot task symbols. It is implemented as a lookup table of candidate task
symbols and their priorities from input symbols from the multi-modal recognition
module.

4 Interactive Robot Control and Sequential Programming

Preemptive execution is crucial in providing the user real-time interaction to
control and program a robot on-the-fly. Tasks are prioritized according to a pre-
defined rule, and sequential robot actions in the tasks are executed and sometimes
overridden based on the arbitration policy. This allows the user to handle
situations such as making an emergency stop or avoiding an obstacle during the
execution of other tasks. A robot program (task) is stored during interactive robot

control. The user sets the module to a learning mode and executes primitives
sequentially; the system remembers the sequence as a task.

An illustrative example of task arbitration is given in Figure 3. Imagine that the
user first points to a particular position, P1, and asks the robot to “go there”, then
points to a different position, P2, and asks the robot to “go there” while the robot is
moving toward P1. There are three potential outcomes to the above sequential
instructions: FIFO, Preemption, and Override. The outcome is decided by the
arbitration policy tree described in Figure 3 by using features such as priority,
precondition, and post-condition attribute. For the given example with two
consecutive “go there” instructions, the outcome is an Override, since they have
no preconditions and their priorities (given by the Semantic Database) and post-
condition attributes (position) are the same. On the other hand, if the second
instruction were “go this way” for a given direction, the outcome would be
Preemption, since the post-condition attributes are different (position vs. direction).

To generate a sequential robot program, the user should execute the instructions
in the intended order. When an action is overridden during the programming phase,
the action up until the point of the override is programmed. The user can edit the
program by interrupting its execution and showing an alternative action. In order
to compose a non-sequential program which contains loops or if-then statements,
the user may edit the program on the iconic programming interface, which is more
suitable to display and edit the program flow.

5 Intention Awareness

The system’s intention awareness is composed of two capabilities: intention
recognition and adaptation. Instead of merely mapping the sequence of multi-
modal recognition results to the set of actions using the semantics database, the
intention-aware system should suggest which task the user may want to execute
based on an incomplete sequence of instructions executed by the user. The
recognition ability is similar to the auto-completion ability in a text-editing
program. It is especially helpful when there is a large number of programs, and
explicitly searching for any particular program may be time-consuming. In order
to perform such recognition in the real world, we represent tasks in a probabilistic

Priority

Precondition

Postcondition
Attribute

FIFO Preempt

FIFO

PreemptOverride

lower same higher

not met met

diffsame

FIFO Preemption Override

Goto(P1) then Goto(P2) Goto(P2) then Goto(P1) Goto(P2)

P1

P2P2

P1P1

P2

Figure 3. Arbitration Policy Tree and the possible actions for the sequence of instructions
Goto(P1) followed by Goto(P2). Based on the policy tree, Override will be the correct
action for the given example.

framework rather than as a discrete sequence of commands. A Hidden Markov
Model (HMM) provides a way to model the task in a probabilistic framework,
where both state transitions and observations can be expressed stochastically. Sets
of tasks represented in HMMs are organized and compared to the current
observation sequence to detect which task, if any, the user may want to execute.

For each program, a continuous-density HMM representation is generated from
a discrete sequence of actions and observations collected during the programming
phase. All program HMMs are integrated into a single HMM network, λnet, which
is then used to recognize the user’s intended program based on the new
observation sequence (Figure 4). When a robot is programmed interactively, the
system collects an observation sequence On = {o0,n o1,n … ot,n} for program action
n, where ot = {xt, yt, θt} corresponds to the robot position at time t. The sequence
O is the collection of observations On resulting from program actions 1 to N. The
robot program is then converted into an HMM by assigning one action per state,
and its transition and observation probabilities are calculated from On=1..N. HMMs

spi= state i of program p = {1…P},
where P = # of program models

Np =

HMM Network for Task Recognition:

• • • • • • s1es10

�1

• • • • • • s2es20

• • • • • • sPesP0

•
•

•
•

•
•

•
•

•

s00

1
1P +

�2

�net

12s11s
11Ns

22s21s
22Ns

2Ps1Ps PNP
s

1
1P +

1
1P +

1
1P +

�P

 # of actions in program p pΦ = Φ

Figure 4. HMM network used for task recognition

Initialization:
Assign a token with value of 1 to the initial shared state s00.
Assign a token with value of 0 to all other states.
For all arcs not originating from state s00, compute and store the value ψij.

Algorithm:
for each time t do

for each state i ≠ s00 do
Compute and store the Mahalanobis distance between ot and µij;
Pass a copy of the token in state i to each connecting state j, multiplying its value by aijbij(ot).
If the new token value underflows to 0, let the value be ε;

end;
Pass a copy of the token in state s00 to each connecting state j, multiplying its value by aij•ψmn. Choose
the ψmn for which the Mahalanobis distance between µmn and ot is the smallest;
Discard the original tokens;
for each state i do

Find the token in state i with the largest value and discard the others;
end;
Normalize all tokens such that their sum equals 1;
Find the state qt with the largest token value;

end;

Figure 5. Viterbi Algorithm with Dynamic Garbage Collection

describing different programs are connected in a network forming a single HMM
network, λnet

During recognition, the current observation sequence is evaluated and
compared to the HMM network. To find the single most likely state out of all
states in the shared HMM network for the current observation sequence, we use a
modified Viterbi Algorithm described in Figure 5. The Viterbi algorithm, based on
the Token Passing paradigm [12], has been modified by adding dynamic garbage
collection, that is, recognizing the state s00 of the HMM network in which none of
the programs is being executed. It is dynamic, in the sense that the state needs no
prior training and the evaluation of whether or not the observation sequence is
garbage depends entirely on the rest of the HMMs. A model update of each HMM
provides online seamless adjustments of the statistics that describe the robot
program. The update is performed after execution of the corresponding action
associated with the state. The update does not require the entire sequence of
previous observations, but rather it is updated using the previous statistics and the
most recent observation sequence.

6 Demonstrations

We have conducted two demonstrations to exemplify the interactive programming
and plan recognition aspects of the research. The first demonstration is to verify
the operation of the overall system through sequential programming and
adjustment of a mobile vacuum cleaning robot. The second is to demonstrate
intention-awareness by letting the system detect the most likely program the user
wants to execute, and having the intention model adapt to the current observations.

Programming Execution

Action DB

Trainer
Speech DB

Prioritized
Execution

Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB
Task DB
Program 1 =

GoToGoToGoToGoTo(P0)(P0)(P0)(P0)

Primitive DB
GoTo()

Semantic DB
Go +

There & Point
→

GoTo(P0)

Speech: “Go There”
Gesture: Point(P0)

Action DB

Trainer
Speech DB

Prioritized
Execution
Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB
Task DB
Program 1 =

GoTo(P0)
+ GoTo(P1)

Primitive DB
GoTo()

Semantic DB
Go +

There & Point
→

GoTo(P1)

Speech: “Go There”
Gesture: Point(P1)

Action DB

Trainer
Speech DB

Prioritized
Execution

Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB
Task DB
Program 1 =

GoTo(P0)
+ GoTo(P1)

Primitive DB
GoTo()

Semantic DB
Execute

→
Program 1

Speech: “Execute Program 1”
Gesture: “”

Step 1 Step 2 Step 3 Step 4 Step 5

Action DB

Trainer
Speech DB

Prioritized
Execution
Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB
Task DB
Move(v)
Program 1 =

GoTo(P0)
+ GoTo(P1)

Primitive DB
Move()
GoTo()

Semantic DB
Waive(v)

→
Move(v)

Speech: “”
Gesture: Waive(v)

Action DB

Trainer
Speech DB

Prioritized
Execution

Module

Intention
Interpretation

Module

Multi-modal
Recognition

Module

Gesture DB
Task DB
Program 1 =

GoTo(P0)
+ GoTo(P1)

Primitive DB
GoTo()

Semantic DB

Speech: “”
Gesture: “”

Figure 6: Task level sequential robot programming demonstration

6.1 Task Level Sequential Robot Programming

We have considered an interactive programming scenario, which has a user
register numerous via-points to which the robot should navigate using its path
planning capability. The robot can accept the user’s preemptive speech and hand
gesture commands to deal with unforeseen events. Figure 6 illustrates the
sequences of the scenario including a sequence of camera snapshots with the
corresponding conceptual illustrations of the framework, and the cropped images
of the GUI.

In this scenario, the user first verbally commands that the subsequent actions be
stored as “Program One”. The user then executes the Goto primitive by combining
the voice command “Go There” with the gestural command ”Point” to indicate the
destination (step 1). In general, deictic terms such as “This”, “That”, and “There”
must be accompanied by a referential gesture to specify the corresponding task
parameters. For the Goto primitive, the Cartesian coordinates are extracted from
the intersection between the extension of the index finger and the ground. In step 2,
the user enters another Goto primitive, but with a different end-position. After
having saved these two primitives in “Program One” with the “Complete”
command, the user can re-execute the program with the voice command “Execute
Program One”. However, in step 4, when the robot navigates to the second
position from the first, it encounters an unknown obstacle. At this point, the user
gestures the ”Wave” command, which has a higher task priority and can be used
to control the robot around the obstacle. When the obstacle has been cleared and
the user stops waving, the robot returns to the execution of “Program One” (step
5).

6.2 Making Suggestions based on the Intention Awareness

This demonstration was conducted to verify the system’s intention awareness.
Assume that the database of robot programs contains three test programs:

Φ1 = {Goto(P1), Vacuum(On), AreaCoverage(P2, P3), Vacuum(Off), GoHome()}
Φ2

 = {Vacuum(On), Goto(S1), Goto(S2), AreaCoverage(S3, S4), GoHome()}
Φ3 = {Goto(T1), Goto(T2), Goto(T3)}

where Pi, Si, Ti all represent positions on the map in (x, y). Their trajectories and
the combined probability distributions of the converted HMMs are shown in the
first and second columns in Figure 7. The last three columns in Figure 7 describe
the output of the task recognition results from three test observation sequences τ1,
τ2, and τ3. Scores in the figure show that for the first test observation sequence, τ1,
the most probable state sequence follows that of the first program, Φ1. This makes
sense, because the trajectory of τ1 was generated from Φ1. The second observation
sequence, τ2, was generated by traversing regions covered by both the second and
third programs, Φ2 and Φ3. The score in the figure also shows that is indeed the
case. The third test observation sequence, τ3, is a random traversal, which is
captured by the dynamic garbage collection state, s00, as “non-program”.

In each case, suggestions to the user are made through the text-to-speech
system and the GUI projected on the wall. When the algorithm determines that
there is a most probable state other than the dynamic garbage collection state, the
application announces to the user through the text-to-speech system that there is a
suggestion to be made. The suggested program is then executed on the simulated
robot starting from the instruction associated with the most probable state. Based
on the suggestion displayed by the simulated program, the user may or may not
choose to execute the suggested program. It is important to note that the user is
free to stop or alter the suggested program at any time, so the suggestion does not
need to be a perfect match.

7 Conclusion and Future Work

In this paper, we have described an overall framework for interactive multi-modal
robot programming and have illustrated the framework using two demonstrations.
The programming approach offers, through an intuitive interface using hand
gestures and speech recognition, the ability to provide interactive feedback to the
robot to coach it throughout the programming and execution phases. The user’s
intent is captured in the form of a sequential robot program, and the flexibility
given to the user by the framework through real-time interaction and an intuitive
interface allows the captured intent to be closer to the user’s true intent.

The first demonstration verified interactive multi-modal programming and
execution, including the capability to interrupt commands preemptively. The
second demonstrated that the system can determine the most likely high-level goal
the user is trying to achieve, given a limited, initial sequence of task primitives.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x (meter)

y
(m

et
e

r)

Trajectory O
test1

s00s10

s1es20

s
2es30

s
3e

time

st
at

es
 in

 λ
n

et

log(δ
t
(O

test1
|λ

net
))

100 200 300 400 500 600

5

10

15

20

25

30

35

40

s00s10

s1es20

s
2es30

s
3e

time

st
at

es
 in

 λ
n

et

δ
t
(O

test1
|λ

net
)

100 200 300 400 500 600

5

10

15

20

25

30

35

40

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x (meter)

y
(m

et
er

)

Trajectory O
test2

s00s10

s1es20

s
2es30

s
3e

time

st
at

es
 in

 λ
n

et

log(δ
t
(O

test2
|λ

net
))

50 100 150 200 250 300 350 400 450 500

5

10

15

20

25

30

35

40

s00s10

s1es20

s
2es30

s
3e

time

st
at

es
 in

 λ
n

et

δ
t
(O

test2
|λ

net
)

50 100 150 200 250 300 350 400 450 500

5

10

15

20

25

30

35

40

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x (meter)

y
(m

et
er

)

Trajectory O
test3

s00s10

s1es20

s
2es30

s
3e

time

st
at

es
 in

 λ
n

et

log(δ
t
(O

test3
|λ

net
))

50 100 150 200 250 300 350 400 450

5

10

15

20

25

30

35

40

s00s10

s1es20

s
2es30

s
3e

time

st
at

es
 in

 λ
n

et

δ
t
(O

test3
|λ

net
)

50 100 150 200 250 300 350 400 450

5

10

15

20

25

30

35

40

τ1 τ2 τ3

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x (meter)

y
(m

et
er

)

Observations used to create λ
3

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x (meter)

y
(m

et
er

)

Observations used to create λ
1

1Φ

2Φ

3Φ

1λ

2λ

3λ
timepr

og
ra

m
 s

ta
te

s

Figure 7. Task recognition results on three test observation sequences τ1, τ2, and τ3. The
images describe the state likelihood at any given time.

To attain a comprehensive multi-modal interactive robot programming system,
several elements still need to be added in the future. Although the programs
generated by the current system can be re-executed, they are limited to fixed task
sequences. To expand the generality of the paradigm, we need to add the ability to
define non-sequential flow structures such as conditional branching and looping.
Also needed is the ability to learn new primitives from demonstrations. The
current implementation assumes that the given primitives cover the entire task
space, and it would be convenient to be able to use the current programming
paradigm to create new primitives. Discerning user preferences is also an
important issue. Currently all programs in the HMM network are equally preferred
prior to incoming observations.

Acknowledgements

This research was funded in part by DARPA under contract DAAD19-02-1-0389
and ABB under contract 1010068. Additional support was provided by the
Robotics Institute at Carnegie Mellon University.

References

[1] Musser, G. (2003). "Robots That Suck." Scientific American, 288(2), 84-6.
[2] Gertz, M. W., Stewart, D. B., and Khosla, P. K. (1994). "A human machine interface

for distributed virtual laboratories." IEEE Robotics & Automation Magazine, 1(4), 5-
13.

[3] Ikeuchi, K., and Suehiro, T. (1994). "Toward an Assembly Plan from Observation, Part
I: Task Recognition with Polyhedral Objects." IEEE Transactions Robotics and
Automation, 10(3), 368-385.

[4] Fong, T., Conti, F., Grange, S., and Baur, C. (2000). "Novel Interfaces for Remote
Driving: Gesture, Haptic and PDA." SPIE Telemanipulator and Telepresence
Technologies VII, Boston, MA.

[5] Perzanowski, D., Schultz, A. C., Adams, W., Marsh, E., and Bugajska, M. (2001).
"Building a multimodal human-robot interface." IEEE Intelligent Systems, 16(1), 16-
21.

[6] Quek, F. (1994). "Toward a Vision-Based Hand Gesture Interface." Virtual Reality
System Technology Conference, Singapore, 17-29.

[7] Young, S. J., Kershaw, D., Odell, J., Ollason, D., Valtchev, V., and Woodland, P.
(2000). HTK: Hidden Markov Model Toolkit V3.0, Microsoft Corporation, Redmond,
Washington, USA.

[8] CyberGlove Reference Manual (1998). Virtual Technologies Inc., Palo Alto, CA.
[9] Microsoft Speech SDK ver. 5.1. (http://www.microsoft.com/speech/dev/)
[10] Iba, S., Paredis, C. J. J., and Khosla, P. K. (2002). "Interactive Multi-Modal Robot

Programming." International Conf. on Robotics and Automations, Washington, D.C.,
161-168.

[11] Lauria, S., Bugmann, G., Kyriacou, T., Bos, J., and Klein, A. (2001). "Training
personal robots using natural language instruction." IEEE Intelligent Systems, 16(5),
38-45.

[12] Young, S. J., Russell, N. H., and Thornton, J. H. S. (1989). "Token Passing: A Simple
Conceptual Model for Connected Speech Recognition Systems." Cambridge
University Engineering Dept.

	Carnegie Mellon University
	Research Showcase @ CMU
	2004

	Interactive Multi-Modal Robot Programming
	Soshi Iba
	Christiaan J.J. Paredis
	Pradeep Khosla
	Published In

