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[e]V = [q]-n, (6.14)

which is the first of the classical interface conditions for the Stefan problem.
Next, the configurational balance (6.4) yields

[C]n = 0, (6.15)

which, by (6.7), has the alternative form

[$] = 0, (6.16)

or, in view of the hypothesis ending in (6.13),

9 * 9M on the interface. (6.17)

Thus the classical Stefan condition equating the temperature at the interface to
the melting temperature is equivalent to the configurational balance applied
across the interface?1

c. Weak form of the two-phase problem using the configurational balance
Not only does the configurational balance allow for a derivation of the classi-

cal Stefan condition, it allows for a weak formulation of the Stefan problem by
replacing the condition B=&M on the interface, which is local and inappropriate to
a weak formulation, with a partial differential equation. In particular, (6.5) and
the configurational balance divC = -f with C given by (6.7) and f by (6.12) yield
partial differential equations

s# = -divq, V$ = -T|Ve, TT > -div(q/e) (6.18)

to be interpreted in a weak sense, for example in the sense of distributions. The
distributional form of (6.18)1 gives that partial differential equation classically in
bulk and the balance (6.14) at the interface. The configurational balance (6.18)2 is
satisfied automatically in bulk; its only contribution is at the interface, where V$
is a distribution, as $ suffers a jump discontinuity (TIVO does not contribute, as TI

and Ve are bounded). In fact, (6.18)2 formally yields (6.16) and hence the Stefan
condition (6.17). Finally, (6.18)3 is satisfied automatically in bulk as well as across
the interface. To verify the latter assertion, note that (6.18)3 yields O[T)]V < [q]-n,
or equivalently, by (6.1) and (6.14), [$]V>0, an inequality satisfied by virtue of
31Gurtin [1988].
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(6.16). It might therefore appear that the entropy inequality (6.18)3 is super-

fluous, which is true when the interface moves smoothly, but there are situations

involving large amounts of supercooling or superheating in which the interface

moves "infinitely fast" resulting in an instantaneous change in phase for entire

subregions of the body;32 the entropy inequality is then needed to ensure that

such instantaneous changes be consistent with the second law.33

d. The two-phase theory with surface structure. The Gibbs-Thompson condition as

a consequence of the configurational balance34

I now generalize the theory to include surface structure by considering the

basic laws for each evolving control volume R(t) in the form

(d/dt ){Jedv + J e d a } = -Jq-mda + jQVda + jQVdQds + ltf(R), (6.19)
R Q 3R 3R dQ

(d /dt ){Jndv + Jf ida} > -J (q /e ) -mda + J(Q/e)Vda + J(Q/e)Vd Qds, (6.20)
R Q 9R dR dQ

JCmda + J fda + jCVds + J»da = 0, (6.21)
dR R dQ Q

where 1fl(R) is given by (4.5), C, 8, and Q are as discussed before, e is the inter-

facial energy, f\ is the interfacial entropy, and Q, a configurational heating, is an

analog of Q in the sense that

jQVdQds, J(Q/e)VdQds
dQ dQ

represent flows of heat and entropy into Q induced by the motion of the boundary

curve 3Q.

The arguments used before then yield the bulk relations discussed in the

paragraph containing (6.7), the interface relations

fi = Q/e, a = 4>, (6.22)

and the results (4.9) and (4.19) with the interfacial free-energy given by

3 2Sherman [1970], Fasano and Primicerio [1977], GOtz and Zaltsman [1993], Gurtin [1994b].
33Gurtin [1994b].
3 4This section is taken from Gurtin [1988,1993], although the configurational force-balance
is slightly different.
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y\> = t - BX\. (6.23)

The configurational balance remains (4.11), but the remaining interface

conditions are more complicated than before: balance of energy has the form

[e]V = [q]-n + e° - eKV - div^(VC) (6.24)

(cf. (A13), (4.13), (6.6), (6.22), (6.23)), an analogous inequality for the entropy

follows from (6.20), and this inequality, (4.11), and (6.24) yield the interfacial

dissipation inequality

4>° + fieo + C-n° + eV < 0. (6.25)

Guided by this inequality, I consider constitutive equations of the form (4.21),

but with (e,n,V) as independent variables and with an additional constitutive

equation, of the same form, for the entropy TV The most general constitutive

equations of this form consistent with the dissipation inequality (6.25) are

4> = 4>(efn), fi = -aevji(e,n)f c = -3n^(e,n), e = -b(e,n,V)V, (6.26)

with b(0,n,V) > 0. I henceforth assume that b is independent of V.

The resulting interface conditions consist of the energy balance (6.24) and the

configurational balance (4.11) with TT = $, a=4>:

[$] « -I|JK - div^C - e. (6.27)

These interface conditions supplemented by the constitutive equations are the

basic free-boundary conditions of the theory; the condition (6.27) replaces the

classical Stefan condition.

The interface conditions (6.24) and (6.27) are complicated. In [1988] I formally

derived an approximate theory appropriate to an interface whose free energy,

internal energy, and kinetic coefficient are small, with the latter independent of

V. Let

u « (e - e M ) /e M , I = sp(eM) - ea(eM),
ib.ZoJ

), bM(n) = b(eM,n),

where £ft(©) and eB(©) are the constitutive functions for the internal energy
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computed from the free energies $a(e) and $p(e) via (6.11), so that { is the latent
heat. Then the approximate interface conditions consist of an energy balance

«V = [q]-n (6.29)

and a generalized Stefan condition

O l - bM(n)V, (6.30)

which includes the effects of curvature and kinetics. For an isotropic material ^M

and bM are constants, which I write as \\> and b, and (6.30) reduces to3 5

«u = i|>K - bV, (6.31)

which is the Gibbs-Thompson condition tu=4>K augmented by the term bV, which
accounts for interface kinetics.
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3 5 ! u = -b(n)V was introduced by Frank [1958] and used by Chernov [1963,1964]; *u = K̂ was
introduced by Mullins [1960] (in the context of mass transport) and used by Mullins and
Sekerka [1963,1964]; lu«^K-bV was used by Voronkov [1964]. Cf. Gurtin [1993a, Footnote 84]
for additional references.
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APPENDIX ON EVOLVING SURFACES
a. Surfaces

Let % be a smooth closed surface oriented by a choice of unit normal field
n(X). The space nCXK of all vectors perpendicular to n(X) is the tangent space to
% at X, and the tensor

P(X) = 1 - n(X)®n(X) (Al)

projects vectors onto this tangent space.
In continuum mechanics tensors are generally linear transformations from

IR3 into itself, but of interest here are tensor fields T on % with the property that,
at each X in >8, T(X) is a linear transformation from the tangent space at X into
[R3. These two notions of a tensor field may be reconciled by extending T(X) to
vectors normal to % with the requirement that T(X) annihilate such vectors.
Precisely, a superficial tensor field T on & is a function that associates with each
X in % a linear transformation T(X) from IR3 into IR3 such that

In = 0. (A2)

T then admits a unique decomposition into tangential and normal components,
Ttan and ft, respectively:

T = T t a n + n®ft, T t a n = PT, 1 = TTn; (A3)

given any vector field v,

Tv = T t a nv + (ft-v)n (A4)

with T t a nv a tangential vector field on J&. (Note that the normal component ft of
T is a tangential vector field.)

I define the surface gradient V^ on >8 through the chain rule. Let cp(X) be a
smooth scalar field on % and v(X) a smooth vector field on Z. Then given any
curve z(t) on >8,

cp(z)B = V^cp(z)-z\ v(z)' = V^v(z)z- (A5)

(which defines V^v only on vectors tangent to Z, but, in accord with (A2), V^v is
extended by requiring that (V/8v)n=0). Then V̂ cp is a tangential vector field, while
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V^v is a superficial tensor field. The surface divergence of v is defined by

divgv = tr(Vjv), (A6)

while the surface divergence div^T of a superficial tensor field is defined through
the identity

a-divgT = div^(TTa) (A7)

for every constant vector a.
The curvature tensor L and total curvature K (twice the mean curvature)

are defined by

L = -V^n, K = t rL = 1-L = -div^n. (A8)

As is known, the curvature tensor is symmetric L = LT and (hence) tangential:
LTn=0.

Let Q denote a smooth subsurface of &, and let V(X) denote the outward unit
normal to the boundary curve dG, so that V(X) is tangent to J& at each XcSG.
The surface divergence theorem then has the form

Jt-Vds = Jdiv^t da, j T v d s = Jdiv^Tda (A9)
5G G dQ G

for t a tangential vector field and T a superficial tensor field.

b. Smoothly evolving surfaces

Now let £(t) depend smoothly on the t ime t. Let cp° denote the normal time-

derivative^t* of a scalar, vector, or tensor field cp on J&. Then

n o = -V jV , (A10)

wi th V the normal velocity of Z.
Let G(t) denote a smoothly evolving subsurface of /8(t) w i t h V(x,t) t h e

o u t w a r d un i t no rma l to c)G(t). The motion of the cu rve 9Q(t) m a y be c h a r a c -

terized intrinsically by the velocity field

derivative following the normal trajectories of the surface. Cf. Gurtin [1986, eqt.
(4.4)].
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Vn + VdQV, (All)

where VdQ, the tangential edge velocity of Q, is the velocity of dQ in the direction
of the normal V.

For cp a superficial scalar field,

(d/dt){Jcpda) denotes (d/dt) {Jcp(X,t)da(X)}. (A12)
Q Q(t)

Then37

(d/dt){ Jcpda} = J(q>° - cpKV)da + JcpVdQds. (A13)
Q Q dQ

c. Functions of orientation
In studying interface behavior I will discuss scalar functions cp(n) and vector

functions f(n) of the interface normal n. The derivatives 3ncp(n) and c)ntr(n) are
defined by the chain rule. Given any curve n(t) on the unit sphere,

tp(n)" = {ancf>(n)}-n\ fT(n)- = {antr(n)}rr; (A14)

3n(p(n) is tangent to the unit sphere, while 5nf(n) is defined by (A14) only on
vectors perpendicular to n, but is extended by requiring that {5nf(n))n=0). Then
for n the unit normal field on /8, a calculation using the chain-rule and (A8)
yields the identities

V^cp(n) = -L3ncp(n), V f̂T(n) = -{3n(T(n)}L, div^Hn) = -{3ntT(n)}. L. (A15)

37Cf. Petryk and Mroz [1986], Gurtin, Struthers, and Williams 11989], Estrada and Kanwal
[1991], Jane [1991].
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Figure 1. The portion Q of the interface contained in the control volume R; m is
the outward unit normal to dR; n is the unit normal to the interface; v
(tangent to the interface) is the outward unit normal to the boundary
curve 3G.



Figure 2. The regions Ba and Bp occupied by the phases a and 3 in the unde-
formed body.
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Figure 3. The time-dependent control volume R(t), which deforms to 3£(t), with
v(X,t) a velocity field for 3R(t) and v(X,t) a corresponding velocity field for
Sfc(t).
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Figure 4. Cartoon showing why internal configurational forces respond to the
inhomogeniety of the reference configuration.
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configurational stress is constant,
internal configurational force vanishes.
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Nonuniform configuration of atoms,
configurational stress is not constant,
internal configurational forces (the four
lower arrows) are needed.
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Figure 5. Contributions to the working at a phase interface.
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