








On the other side, since det(z I - A\) — FliLi(z ~ *i(*))>one ^n^6 t n a t»

and

The assertion now follows easily from (A-III). D

Remark 2 Since the zeros of a polynomial depend continuously on its co-
efficients, it is intuitively plausible that the assumption A-II holds for all
but finitely many values of A.

Hereafter in this work, the eigenvalue A is supposed to be fixed. In view
of the assumption (A-II), the matrix A\ is diagonalizable. In fact,

where the matrix Vx is the Vandermonde matrix VA (Z\ (A), *2(A),. •., zn(X))
and Jx = diag(zi(\),Z2(X),...iZn(\)). Clearly, such Jx is unitary. It will
be convenient to transform our vector equation (3.2) to take advantage of
the diagonalization (3.5). Changing variable

ti(*,A) = Vxlx(t,X) (3.6)

and setting
(3.7)

the equation (3.2) becomes

u(t + 1, A) = [JX + D(t)) u(t, A). (3.8)

As is obvious from (A-I), det [Jx + D{t)) ^ 0 for all t. Hence, if we
prescribe the initial condition u(0, A) = u0 then any solution of Eq. (3.8) is
uniquely determined by

(3.9)



Note that in the case t < 0 we obtain a development of the form

u(U A) = (Jx + D{t)Yl (JX + D(t + I ) ) - 1 . • • (Jx + D ( - l ) ) - 1 ti0, t < 0.

That is, the ordering of factors is from the left to the right.

Let us denote by H the (linear) space of solutions to the matrix eigen-
value equation (3.8). We wish to establish a sufficient condition for all
u € W, and in particular for the solution x itself, to remain bounded for
all t. Note that thus far in our analysis we have imposed no "constitutive
assumptions" on the matrix B{t) (other than the assumption made at the
very beginning that the potential V(t) = {ty(0> 0 < j < n — 1} decays
sufficiently rapidly as \t\ —• oo). Let us henceforth suppose V(t) satisfies the
decay condition

*(<) = W l " 1 - ) , 0 < j < n - l (3.10)

as |t| -+ oo for some e > 0. Such V will be called a short-range potential.

Theorem 3.1 Consider x(t, A) satisfying the equation x(t + 1, A) = [A\ +
B(t)]x(t,\) with the assumptions (A-I)-(A-III) applied. IfV(t) is a short-
range potential then the solution x(t, A) is bounded for all t.

To prove this theorem the following lemma is useful, known by the name of
Hukurawa's theorem; a proof can be found in Miller [13].

L e m m a 3.1 Let rj(t) satisfy the vector equation

for all t. Suppose that all solutions ofrj(t + 1) = Ax r)(t) are bounded and

f ; IIA,(«)II < oo.

Then the solution r)(t) is bounded for all t.

PROOF OF THEOREM 3.1 By virtue of the change of variable formula
(3.6), it sufficies to show that, under the given assumptions, the equation
(3.8) has bounded solutions. It follows from (A-II) and (A-III) that any
solution of the equation u[t + 1,A) = Jxu{t, A) is bounded for all t. If



the estimate (3.10) holds then, for every 0 < j < n - 1, the function qj(t)
satisfies

for some constant C. Thus, as is dear from Eq. (3.4) and Eq. (3.7),

£ ||D(<)II < oo, (3.11)
is-oo

and therefore Lemma 3.1 completes the proof. D

Corollary 3.1 In view of the assumptions (A-I)-(A-III), every y(f, A) sat-
isfying the equation (S.I) remains bounded as \t\ —• oo, provided that (S.10)
holds.

4 Asymptotics of Eigenfunctions; Monodromy Ma-
trix

In the dynamic theory of scattering the behavior of the solution of the
perturbed system for large |/| is compared with the corresponding behavior
of solutions of the unperturbed system.

The starting point for our approach to scattering problem for the op-
erator L is to analyse the asymptotic properties of u € W. This choice is
motivated by the great simplification in our formulas and the transparency
of the results that is evident from the change of variable formula (3.6). For
sake of notation, in everything what follows the explicit dependence on the
(fixed) variable A will be omitted and only used when needed to emphasize
the eigenvalue-dependence.

The vector equation (3.8) provides asymptotic information about ti(t)
in the following sense: when V(t) —• 0 sufficiently rapidly as |t| —• oo, the
equation (3.8) behaves asymptotically like the free (unperturbed) equation

vl°\t + 1) = 3 vl°\t) (4.1)

which corresponds to D{t) = 0. This equation has a basis of solutions

! < * < * , (4.2)

where e* are the unit vectors in Cn. (zk =



We introduce now a (scalar) solution of the eigenvalue equation Eq. (3.1),
called the Jost solution and denoted by (fk(; A), by demanding that

lim *J* ?*(<) = ! (4.3)
••••xoo

for every 1 < k < n, so that the function u(t) = [<Pi(t),<p2(t)j-*-i<fn(t)]T

reduces to a solution of the free equation (4.1) as \t\ -* oo. According to
this, it follows that the Jost solutions <fk, 1 < k < n, constitute a set of n
linearly independent solutions of (3.1), since their Casoratian, by virtue of
(A-II), is nonzero. We shall see later that, under the condition (3.10), such
solutions exist and moreover, they form a distinguished basis of solutions
to our scattering problem. More specifically, it will be shown that for large
|t|, every solution of the perturbed equation (3.1) can be written as a lin-
ear combination, with constant (^-independent) coefficients, of these Jost
solutions.

Let e+ = «+(A) € Cn. We say that e+ is an asymptotically free state for
the operator J + D(t) at +oo, if there is a g € C n , g = y(A), such that

t-i

n ( ^ + tf(0)<7 = «7te+ + o(l), * - » . (4.4)
t=0

Similarly, we consider vector e_ = c-(A) to be an asymptotically free state
of this operator at — oo if

+ D(i))]~l g = J* e_ + o(l), * < 0 (4.5)

as t -* -oo . Thus, to each asymptotically free state e± there corresponds
an initial condition g of the perturbed equation (3.8) (i.e., u(t + 1) = \J +
D(t)] u(t)) such that the solution u(t) behaves like a respective solution

W of the free equation (4.1) as t - • oo and t —• -oo which satisfies

Let Z+ and 2 - denote the asymptotically free states of the operator
J + D{t) as t —• oo and t —• —oo, respectively. The problem (3.1), together
with (4.3), becomes, for our system (3.8): given u € W, determine necessary
and sufficient conditions so that

- ' t i ( 0 = e ± (4.6)

has a unique solution in 2+ and 2 _ , respectively.
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Remark 3 The asymptotic results (4.6) follows by virtue of the following:
for any vector u>(t) satisfying w(t) = o(l) as \t\ -> oo, the assumption (A-
III) implies that

The solution of the problem (4.6) occupies the rest of this section. To
begin with, let us first examine the asymptotic properties of u separately as
t —• oo and t —• —oo.
Asymptotics as t -» oo :
Rewrite equation (4.4) as J~f U\zl(J + D(i))g = e+ + o(l), t > 0. The
principal tool for comparing the behavior of the perturbed and unperturbed
solutions are the wave operators. Given g € C n , we define the wave operator
M+by

JA+g = lim J~* T[(J + D(i))g (4.7)

whenever this limit exists. Clearly, the range of A4+, denoted by 7£(.M+), is
<2+. We want to see that this mapping is injective. Introducing the notation

Dt = J-f-1 D{t)J\ t > 0, (4.8)

we claim that «M+, if it exists, can be represented in the form of an infinite
product of matrices I + Du and we formulate this as a separate lemma:

Lemma 4.1 A necessary and sufficient condition that the limit in (4-7)
exists for every g € Cn is the convergence of the infinite matrix product
TltLo(I + &t)> V this is the case then

oo

t=0
and therefore, Ai+ is invertible.

PROOF. Set Pt = nU>(' + Dk) and St = J-*-> nU>(«7 + D(k)).
By a straightforward calculation, one finds that Pt = St for all t > 0 and
therefore the assertion holds. D

Proposition 4.1 The function u eft satisfies

ti(t)^^c+- (4.10)
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as t -+ oo if and only if the infinite matrix product in (4.9) converges. If
this is true, then the the wave operator M>+ exists as an isomorphism ofH
onto Z+. Moreover,

6+ = M+u(0). (4.11)
is to be a unique solution of (4-6) as t -+ oo.

Asymptotics as t —» — oo :
We now mimic as much as possible the above analysis in order to cover the
case t —• —oo. The meaning of the wave operator A i - is similar. In fact,
by virtue of (4.5), for g € C n we define

- J = K m ^ [ J I ( J + D(i))]-10, * < 0 (4.12)

provided that the limit exists. It follows that 7£(A4-) = 2L. The foregoing
considerations suggest that it would be appropriate to extend the notation
for the matrices Dt, given by (4.8), to negative t as well. Then, by the
similar arguments,

- l

(I + Dt) (4.13)

if and only if this infinite matrix product converges.

Proposition 4.2 For every u €H, the asymptotic formula

lim J-^Wse.. (4.14)
t — o o v ' v '

is satisfied if and only if the infinite matrix product in (4-13) converges. If
so, then the wave operator «M_ gives the desired isomorphism of H onto
Z~ and moreover,

u{Q) = MZ1e-. (4.15)

Remark 4 Note that the wave operators M± are A-dependent

Asymptotics of solutions u as \t\ —» oo :
We are now in a position to describe the transition between the asymptot-
ically free states e± as t -* ±oo. We will see momentairly the utility of
Eq. (4.11) and Eq. (4.15).
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We employ our preliminary discussion as follows. If we suppose that
both one-sided infinite matrix products n £ o C + A ) and rit^-ooC + A )
converge then the two-sided infinite product

n
exists and is nonsingular. We transform this condition into a definition.

Definition 4.1 The matrix M = «M+ A4I 1 is called the monodromy ma-
trix associated with the vector equation (3.8).

It is evident that a monodromy matrix, if it exists, is always unique.
The definition implies that

oo

<=-oo

where the ordering of factors in this infinite matrix product is from the right
to the left.

As a conclusion of the above viewpoints, the monodromy matrix (mon-
odromy operator) can indeed be interpreted as follows. In view of (4.11)
and (4.15) we obtain

and hence e+ = A 4 e _ . Thus, the effect of the perturbation is to change
an asymptotically free state which starts out as c . near t = - o o into the
asymptotically free state e+ near t = +oo. The monodromy operator A4
defines the transition from e_ to e+.

Combining the asymptotic results given in Propositions 4.1 and 4.2 we
obtain the following theorem.

Theorem 4.1 Consider the vector equation (S.8) and assume that both one-
sided infinite matrix products in (4*16) converge. Let u(t) be the solution of
(S.8) with a prescribed initial condition u(0). Then u(t) has the asymptotics
u(t) ~ &x e± ast —• ±oo. The matrices D% are determined by formula (4*8)
for all t. In addition, the vectors e+ ande~ represent the asymptotically free
states of the operator 3 + D{t) ast —• ±oo which are uniquely determined
by

The monodromy matrix /A defined by (4*17) & the one-to-one correpon-
dence between Z+ and Z- in the sense e+ = A4e_ .
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PROOF. Recalling the assumptions (A-I)-(A-III), and by reapplying the
change of variable formula (3.6), the identity

dearly assures that det (I + Dt) ± 0 for all t. On the other hand, from
the convergence conditions for the infinite products of matrices, both «M_
and «M+ exist and have nonzero determinant. They therefore determine
the monodromy matrix At . The rest follows obviously from Propositions
4.1 and 4.2. D

The transparency of these results in the case of the system x(t + 1) =
[A+B(t)] x{t) becomes now evident. For all t € Z, we set

(4.18)

Corollary 4.1 Suppose that both one-sided infinite matrix products in

- 1

n (j+Bt
t=-oo t=0

converge. Then
x(t)-Atf±y t-+±oo, (4.20)

where the asymptotally free states f± of the perturbed operator A+B(t) are
given by f± = Jsf± *(0). The associated monodromy matrix has the form

oo

JJ (I + Bt). (4.21)

As is dear from Eq. (3.5) and Eq. (3.7), Bt = VDtV"1. Hence, the
monodromy matrices M and Jsf, associated with Eq. (3.2) and Eq. (3.8)
respectively are also similar; i.e., Af =

Theorem 4.2 Let V(t) be a short-range potential Then both «V± exist
as respective isomorphic operators of H onto Z±} respectively. According
to (4.19), the monodromy matrix / / , given by (4-Sl)f is the one-to-one
correspondence between Z+ and Z- described by

f+=*Tf_. (4.22)
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PROOF. By virtue of Eq. (4,18), it follows that det (/ + Bt) jt 0 for all
t. The identity Bt = V J~*-1 V'lB(t) V Jx V \ together with Lemma
2.1, implies that

where KJCV") = ||V|| ||V~x|| is the condition number corresponding to the
spectra] norm of the matrix V. If V is a short-range potential then, accord-
ing to (3.11),

\w\ < oo.

Hence, the both infinite matrix products in (4.19) converge. The rest of the
proof is obvious. O

The asymptotics of x{t) imply the corresponding asymptotics of the
eigenfunctions y € l°°(Z) of the operator LlkK

Corollary 4.2 There are unique Uindependent coefficients a,(A), d,(A); t
l , . . . , n such that

y(U A) - £ a,(A) Zi(X)\ t -+ -oo, (4.23)

y(t, A) ~ E Q , ( A ) Z , ( A ) ' , t - oo, (4.24)

where
a(A) = [a,(A),o2(A),...,an(A)r = VA"» /-(A)

d(A) = [

provided that V(t) = {P;(0} « short-range. Moreover,

a = V~*MVa. (4.25)

5 Shift Influence on the Monodromy

To solve the scattering problem of a two-sided difference operator £ , the
previous findings suggest that it may be appropriate to examine the behavior
of the monodromy operator under the translation

LEk. (5.1)
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Let A4(A) and «M(A)W be the respective monodromy matrices associated
with L and L&K We consider the following diagram:

L £(*)

M{\)

If we establish A4(A) ~ A4(A)W with respect to a similarity transformation
depending on k (the number of steps in the shift), then the above diagram
necessarily commutes. For this purpose let us return to a detailed consid-
eration of the eigenvalue problem for the operator L given by (2.1), i.e.
Ly(t) = Ay(i), assuming pm s 1* Its corresponding matrix formulation is
given by

*(t + 1, A) = [Vx + Q(t)} *(«, A) (5.2)
where

r y(t - k)
y(t-k + l)

x{t,X)= .

y(t + m - 1)
and m + k = n. The matrices V\ and fi(<) (the latter is independent of A)
have the form

0 1 0 0
0 0 1 0 0

0

X

"" PO

(5.3)

and

with p(t) = [-/>-*(*), -p_*+i(O>
as follows:

, -Pm-i(0]T- W e employ the shift (5.1)

(Ly(t) = Ay(O) S (£(*) y(<) = Xy(t + k))
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or equivalently,

x(t + * + 1, A) = [Tx + C(0] *(< + *, *)• (5.4)

Thus, the matrices V\ and Q(t) remain invariant under the shift applied
to the operator L from the right.

We remark that, in analogy to Proposition 3.1, a necessary condition for
all the eigenvalues of "PA to be of magnitude one, is that the constants pj in
(5.3) must satisfy

and

We set x{t) = Ek z(t). Then, the above scattering analysis brings us to
the following: The asymptotic formula (4.20) implies that the asymptotics
of the solution of the matrix eigenvalue equation (5.4), in terms of x(t), can
be characterized as

where f± = M±(k) x(0). This further implies that z(t) ~ Vf~k f± as
t —> ±oc. According to (5.1), the asymptotically unperturbed states of the
vector equation (5.2) are given by

V-kf±. (5.5)

On the other hand,
m+ « M m . . (5.6)

The desired similarity between the matrices M. and /A^ is therefore de-
scribed by the following assertion.

Theorem 5.1 Let L be the n"* order two-sided linear difference operator
of the eigenvalue problem (2.2), and let L^ = L Ek. The corresponding
monodromy matrices M. and M^ are similar; i.e.,

(5.7)

where the t-independent matrix V is given by (5.S).

PROOF. Follows from (5.5) and (5.6). O
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6 Application to the Toda Lattice
The nonlinear Toda lattice represents a system of unit masses connected
by nonlinear springs whose restoring force is exponential. It was invented
and extensively studied by Toda [6] who discovered a number of remarkable
explicit solutions both for the periodic and infinite lattice. The latter is ap-
proximated by the KdV equation in one of the possible long wave continuum
limits. Using the discrete inverse scattering theory of Case and Kac [8] and
Case [9], Flaschka [5] developed an inverse-scattering method for solving the
lattice.

Here, stimulated by Flaschka's work, we incorporate the preceding re-
sults in order to recover the existence of the monodromy matrix for the
discrete second-order Schrodinger scattering problem that is particularly
associated with the lattice. The approach is based on the discrete version
of the Lax's generalized technique for solving certain nonlinear partial dif-
ferential equations; see [7]. (The Hilbert space /2(Z) will be needed.)

The equations of motion for the Toda lattice

pn = e-Wn-Qn-O.

where a dot stands for differentiation with respect to time, are derivable
from the Hamiltonian

in which Qn is displacement of the n*" mas from equilibrium and Pn is its
momentum. (For convenience of the reader, in this section we shall denote
the space-variable by n, n € Z, whereas the time-variable will be *, t > 0.)
To simplify the notation, we omit the dependence on the time-variable.

Considering (6.1) for a lattice infinitely long in both directions we set

\ 6(n) = - P n / 2 n € Z. ( 6 ' 2 )

We emphasize that a(n) and b(n) depend smoothly on a parameter t. In
addition, it is evident that a(n) > 0 for all n.

We turn our consideration to motion which is confined in some finite
region of the lattice, assuming no motion in the distance. Therefore, for

18



|n| > 1, we have
Cn+l - Qn = 0, Pn = 0

and hence, we can think of a(n) -+ | and 6(n) -• 0 rapidly as \n\ -• oo.
To derive the connection between the Toda lattice and the Schrodinger

discrete second-order eigenvalue problem, we introduce the self-adjoint op-
erator L and the 6kew-adjoint operator B , acting on H = 12(Z,) by the
formulas

Ly(n) s a(n

In view of the setting given by (6.2), the Lax representation of the equations
of motion (6.1) is given by

It implies that all the eigenvalues A of £ are time-independent (they are
constants of the motion). In addition, since the operator L is self-adjoint,
they are also real.

From the asymptotic behavior of the coefficients a(n) and 6(n) of the
operator X, the eigenvalue equation

L<p(n) = Xtp(n) (6.3)

is asymptotically close to

i [ 9 ( n - l ) + V>(n+l)]=AV>(n). (6.4)

The translation L*-+ LE transforms (6.3) to

V>(n + 2) + 6(n) <p(n + 1) + a(n - 1) tfn) = A - ^ <p(n + 1) (6.5)
a(n)

where b(n) = b(n)/a(n) and fi(n - 1) = c(n - l)/a(n), satisfying 6(n) -• 0
and a(n) —• 1 rapidly as |n| —• oo. Hence, Eq. (6.5) can be written as

V>(n + 2) - 2 A <p(n + 1) + y>(n) = t^(n) <p(n) + t?2(n) v>(n + 1) (6.6)

for some functions t>i(n) and t>j(n) that decay sufficiently fast as \n\ —• oo.
In our notation from Section 3, the matrix formulation of Eq. (6.6) gives

* ( n + l ) = [̂ A + B(n)]*(n), (6.7)
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where

L J l

and
1 0 1 1

Set A = | ( z + 2"1). In light of our previous results, the Jost solutions
(pj{n^z) of (6.6) are characterized by

<Pi(nyz)~zn as n —• oo
n, z) ** z~n as n —• -oo.

It is evident that, for \z\ = 1, the pairs of functions {^i(n,2),^i(n,j2r""1)}
and {<P2(nyz)j ̂ a(n, z~1)} form a distinguished basis of solutions for the
difference operator L — XI as n —• oo and n —• — oo, as long as z ^ ±1. We
have

t v f a s w ~"̂  o o . / i # a s n —*̂  ""Oo.

The scattering matrix S(X) is defined as an algebraic transformation that
relates the asymptotics of the Jost solutions as t —• ±oo. We have

where

for some functions a(z) and /?(z) satisfying the symmetry conditions

and

For |z| « 1, we have |a(*)|2 = 1 + |/?(*)|2. It follows that S(A) is unitary.
Note that, since a(n) and 6(n) in (6.2) are time dependent, the functions a
and /? also include time.
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Theorem 6.1 The monodromy matrix associated with Eq. (6.6) is similar
to S{\).

PROOF. The asymptotics of the general solution y(n, z) of Eq. (6.6) for
\z\ = 1 can be characterized as

It follows that

f ] f 1
I hi*) J ~ V"' I 7»M J * V '

On the other hand, by virtue of the asymptotic formula (4.23) and (4.24),
we obtain

and

where /±(A) are the asymptotically free states of the vector equation (6.7),
related by /+(A) = A4(A)/_(A) with respect to the corresponding mon-
odromy matrix A4(A). It is now a routine matter to check that

A-1 (6.10)

or equivalently,

with Bn = A-*-1(X)B(n)At(X), where in particular

., F i l l

(Compare with (4.25)!).
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