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3. Description of hysteresis We describe the hysteretic event The computational domain
is a rectangle Q = (-LJL)x (0,1), usually with L = 1, and oriented so that the xi axis is an
easy direction. We partition Q into Ni x N2 squares of side length h = 217Ni = I/N2
denoted by

£iij = {xe Q: i h - L < xi < (i + l )h -L , jh < X2 < (j + l)h},

i = 0,.. . , Ni - 1, j = 0,1,...,N2 - 1. The minimization of (2.1) is approximated in the space

Ah by the Polak-Ribifere version of the conjugate gradient method [31,33] where

Ah = {m: m is constant on each Qij, i = 0,..., N i - 1 , j = 0, l , . . . ,N2-1}.

The minimization algorithm requires the computation of energy and also the gradient of the energy

with respect to the discrete variables for a given set of m e Ah. We remark that the most

expensive feature of these computations is the determination of the averages of Vu on the cells

Qij, i.e.,

« - 1

We refer to Luskin and Ma [21] for details.

The hysteresis diagram is computed by continuation of solutions with respect to increasing

and decreasing the applied magnetic field. We restrict to the case H = (Hi,0). For a given

initialization î, let TQi) denote the computed magnetization for the functional (2.1). Let Ho be

the maximum external field strength, n be a positive integer, and 8 = 2HJn. We simulate the

hysteresis by this algorithm:

1. Initialize m, set H = (HQ,0), and compute m° = T(m).

2. For k = 1,2,...41, set Hk = (Ho-k8,0) and compute mk = Km*"1).

3. For j = l,2,...ji, set Hi = (-Ho+j8,0) and compute mi = T(mH).

The shown diagrams in Figures 8 and 9 are the overlaid graphs of (Hk, E(Hkonk)) and

(Hi, E(Hi,mJ)).

The configuration begins at an absolute minimum of energy, or nearly so, for a large value
of Ho and remains in this state until Hk changes sign. For these values of Hk, mk « m°,
which we refer to as the precursor magnetization. This precursor magnetization is quite close to

The system then traverses a metastable regime where it does not achieve minimum energy.

Some small oscillations are observed in this regime. The metastable regime ends in a critical field
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range which appears to be characterized by the condition that the precursor magnetization becomes

unstable at the critical field,

E(Hcr»m) < E(Hcr,m
0) for appropriate m.

In fact, it seems that the computation seeks to resolve the closure domains first. These are the

boundary columns of the computational grid. We shall use this as the basis for our estimate of

Her-

Near H = Her, the system suffers instability and witnesses rapid interior oscillations, the

evolution of microstructural domain configurations, and finally resolution to a nearly uniform state

of approximately absolute minimum energy. In this regime, the behavior of the system is

analogous to the classical Stoner-Wohlfarth scenario [34], which we review below. We are

seeking a better analysis of this. Miiller and Xu [27] also observe a stable/ metastable / unstable/

stable sequence in the extension of shape memory ribbons. We do not see this behavior when the

applied field H is parallel to the hardest axis, which is X2 in the uniaxial case and xi ± X2 in the

cubic case. Indeed, there is almost no hysteresis in the hard axis uniaxial situation.

Here we are discussing only the major loops of the system, which are the overlaid graphs

mentioned above. We have also computed minor loops and the virgin magnetization curve.

4. The Stoner-Wohlfarth theory In their fundamental work, Stoner and Wohlfarth

[34] studied the behavior of the homogeneously magnetized ellipsoid. They exploited the

property, known to Dirichlet, that if the magnetization is a constant vector parallel to a principle

axis of the ellipsoid ft, then the solution of

Au = divmxn in R3

is a linear function when restricted to Q. In two dimensions, for example, with B the unit ball, it

is easy to check that for u satisfying

Au = div^XB in R2> £ constant,

we have that

Vu = j £ and

i fVu^dx = i flVu|2dx = Jl$|2 (4.1)

So if m is constant and Iml = 1, the induced field energy in (2.1) is simply a constant. In the

Stoner-Wohlfarth framework, the system is regarded as homogeneous with energy given by the

function
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f(H) inf
Iml = 1

- m-H}

For I H I sufficiently large, the unique minimizing magnetization is just m = H/l H I.
They devised a method to decide when the minimizing magnetization was unique based on
determining the points m = (cos 8, sin 0) which are simultaneously critical points and inflection
points of <p(m) - m - H . This gives two simultaneous equations for H which may be
laboriously solved. For the case of the uniaxial energy (2.2), the curve bounding the region
where m is not unique, and hence susceptible to hysteretic motion, is the astroid

2K 2K

In the case of the cubic energy (2.3) the bounding curve is more complicated, but

nowadays such computations are easily executed by symbolic programs like Mathematica and

Maple. Examples are offered in Figure 1 below.

-1 -11

Figure La. ParametricPlot[{Cos[t]A3,Sin[t]A3},{t,-PU>i}] b. ParametricPlot[{-4Cos[4t]Cos[t] Sin[4t]Sin[t],
Cos[t]Sin[4t] 4Cos[4t]Sin[t]},{t,-Pi,Pi}]

The Stoner - Wohlfarth curves for the uniaxial energy (2.2) and the cubic energy (2.3), a and b. The regions of the
H = (Hi # 2 ) plane enclosed by the curves are where hysteretic behavior may occur.

Returning to the uniaxial situation, following the easy axis, choosing H = (Hi,0), and
starting with large positive Hi, we see that m - ei is an absolute minimum for Hi £ 0, it is
stable for - 2 K < HI < 0, and unstable for Hi < -2K. In the region Hi < 0, the absolute
minimum is attained by -ei . We have drawn in Figure 2 the absolute and relative minimizing
energy curves obtained by following a cycle from (HQ,0) to (-HQ,0) and returning to (HQ,0).

The critical field is Hcr = 2K. We refer to this value as the Stoner-Wohlfarth critical field.
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Figure 2. Hysteresis along the easy axis of the
Stoner -Wohlfarin system.

An identical picture describes the system

behavior for the cubic energy along the

easy axis.

Hence the Stoner-Wohlfarth

analysis gives a good cartoon of what we

see in the computation, cf. Figures 8. The

curve of minimum energy is different. It

is not even the black A of Figure 2. This

is because, as described in [13,14], fine

phase laminates may result in

homogeneous macroscopic magnetizations

£ with I £ I < 1. More precisely, we

may find a sequence mk e L°°(R2;S\)

with

and

TThe expression for the limit energy on the right is minimized at £i = 2H\ for I Hi I < T .

DeSimone [9] has shown that the minimuir r represented by the average magnetization % and
results from the minimizing sequence (mkX£ j with

ei
< j < o°, and

1).

We then have for H = (Hi,0)

-Hi

as shown for comparison in Figure 3.
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H

Figure 3. Sketch of minimum energy curve as
applied field varies along an easy axis

5. Estimation of the critical field

We shall seek an estimate of the

critical field described in §3 at which the

system becomes unstable. We seek this

estimate as a correction to the Stoner -

Wohlfarth critical field value Hsw = 2K.

The most important feature of this estimate is

that it is independent of the mesh size. Our

estimate gives excellent agreement with our

computations in the uniaxial case (2.2) and

fair agreement in the cubic case (2.3). Later

we discuss possible reasons for the difficulties with the cubic case.

The general procedure in the analytical investigation is to replace the system by a simpler

shadow system. The energy for the shadow system (2.1) is an effort to account for the effect of

the demagnetization energy in a more general region than a disc and is derived under two

approximations. Suppose that the computational domain is a rectangle £2 = (-L,L)x(0,l) with

L = Nh. We shall assume that

a) the magnetization m is constant in each column, and

b) the coupling of m in a column with the field is approximated by a line integral

times the width of the column.

To merely estimate the critical field, it is not necessary to introduce all of this apparatus, but instead

it is sufficient to impose a criterion. This criterion is that the computation first seeks to resolve the

closure domains, the first and last columns of the computational domain and that at this field value,

the precursor magnetization m0 loses stability. Moreover, in the shadow system the precursor

magnetization is actually ei, which we assume as well in our computation below. This condition

may be justified [20]. Assume that (p is an anisotropy energy with easy axis ei. This leads to

the condition

Figure 4. The computational region with the closure domain ft*1.
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E(Han) < E(H,ei) for all m with m

H = (-Hcr,0), Her ^ 0, (51)

£2h = first and last columns of £2.

Denote by w a function satisfying

w€ H^Ofc2): Aw = J ^ x n in R2. (5.2)

From (5.1), we have that

f(q>(m)-Hm)dx + \ flVul2dx < - fHeidx + \ flVwl2dx.

We write

so that

f«p(S)dx - \ |{IVwl2-IVul2}dx < fH-(m~ei)dx

whence

|cp(^)dx - \ |{IVwl2-IVul2}dx <

We express the field energies as an integral over Qh by writing

J{IVwl2-IVul2}dx = fV(w + u ) - V ( w - u ) d xJ

= J V(w-»-u)-(ei - m) dx

= |V(w + u).(ei-^)dx

Hence

We restrict magnetization variations to % = constant in Qh. Writing u = u<h> to denote the

dependence of u on Cl\ we now have that
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or

(5.4)

In order to evaluate the integral in (5.4), we use some facts about w and u<h>. Given a

region A, let w0, wi.and W2 denote the solutions of

Aw0 = XA in R2 and

in R 2 , j = U . (5.5)

It is easy to check that WJ = grrwo and hence

div (wi,W2) = XA and curl (wi,W2) = 0 in R2. (5.6)

We retain the notation w = wi for A = Q, and introduce

wi = w(
x
h) and w2 = w(

2
h) for «h . (5.7)

Now ufr) is the solution of

AuW = divmxn

= div eixn + div (5 - ei)xnh .

Thus we may write

u*) = w + & - Dw^ + &w2° ,

w + u<h> = 2w + (^i - D w ^ + ^ w ^ , and

V(w

We rewrite this expression using (5.6). Before performing this reduction, note that for A = 12

or Qh, wo(x) = wo(xi,l-X2). This also holds for wi. This symmetry property implies that

^ 2 - 0 . (5.8)
a}
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Thus

V(w + uWHei-^) = 2(1 -Si)£7 " (1-

whereby (5.8),

f I dx = 0.

Our task now is to estimate the expression

= jl— \ j V(w + u(h)).(ei - %) dx

(5.9)

Instead, we estimate */°) = limh-^oT^- Our first expression for "ft") is

To pursue this estimate, we need additional information about w and w^

First, we shall need a formula for

for z e A.

This is available from the Plemelj Formulas, cf. Muskhelishvili [28], and is given by

dA

where v = (vi,V2) is the exterior normal to 3A. The determination of (5.11) clearly utilizes the

jump relations implicit in (5.5).

We specialize to A = Q and A = fih. For £2, we see that

j
r2

where H = { xi = L,O<X2<1 } and T2 = { xi = -L,O<X2<1 }. The real parts of these

terms merely describe the increment of the angle of z as the arcs are traversed and results in the
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sum of the angles subtended by z and the segments F\ and T2. We obtain in this fashion the

formula

(5.13)

(5.14)

(Gi(z) + 02(z)) - igg<z), ze O,

where 8j(z) are depicted in Figure 5. From this it follows in particular that

We shall evaluate 92(z) precisely later on.

Figure 5. The angles 61 and 62 subtended by z and the arcs T\ and F2, cf. (5.12) and (5.13).

Specializing now to £2h, we have for wi = Wj ,

(5.15)

where C, and C^ are the four segments indicated in Figure 6.
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Figure 6. The four dark vertical segments comprise the contour of the integral in (5.15).

Again we recognize real part of (5.15) as the sum, with appropriate signs, of angles subtended by

the segments which comprise the CJ\ In particular,

dw<°>
for

Returning now to (5.10),

*0) = 2 + / i
n

with X to be computed shortly. We now have

(5.16)

(5.17)

(5.18)

For q> given by (2.2) or (2.3), this results in a domain dependent correction to the Stoner

Wohlfarth critical field of the form

Her = 2K - X, when K > j . (5.19)

Hie reader may easily check that

f i
2L

= i (4L) f arctan o do

resulting in X - 0.6 when L = 2. This gives a predicted value for the critical field of
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Her = 2K - 0.6

14 10/8/93

6. Comparison with computation The table below summarizes our computational

results. The data for both cases were taken from computations on a 16x8 grid but these were

identical to the results from a 32 x 16 grid. In the uniaxial case the predicted value is nearly

identical to the computed one. Samples of graphical renderings of the computations appear in

Figures 8-11. The range of values of the anisotropy constant K was chosen so the energy stored

in a body of constant magnetization was comparable to the induced field energy. This is the case in

common magnetic materials.

K

1

12

1.4

1.6

1.8

2.0

Her

(predicted)

1.4

1.8

2.2

2.6

3.0

3.4

uniaxial

Her

(computed)

1.6

1.8

2.3

2.6

3.0

3.4

cubic

Hcr

(computed)

1.3

1.7

2.1

2.3

2.6

3

Table 1. Tabulated comparison of predicted and computed critical fields

We suspect that the variation we see in the cubic case owes primarily to the inadequacy of

mo = ei to serve as a precursor magnetization. A better precursor magnetization in this case

might be somewhat tilted from the xi - axis at the four corners of Q. A version of the actual

shadow energy in this situation is

= E(H,ei)

Inspection of Esh as a function of £ for a range of values of H suggests that ei dwells in a

more shallow well in the cubic case than in the uniaxial one.

Computations of (2.1) with field varying along a hard axis have also been attempted. Our

preliminary results indicate that the computed and predicted applied fields at which the uniform

magnetization loses stability are in good agreement.
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Energy 9

.4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

Hi
the first component of the applied field

Figure 9. Computed hysteresis picture for cubic anisotropy energy (2.3) with K = 1.6.

x2

xl

Figure 10. Computed magnetization configuration for uniaxial anisotropy energy (2.2)

with K = 1.6 at field value H = (-2.1,0). This is in the metastable range.
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Figure 11. Computed magnetization configuration for uniaxial anisotropy energy (2.2)

with K = 1.6 at field value H = (-2.32,0). This is in the unstable range.

7. Other systems Our conception is that most nonconvex computational optimization

problems result in hysteretic behavior. As an example we have begun investigation of the Ericksen

bar [10], which is a one dimensional version of a shape memory or pseudoelastic material.

Hysteretic patterns of stress vs. load parameter in the extension of shape memory ribbons have

been reported by Miiller and Xu [27], as cited earlier, and by Ortin [30]. Their observations, while

quite different, share certain features, in particular the sequence of states passing from stable to

metastable to unstable. These experiments, in which the orientation of the sample was not

recorded, suggest attempting a simulation in one space dimension with an energy density which is

not convex. This amounts to studying the well known Ericksen bar. The computation becomes a

one dimensional version of (2.1), without, however, the induced field energy. We reproduced the

general features of the experiments, but further investigation is necessary to understand if many

details are also reproduced by our computations. Consideration of the shape memory ribbon as

governed by a random hamiltonian has been studied by [32].

- S - 6 - 4 - 2 0 2 4 6
Figure 12. Computed hysteresis diagram for an Ericksen bar
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For the example illustrated in Figure 12, we computed

1
ECO - U(u')dx subject to u(0) = 1 and u(l) = x (7.1)

using the format discussed in §3 with

<p(t) = t2(t2 - 100) + 20L (7.2)

Note that 9(0) = 0 suggesting that the computed configuration is rather close to the Maxwell
line.
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