Carnegie Mellon University Research Showcase

Department of Mathematical Sciences

Mellon College of Science

1-1-1992

Simply typed λ calculus with surjective pairing

Richard Statman

Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/math

Recommended Citation

Statman, Richard, "Simply typed λ calculus with surjective pairing" (1992). Department of Mathematical Sciences. Paper 481. http://repository.cmu.edu/math/481

This Technical Report is brought to you for free and open access by the Mellon College of Science at Research Showcase. It has been accepted for inclusion in Department of Mathematical Sciences by an authorized administrator of Research Showcase. For more information, please contact research-showcase@andrew.cmu.edu.

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

University Libraries Carnegie Melion University Pittsburgh PA 15213-3200

SIMPLY TYPED λ CALCULUS WITH SURJECTIVE PAIRING

by

Rick Statman
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213

April 1992

Abstract

There are two significant differences between the simply typed λ claculus and the simply typed λ calculus with surjective pairing. These differences are summarized by our two principal results

Theorem 1. If \mathscr{A} is any non trivial model of $\beta \eta S P$

then

$$\mathcal{A} \models M = N \iff M = \beta \eta S P$$

Theorem 2. The collection of all sets of projections of $\beta \eta S P$ unification problems is precisely the collection of all recursively enumeable sets of terms of the same type closed under $\beta \eta S P$ conversion.

In this note we consider the simply typed λ —calculus over a single ground type 0 ([1] pg. 561) together with surjective pairing ([1] pg. 403) at type 0. More precisely, we add to the simply typed λ calculus Λ new constants $\delta \in 0 \longrightarrow (0 \longrightarrow 0)$, $\delta_1 \in 0 \longrightarrow 0$, and $\delta_2 \in 0 \longrightarrow 0$ and new reduction rules

$$\mathtt{SP} \begin{cases} (\delta_{\mathbf{i}}) & \delta_{\mathbf{i}}(\delta \ \mathbf{X}_1 \ \mathbf{X}_2) & \longrightarrow \mathbf{X}_{\mathbf{i}} & \mathbf{i} \in \{1,\,2\} \\ (\delta) & \delta \ (\delta_1 \ \mathbf{X}) & (\delta_2 \ \mathbf{X}) \longrightarrow \mathbf{X} \end{cases}$$

for $X \in \Lambda \delta \delta_1 \delta_2$. In [6] it is shown that $\beta \eta S P$ is Church – Rosser and strongly normalizable.

Let α be a closed term of type $0 \longrightarrow 0$ in long ([9] pg. 533) $\beta \eta$ S P normal form. Then α has one of the forms λa . a, λa . $\delta t_1 t_2$, λa . $\delta_i t$ for first order terms t. We consider the Böhm tree of α less the prefix λa . It consists of a full binary tree whose nodes are labelled δ , called the Δ of α , followed by paths whose nodes are labelled δ_1 except for the leaves labelled a. This variable a will remain fixed throughout. It is useful to note here that δ expansions of α have a similar shape.

For each type σ we define $\delta_i \in 0 \longrightarrow 0$ and $\delta \in \sigma \longrightarrow (\sigma \longrightarrow \sigma)$ recursively by

$$\delta_{i} \equiv \lambda xz \ \delta_{i}(xz)$$
 $i \in \{1, 2\}$

$$\delta \equiv \lambda xyz \ \delta(xz) (yz).$$

We have

$$\delta_{i} (\delta X_{1} X_{2}) \xrightarrow{\beta \eta SP} X_{i}$$

$$\delta \; (\delta_1 \; \mathbf{X}) \; (\delta_2 \; \mathbf{X}) \; \xrightarrow[\beta \eta \mathrm{SP}]{} \; \mathbf{X}$$

When $\sigma=0\longrightarrow 0$ we shall write $<\mathbf{x},\,\mathbf{y}>$ for $\delta\,\mathbf{x}\,\mathbf{y}$. Let $\alpha\in\Lambda$ δ $\delta_1\delta_2$ be a closed long $\beta\,\eta\,\mathrm{S}\,\mathrm{P}$ normal form $\in 0\longrightarrow 0$; as above α has one of 3 forms. We can write $\alpha\equiv\mathrm{I},\ \alpha=\beta\eta\,\mathrm{S}\,\mathrm{P}$ $<\lambda\mathrm{a}.\ \mathrm{t}_1$, $\lambda\mathrm{a}.\ \mathrm{t}_2>$, or $\alpha=\delta_\mathrm{i}$ ° $\lambda\mathrm{a}.\mathrm{t}.$

Thus each such α can, modulo β η S P conversion, be built up from I, δ_1 , δ_2 by \circ and <>. A Cartesian monoid $(M, \circ, I, L, R, <>)$ is a structure s.t. (M, \circ, I) is a monoid, with $L, R \in M$ and $<>: M^2 \longrightarrow M$ satisfying

$$L \circ \langle x, y \rangle = x$$

$$R \circ \langle x, y \rangle = y$$
,

$$\langle x, y \rangle \circ z = \langle x \circ z, y \circ z \rangle$$
, and $\langle L, R \rangle = I$.

([4] pg. 389). The free Cartesian monoid generated by L and R (and I) is denoted ' \mathcal{M} '. We have seen that there is an obvious homomorphism from \mathcal{M} onto the closed terms of type $0 \longrightarrow 0$.

Now the embedding of $\mathcal M$ into $M \to M$ by left multiplications $\alpha \longmapsto \hat{\alpha} = \lambda x$. $\alpha \circ x$ extends to the Cartesian structure of $\mathcal M$. In particular, $<\hat{\alpha}_1$, $\hat{\alpha}_2>=\lambda x<\hat{\alpha}_1$ (x), $\hat{\alpha}_2$ (x) >. Thus by the Church – Rosser theorem the above homomorphism is an isomorphism. In summary,

Proposition 1. \mathcal{M} is isomorphic to

$$\left[\overline{\lambda \delta} \, \delta_1 \, \delta_2 \stackrel{0}{\not=} \stackrel{0}{\beta_{\eta}} SP, \, B, \, I, \, \delta_1 \, , \, \delta_2 \, , \, \lambda(x, y) \, \delta xy) \right]$$

Similarly, the "polynomial" Cartesian monoids $\mathcal{M}[x_1, ..., x_n]$ are isomorphic to the structures

where

$$\begin{aligned} \mathbf{B_n} &\equiv \lambda \mathbf{u} \mathbf{v} \ \lambda \mathbf{x_1} ... \mathbf{x_n} . \lambda \mathbf{a}. \quad \mathbf{u} \mathbf{x_1} ... \mathbf{x_n} \ (\mathbf{v} \mathbf{x_1} ... \mathbf{x_n} \ \mathbf{a}) \ \text{ and } \ \mathbf{I_n} &\equiv \lambda \mathbf{x_1} ... \mathbf{x_n} \ . \lambda \mathbf{a}. \ \mathbf{a} \ ([10] \ \mathrm{pg.} \ 186), \ \delta_{i,n} &\equiv \lambda \mathbf{x_1} \ ... \ \mathbf{x_n} \ \delta. \end{aligned}$$

For many purposes all of \overline{h} $\overline{\delta}$ $\overline{\delta}$ $\overline{\delta}$ can be reduced to $(0\longrightarrow 0)\longrightarrow (0\longrightarrow 0)$ and therefore $\mathscr{M}[x]$

Proposition 2. For each type σ there exists $M \in \overline{h \ \delta \ \delta_1} \ \delta_2^{\ \sigma \to ((0 \to 0) \to (0 \to 0))}$ such that for all $N_i \in \overline{h \ \delta} \ \delta_1^{\ \delta} \ \delta_1^{\ \delta} \ \delta_1^{\ \delta}$, $i \in \{1, 2\}$

$$N_1 = N_2 \Leftrightarrow MN_1 = MN_2$$

<u>Proof.</u> We can copy the proof of [9] pg. 517 proposition 1 to reduce each type σ to $(0 \to (0 \to 0)) \longrightarrow (0 \to 0)$. This type in turn is reducible to $(0 \to 0) \longrightarrow (0 \to 0)$ by

$$\lambda \mathbf{u} \ \lambda \mathbf{x} \ \lambda \mathbf{a}. \ \mathbf{u}(\lambda \mathbf{z_1} \mathbf{z_2} \ \mathbf{x} \ (\delta \ (\mathbf{x} \mathbf{z_1}) \ (\mathbf{x} \mathbf{z_2}))) \mathbf{a}$$

Proposition 3. Suppose M and N are closed terms $\in (0 \to 0) \longrightarrow (0 \to 0)$ and M $\notin \beta \eta SP$ N, then there exist a closed $\theta \in 0 \to 0$ s.t.

$$M\theta \neq N\theta$$

 $\beta\eta SP$

Proof. More generally suppose $\vec{x} = x_1, \dots, x_n, \alpha(\vec{x})$ and $\beta(\vec{x}) \in \mathcal{M}[\vec{x}]$ and $\alpha(\vec{x}) \neq \beta(\vec{x})$. We shall find $\vec{\theta} = \theta_1, \dots, \theta_n$ s.t. $\alpha(\vec{\theta}) \neq \beta(\vec{\theta})$. The proof consists of 2 parts. In the first part n may be increased. W.l.o.g. we can assume that $\alpha(\vec{x})$ and $\beta(\vec{x})$ are in long $\beta\eta$ SP normal form. The 1st part of the construction removes subexpressions $L(x_i, t)$ and $R(x_i, t)$ by making substitutions $\left\{ < y, z > \mid x_i \right\}$ and renormalizing. It is easily seen that this process teminates $\alpha(\vec{x})$ and $\beta(\vec{x})$ can be recovered by making substitutions $\left\{ L \circ x \mid y, R \circ x \mid z \right\}$. Thus we can assume that $\alpha(\vec{x})$ and $\beta(\vec{x})$ are normal, distinct and without such subexpressions.

Now let m exceed the length of the longest path in the Böhm tree of $a(\mathbf{x})$ or $\beta(\mathbf{x})$. We shall set $\theta_i =$

$$<<\underbrace{w, < \ldots < w,}_{m+i}I>\ldots>>, w>$$

where $w = R^k$ for sufficiently large k. Note that if t is normal, contains only the variable a, and k exceeds the length of the longest path in the Δ of t then $\theta_i t =$

(*)
$$<< t^1, < ... < t^1, t > ... >>, t^1 >$$

where t^1 is < > free, and the longest path in the Δ increases by at most $m+i+1 \le m+n+1$.

Put $k = m \ (m + n + 1)$. We shall show that $a(\vec{x})$ and $\beta(\vec{x})$ are reconstructible from the normal forms of $a(\vec{\theta})$ and $\beta(\vec{\theta})$ and thus $a(\vec{\theta}) \neq \beta(\vec{\theta})$. These normal forms can be computed recursively bottom — up as above in (*). Observe that no δ redex is introduced since each t^1 begins with R. In order to reconstruct $a(\vec{x})$ and $\beta(\vec{x})$ proceed top — down on the results. Find subterms (*) as above with $t^1 < >$ free. By choice of m such a subterm is not the trace ([2] pg. 18) of a subterm in $a(\vec{\theta})$ or $\beta(\vec{\theta})$ disjoint from $\vec{\theta}$. Such subterms cannot overlap since their left components have < >. Now consider any of the pairs < > in (*). Such a pair cannot be the trace of a pair < > in $a(\vec{\theta})$ or $\beta(\vec{\theta})$ disjoint from $\vec{\theta}$ since the left component of θ_1 contains < >. Thus (*) = θ_1 t as above.

Given $\mu, \nu \in 0 \longrightarrow 0$ set $\mu^{\nu} \equiv \lambda x$. $\mu \circ x \circ \nu$.

Proposition 4. If
$$a, \beta \in \overline{h \ b} \ \delta_1 \ \delta_2^{\ 0 \to \ 0}$$
 and $a \neq \beta \eta \text{SP}$ then $\exists \ \mu \ , \nu \ \mu^{\nu} \ a = \delta_1 \ \mu^{\nu} \beta = \delta_2 \beta \eta \text{SP}$

Proof. Suppose α , β are normal and \neq . Again it is convenient to speak as if we are in \mathcal{M} . $\beta\eta$ SP

By δ expansions we can assume α and β have the same Δ . Thus $\exists \mu_1$ s.t., for $\alpha_1 = \mu_1 \circ \alpha$ and $\beta_1 = \mu_1 \circ \beta$, we have $\alpha_1 \neq \beta_1$ and α_1, β_1 are < > free. We can also assume that there is no < > free γ s.t. $\alpha_1 = \gamma \circ \beta_1$ or $\beta_1 = \gamma \circ \alpha_1$. For suppose $\alpha_1 = \gamma \circ \beta_1$ and $\gamma = \gamma_0 \circ \delta_1$. Then if μ_1 is replaced by $\delta_{3-i} \circ \mu_1$, α_1 is replaced by $\delta_{3-i} \circ \alpha_1$ and β_1 by $\delta_{3-i} \circ \beta_1$. Thus there are < > free α_2, β_2 and k, $\ell \geq 0$ such that

$$\alpha_1 \circ \langle I, I \rangle^k \circ \langle \delta_2, \delta_1 \rangle^{\ell} = \alpha_2 \circ \delta_1$$

$$\beta_1 \circ \langle I, I \rangle^k \circ \langle \delta_2, \delta_1 \rangle^{\ell} = \beta_2 \circ \delta_2$$

and there exist $n, m \ge 0$ such that

$$\begin{split} &\alpha_2 \ \circ \ \delta_1 \ \circ \ <<\mathrm{I},\,\mathrm{I}>^n \ \circ \ \delta_1 \ ,<\mathrm{I},\,\mathrm{I}>^m \ \circ \ \delta_2> = \delta_1 \\ \\ &\beta_2 \ \circ \ \delta_2 \ \circ \ <<\mathrm{I},\,\mathrm{I}>^n \ \circ \ \delta_1 \ ,<\mathrm{I},\,\mathrm{I}>^m \ \circ \ \delta_2> = \delta_2 \end{split}$$

Propositions 2, 3 and 4 yield the following completeness result

Theorem 1. Let M, N $\in \overline{h}$ \overline{b} \overline{b} \overline{b} \overline{b} and let \mathscr{A} be any non-trivial model. Then

$$\mathcal{A} \models \mathbf{M} = \mathbf{N} \iff \mathbf{M} = \mathbf{N} \\ \beta \eta \mathbf{SP}$$

$$\begin{split} \text{Let } & \Sigma_0 = \left\{ < \alpha_1 \circ \delta_1 < \alpha_2 \circ \delta_1 \circ \delta_2 \;,\; \alpha_3 \circ \delta_2^2 >> :\; \alpha_i \in \left\{ \delta_1, \, \delta_2, \, I \right\} \, \mathrm{i} = 1, \, 2, \, 3 \right\} \cup \\ & \left\{ < \, \mathrm{I}, \, < \, \mathrm{I}, \, \mathrm{I} >> \right\} \end{split}$$

<u>Lemma 1.</u> For any α_1 , α_2 , $\alpha_3 < >$ free $< \alpha_1$, $< \alpha_2$, $\alpha_3 > >$ can be generated from Σ_0 by \circ .

<u>Proof.</u> First observe recursively that $<\alpha_1\circ\delta_1,<\alpha_2\circ\delta_2\circ\delta_1,$ $\alpha_3\circ\delta_2^2>>$ can be generated, for if $\beta_1,\beta_2,$ $\beta_3\in\left\{\delta_1,\,\delta_2,\,\mathrm{I}\right\}$

$$\begin{split} <\alpha_1\circ\beta_1\circ\delta_1,<\alpha_2\circ\beta_2\circ\delta_1\circ\delta_2, \,\alpha_3\circ\beta_0\circ\delta_2^2>> &=<\alpha_1\circ\delta_1,<\alpha_2\circ\delta_1\circ\delta_2, \,\alpha_3\circ\delta_1\circ\delta_2, \,\alpha_3\circ\delta_2^2>> \\ \delta_2^2>> &<\beta_1\circ\delta_1,<\beta_2\circ\delta_1\circ\delta_2, \,\beta_3\circ\delta_2^2>>. \ \ \text{Then} \ <\alpha_1,<\alpha_2, \,\alpha_3>> &=<\alpha_1\circ\delta_1,<\delta_2\circ\delta_1\circ\delta_2, \,\alpha_3\circ\delta_2^2>> \circ <\mathrm{I},<\mathrm{I},\mathrm{I}>>. \end{split}$$

Let
$$\Sigma_1 = \left\{ <\alpha_1, <\alpha_2, \ \alpha_3>> : \alpha_i < \ > \ \mathrm{free} \ i=1,\,2,\,3 \right\}$$

Lemma 2. Every α can be generated from Σ_1 by \circ Proof. A derivation is an $\alpha = <<\ldots <\alpha_1, \,\alpha_2>\ldots >, \,\alpha_n>$ such that $n\geq 3$

1.
$$\alpha_1 = \delta_1$$

2.
$$\alpha_2 = \delta_2$$

3.
$$\alpha_3 = I$$

j.
$$\exists k$$
, $\ell < j$ $a_j = \langle a_k, a_{\ell} \rangle > \land \exists k < j \exists \ell$

$$a_j = \delta_{\ell} \circ a_k$$
 when $j > 3$

Such an a is said to be a derivation of a_n . Obviously, every β has a derivation. Note that $<<\delta_1,\,\delta_2>$, $I>=<I,\,I>=<I,<\delta_1,\,\delta_2>>\in\Sigma$. Now suppose that a is as above and $\delta_1\circ a$ can be generated from Σ_1 by \circ . Incase, $a_n=< a_k,\,a_{\nearrow}>$ for $k,\,\ell< n$ we have

$$\alpha = \langle I, \langle \delta_2 \circ \delta_1^{n-k}, \delta_2 \circ \delta_1^{n-l} \rangle > \circ \delta_1 \circ \alpha$$

(with δ_2 replaced by δ_1 if the corresponding k or ℓ is 1). In case $\alpha_n = \delta_{\ell} \circ \alpha_k$ for k < n we have

$$\alpha = <\mathrm{I}, <\delta_1\circ\delta_2\circ\delta_1^{\mathrm{n-k}}\,,\,\delta_2\circ\delta_2^{\mathrm{n-k}}\circ\delta_2\circ\delta_1^{\mathrm{n-k}}>>\,\circ\delta_1\circ\alpha$$

(modified as above if k=1). Thus by induction every derivation can be generated from Σ_1 by \circ . In addition $\delta_2=<\delta_1\circ\delta_2<\delta_1\circ\delta_2\circ\delta_2$, $\delta_2^2\circ\delta_2>>\in\Sigma_1$. This completes the proof.

We have seen

<u>Proposition 5.</u> \mathcal{M} is finitely generated by Σ_0 .

Corollary. $\mathcal{M}[x]$ is finitely generated.

This can be generalized to higher types but we do not do it here.

We close this section with the remark that the wreath product of $\mathcal{M}(\mathcal{M}[x])$ with number theoretic functions of finite support can be embedded into $\mathcal{M}(\mathcal{M}[x])$. For suppose $i \longmapsto a_i$ s.t. $\forall n > k$ $a_n = I$ i = 0, 1, 2, ... and $f: \mathbb{N} \longrightarrow \mathbb{N}$ s.t. $\forall n > \ell$ f(n) = n. Let $m = \max \{k, l\}$, then the pair $(f, \lambda i \ a_i)$ is represented by

$$<\alpha_0 \circ L \circ R^{f(0)} < <\alpha_m \circ L \circ R^{f(m)}, R^{m+1} > >$$

A unification problem is an equation Mx = Nx where $M, N \in \overline{\lambda + \delta} \ \delta_1 \ \delta_2^{\sigma \to \tau}$ and $x \in \sigma$. $P \in \overline{\lambda + \delta} \ \delta_1 \ \delta_2^{\sigma}$ is a solution to Mx = Nx if MP = NP. $\Sigma \subseteq \overline{\lambda + \delta} \ \delta_1 \ \delta_2^{\sigma}$ is said to be projective if there exists a unification problem, as above, s.t.

$$Q \in \Sigma \iff \exists P \quad \delta PQ$$
 is a solution to
$$Mx = Nx.$$

obviously every projective set is recursively enumerable. Below we shall prove the converse. The proof first consists of solving the Markov – Löb problem ([7] pg. 1) for $\mathcal{M}(\mathcal{M}[x])$ in the negative. Below we work for the most part in $\mathcal{M}(\mathcal{M}[x])$.

Lemma 3. $\exists n \ \alpha = R^n \iff R \circ \alpha \quad \alpha \circ R$

<u>Proof.</u> Suppose that $R \circ \alpha = \alpha \circ R$, and α is normal. If α has a non-empty Δ then the Δ of the normal form of $R \circ \alpha$ is smaller but the Δ of the normal form of $\alpha \circ R$ is the same. Thus α is < > free and $\alpha = R^n$ for some $n \ge 0$.

Let
$$\Phi_n = \langle L \circ L, \langle L \circ R \circ L, \langle ... \langle L \circ R^{n-1} \circ L, R \rangle ... \rangle \rangle$$
.

Lemma 4. $\exists \beta \ \alpha = \beta \circ L \iff \alpha \circ < L, L > = \alpha$.

<u>Proof.</u> \implies is proved by induction on the normal form of α .

Lemma 5.
$$\alpha = \Phi_n \iff R^n \circ \alpha = R \quad \alpha = R \circ \alpha \circ$$

$$<< L, L>, < L \circ R^{n-1} \circ L, R>>$$

 $\begin{array}{l} \underline{\operatorname{Proof.}} \; \leftarrow \; \mathrm{If} \; \operatorname{R}^n \circ \alpha = \operatorname{R} \; \operatorname{we} \; \mathrm{can} \; \mathrm{write} \; \; \alpha = <\alpha_1, < \ldots <\alpha_n, \, \operatorname{R} > \ldots >> \; \mathrm{and} \\ \\ \operatorname{R} \circ \alpha \circ << \operatorname{L}, \, \operatorname{L} > \; , < \operatorname{L} \circ \operatorname{R}^{n-1} \circ \operatorname{L}, \, \operatorname{R} >> = <\alpha_2, < \ldots <\alpha_n, \, \operatorname{R} > \ldots >> \circ << \operatorname{L}, \, \operatorname{L} > \; , \\ \\ < \operatorname{L} \circ \operatorname{R}^{n-1} \circ \operatorname{L}, \, \operatorname{R} >> = <\alpha_2 \circ << \operatorname{L}, \, \operatorname{L} > \; , < \operatorname{L} \circ \operatorname{R}^{n-1} \circ \operatorname{L}, \, \operatorname{R} >> \; , < \ldots <\alpha_n \circ \\ \\ << \operatorname{L}, \, \operatorname{L} > \; , < \operatorname{L} \circ \operatorname{R}^{n-1} \circ \operatorname{L}, \, \operatorname{R} >> \; , < \operatorname{L} \circ \operatorname{R}^{n-1} \circ \operatorname{L}, \, \operatorname{R} >> \ldots >> \; . \\ \\ \mathrm{If} \; \mathrm{this} \; = \alpha \; \; \mathrm{then} \; \mathrm{we} \\ \\ \mathrm{have} \; \; \alpha_n = \operatorname{L} \circ \operatorname{R}^{n-1} \circ \operatorname{L} \; \; \mathrm{and} \; \mathrm{for} \; \; \mathrm{i} = 1 \ldots n-1 \; \; a_i = \alpha_{i+1} \circ << \operatorname{L}, \, \operatorname{L} > \; , < \operatorname{L} \circ \operatorname{R}^{n-1} \circ \operatorname{L} \\ \\ \mathrm{L}, \, \mathrm{R} >> \; . \quad \mathrm{Thus} \; \; \alpha_i = \operatorname{L} \circ \operatorname{R}^{i-1} \circ \operatorname{L} \; \; \mathrm{and} \; \; \alpha = \Phi_n \; . \end{array}$

Define $\alpha \in \operatorname{Seq}_n \Leftrightarrow \alpha = <\alpha_0 \circ L, < ... <\alpha_{n-1} \circ L, R > ... >>, \ \Psi_n = \Psi_n \circ << I, I>, L \circ R^{n-1}>$

 $\underline{\text{Lemma 6.}} \ \ \alpha \in \operatorname{Seq}_n \Leftrightarrow \operatorname{R}^n \circ \alpha = \operatorname{R} \wedge \ \underline{\P}_n \circ \alpha = \underline{\P}_n \circ \alpha \circ < \operatorname{L}, \operatorname{L} >.$

 $\begin{array}{l} \underline{\operatorname{Proof.}} \; \longleftarrow \; \operatorname{If} \; \operatorname{R}^n \circ \alpha = \operatorname{R} \; \operatorname{we} \; \operatorname{can} \; \operatorname{write} \; \alpha = <\beta_0, < \ldots <\beta_{n-1}, \operatorname{R} > \ldots >> \; \operatorname{and} \; \Psi_n \circ \alpha = <\beta_0, < \ldots <\beta_{n-1}, \operatorname{R} > \ldots >> \; \operatorname{In} \; \operatorname{addition}, \Psi_n \circ \alpha \circ < \operatorname{L}, \operatorname{L} > = <\beta_0 \circ < \operatorname{L}, \operatorname{L} > , < \ldots < <\beta_{n-1} \circ < \operatorname{L}, \operatorname{L} > , \beta_{n-1} \circ < \operatorname{L}, \operatorname{L} >> \ldots >> \; \operatorname{If} \; \operatorname{these} \; \operatorname{are} \; = \; \operatorname{by} \; \operatorname{Lemma} \; 4 \; \beta_i = \alpha_i \circ \operatorname{L} \; \operatorname{for} \; i = 1 \ldots n-1 \; \operatorname{and} \; \alpha \in \operatorname{Seq}_n. \end{array}$

 $\text{Let } \Phi_n \left(\alpha, \, \delta \right) = <\alpha \circ R^{f\left(0 \right)} \circ L, < ... <\alpha \circ R^{f\left(n-1 \right)} \circ L, \, R > ... >> \text{ for } f: \mathbb{N} \longrightarrow \mathbb{N}.$ Note that $\Phi_n = \Phi_n \left(L, \, id \right)$. As in Lemma 5

 $\underline{\textbf{Lemma 7.}} \ \beta = \underline{\P}_n \ (\alpha, \mathrm{id}) \Leftrightarrow \beta \in \mathrm{Seq}_n \ \land \ \beta = \mathrm{R} \circ \beta \circ <<\mathrm{L}, \ \mathrm{L}>, <\alpha \circ \mathrm{R}^{n-1} \circ \mathrm{L}, \ \mathrm{R}>>> 0$

 $\underline{\textbf{Lemma 8.}} \ \exists f \ \alpha = \P_n \ (I, \, f) \Leftrightarrow \alpha \in \operatorname{Seq}_n \land \alpha \circ < R, \, R > \ = \P_n \ (R \circ L, \, \operatorname{id}) \circ < I, \, R^n > \circ \ \alpha.$

<u>Proof.</u> We have Φ_n (R \circ L, id) \circ < I, $R^n > = < R \circ L, < ... < R \circ L \circ R^{n-1},$

 $\begin{array}{lll} \mathbf{R}^{\mathbf{n}}>...>>. & \longleftarrow & \text{If} \quad \alpha \in \operatorname{Seq}_{\mathbf{n}} \text{ we can write } \quad \alpha=<\alpha_{0} \circ \mathbf{L}, <...<\alpha_{\mathbf{n}-1} \circ \mathbf{L}, \, \mathbf{R}> & >> & \text{so} \\ \alpha \circ <\mathbf{R}, \, \mathbf{R}>=<\alpha_{0} \circ \mathbf{R}, \, <...<\alpha_{\mathbf{n}-1} \circ \mathbf{R}, \, \mathbf{R}>...>>. & \text{In addition } \quad \mathbf{\Phi}_{\mathbf{n}} \left(\mathbf{R} \circ \mathbf{L}, \operatorname{id}\right) \circ <\mathbf{I}, \\ \mathbf{R}^{\mathbf{n}-1}>\circ \alpha=<\mathbf{R} \circ \alpha_{0}, <...<\mathbf{R} \circ \alpha_{\mathbf{n}-1}, \, \mathbf{R}>...>>. & \text{If these are } = & \text{we have for } i=0,..., \\ \mathbf{n}-1, \, \mathbf{R} \circ \alpha_{\mathbf{i}}=\alpha_{\mathbf{i}} \circ \mathbf{R} & \text{so, by Lemma 3, } \quad \alpha_{\mathbf{i}}=\mathbf{R}^{\mathbf{f}(\mathbf{i})}. \end{array}$

Note here that as in Lemma 5 $\beta = \Phi_n(\alpha, \lambda x 0) \iff \beta \in \operatorname{Seq}_n \wedge \beta = R \circ \beta \circ < L, < \alpha,$ R > >.

Let
$$X_n(\alpha, f) = \langle L \circ \alpha \circ R^{f(0)} \circ L, \langle ... \langle L \circ R^{n-1} \circ \alpha \circ R^{f(n-1)} \circ L, R \rangle ... \rangle \rangle$$

 $\underline{\textbf{Lemma 10.}} \ \beta = \mathbf{X_n} \ (\alpha, \mathrm{id}) \Leftrightarrow \ \exists \gamma_1 \in \mathrm{Seq}_n \ \exists \gamma_2 \in \mathrm{Seq}_n 2 \ \exists \gamma_3.$

1.
$$\gamma_1 \circ < I, R^n \circ \alpha > = \alpha$$

2.
$$\gamma_2 = R^n \circ \gamma_2 \circ << L, L>, <\gamma_1 \circ < R^{n-1} \circ$$

 $L, R>>>$

3.
$$\exists f \ \gamma_3 = \Phi_n (I, f)$$

4.
$$\gamma_3 = R \circ \gamma_3 \circ << I, I>^{n+1} \circ L, < R^{n^2-1} \circ L, R>>$$
5. $\beta = \Phi_n (L^2, id) \circ < L, R^n > \circ \gamma_3 \circ < \gamma_2, R>$

Proof. Obvious

Given $\alpha = <\alpha_0 < ... <\alpha_{n-1}$, R>...>> and $\beta = <\beta_0$, $<...<\beta_{n-1}$, R>...>> set $\alpha \otimes \beta = <\alpha_0 \circ \beta_0 < ... <\alpha_{n-1} \circ \beta_{n-1}$, R>...>. We have $\alpha \otimes \beta = X_n \ (\alpha \circ L, id) \circ < I$, $R^n>\circ \beta$. In addition, note that $\P_n \ (\alpha,f)=X_n \ (\P_n \ (\alpha,\lambda x \ 0),f)$.

Let $\alpha \in \operatorname{Perm}_n \Leftrightarrow \exists f \ \alpha = \Phi_n \ (L, f) \land f: [0, n-1] \xrightarrow{\operatorname{permutation}} [0, n-1]$ Lemma 12. $\alpha \in \operatorname{Perm}_n \iff \exists f \ \alpha = \Phi_n \ (L, f) \land \exists m \ (\alpha \circ < I, R^n >)^m = I.$

Proof. Clear

 $\alpha \in \mathrm{Bit}_n \iff \alpha = <\alpha_0 \circ L, < ... <\alpha_{n-1} \circ L, \, R > ... >> \text{ where } \, \alpha_i \in \{L,\, R\}$ $i=0,\ 1,...,\, n-1.$

Proof. Obvious

Let $a \in \operatorname{String}_n \Leftrightarrow a = a_0 \circ \circ a_{n-1}$ where $a_i \in \{L, R\}$ i = 0, 1, ..., n-1Lemma 14. $a \in \operatorname{String}_n \Leftrightarrow \exists \beta \in \operatorname{Bit}_n \exists \gamma \in \operatorname{Seq}_{n+1} a = L \circ \gamma \circ < I, R > \land \gamma = (\beta \circ < I, R > \otimes R \circ \gamma) \circ < L, < I \circ L, R > >.$

 $\begin{array}{l} \underline{\text{Proof.}} \implies \text{Let } \beta = < a_0 \circ \text{L}, < \dots < a_{n-1} \circ \text{L}, \text{R} > \dots > > \text{ and } \gamma = < a_0 \circ \quad \circ a_{n-1} \circ \text{L}, \\ < a_1 \circ \dots \circ a_{n-1} \circ \text{L} < \dots < a_{n-1} \circ \text{L}, < \text{I} \circ \text{L}, \text{R} > > \dots > > \dots < > > \dots \\ \text{and } \gamma \text{ must be as above.} \end{array}$

If $a = R^m$ we write Binary (a, β) if β is a binary representation of a i.e. $\exists n \ \beta \in \text{String}_n$ so $\beta = \beta_{n-1} \circ \circ \beta_o$ with $\beta_i \in \{L, R\}$ and if b_i is defined by

$$\mathbf{b_i} = \begin{cases} 1 & \text{if} & \beta_i = \mathbf{L} \\ 0 & \text{if} & \beta_i = \mathbf{R} \end{cases}$$

$$m = b_{n-1} 2^{n-1} + b_0 2^0$$

<u>Lemma 15.</u> Binary $(a, \beta) \Leftrightarrow \exists m \ a = \mathbb{R}^m \land \exists n \ \beta \in \operatorname{String}_n \land \exists \gamma_1 \gamma_2 \gamma_3 \gamma_4 \gamma_5$

1.
$$\gamma_1 \in \text{Bit}_n$$
, $\gamma_2 \in \text{Seq}_{n+1}$, $\gamma_3 \in \text{Seq}_n$, $\gamma_4 \in \text{Seq}_n$, $\gamma_5 \in \text{Seq}_{n+1}$

2.
$$\beta = L \circ \gamma_2 \circ < I, R >$$

3.
$$\gamma_2 = (\gamma \circ < I, R > \otimes R \circ \gamma_2) \circ < L, < I \circ L, R > >$$

4.
$$L \circ R^{n-1} \circ \gamma_3 = R \circ L$$

5.
$$\gamma_3 = (R \circ \gamma_3 \circ < I, R > \otimes \gamma_3) \circ < L, < R \circ L, R > >$$

6.
$$\gamma_3 = \Phi_n (L^2, id) \circ < I, R^n > \circ \gamma_4$$

7.
$$\Phi_n(I, \lambda x 0) = \Phi_n(R \circ L, id) \circ \langle I, R^n \rangle \circ \gamma_4$$

8.
$$\gamma_5 = (((\gamma_3 \circ < I, R > \otimes \gamma_4) \circ < I, R >) \otimes (R \circ \gamma_5)) \circ < L, < I \circ L, R >> (R \circ \gamma_5)) \circ < I, < I \circ L, R >> (R \circ \gamma_5))$$

9.
$$a = L \circ \gamma_5 \circ < I, I >$$

<u>Proof.</u> We do \Leftarrow . From this \Rightarrow will become clear. Suppose $\gamma_1, \gamma_2, \gamma_3, \gamma_4, \gamma_5$ are given as

above. As in the proof of Lemma 14, $\gamma_1 = \langle \mu_{n-1} \circ L, \langle ... \langle \mu_0 \circ L, R \rangle ... \rangle \rangle$ for $\mu_i \in \{L, R\}$ and $\gamma_2 = \langle \mu_{n-1} \circ ... \circ \mu_0 L \langle ... \langle \mu_0 \circ L, \langle I \circ L, R \rangle \rangle ... \rangle \rangle$, so $\beta = \mu_{n-1} \circ \circ \mu_0$, by (1), (2), and (3). By (1) and (4) $\gamma_3 = \langle \nu_{n-1} \circ L \langle \cdot \nu_1 \circ L, \langle R \circ L, R \rangle \rangle$... \rangle and by (5) $\nu_{i+1} = \nu_i \circ \nu_i$ for i = 0 n-2. Thus $\gamma_3 = \langle R^2 \circ L, \langle ... \langle ... \langle R^2 \circ L, \langle ... \langle ... \langle R^2 \circ L, \langle ... \langle$

where

$$\xi_{\mathbf{i}} = \begin{cases} \mathbf{R}^{2^{\mathbf{i}}} & \text{if} \quad \mu_{\mathbf{i}} = \mathbf{L} \\ \mathbf{R}^{0} & \text{if} \quad \mu_{\mathbf{i}} = \mathbf{R} \end{cases}$$

By (1) and (8) $\gamma_5 = \langle \xi_{n-1} \circ ... \circ \xi_0 \circ L, \langle ... \langle \xi_0 \circ L, \langle I, R \rangle \rangle ... \rangle$. Thus $a = \xi_{n-1} \circ ... \circ \xi_0 =$

$$R^{b_{n-1}2^{n-1}} + + b_{o} 2^{o}$$

where b_i is as above.

We shall now give a Gödel numbering of the members of \mathcal{M} (\mathcal{M} [x]) by positive integers. First note that any finitely generated Cartesian monoid can be generated by 2 elements L, θ where $\theta = \langle R, \langle a_1, \langle ..., \langle a_n, R \rangle ... \rangle \rangle$. for generators $a_1, ..., a_n$. Let $m = b_{n-1} \ 2^{n-1} + b_0$, where $b_i \in \{0, 1\}$ i = 0 ... n-2, and $b_{n-1} = 1$. Then m is the Gödel number of $\beta_{n-1} \circ ... \circ \beta_0$ where

$$\mathbf{b_i} = \begin{cases} \mathbf{L} & \text{if} & \mathbf{b_i} = 1\\ \theta & \text{if} & \mathbf{b_i} = 0 \end{cases}$$

Note that every element has at least one Gödel number since $L \circ < I$, I > = I. Write Num $(a, \beta) \iff a = R^m$ and m is a Gödel number of β .

Proposition 6: Num $(a, \beta) \Leftrightarrow \exists m \quad a = \mathbb{R}^m \land \exists n \quad \exists \beta_1 \beta_1 \in \operatorname{String}_n \land \operatorname{Binary} \ (a, \beta_1) \exists \ \gamma_1 \ \gamma_2$ $\gamma_1 \in \operatorname{Bit}_n \land \ \gamma_2 \in \operatorname{String}_{n+1} \land \beta_1 = \operatorname{L} \circ \gamma_2 \circ < \operatorname{I}, \ \mathbb{R} > \land \gamma_2 = ((\gamma_1 \circ < \operatorname{I}, \ \mathbb{R} >) \otimes \operatorname{R} \circ \gamma_2) \circ < \operatorname{L},$ $< \operatorname{I} \circ \operatorname{L}, \ \mathbb{R} >> \exists \gamma_3 \ \gamma_3 = (\gamma_1 \circ < < \operatorname{L}, \ \theta >, \ \mathbb{R} > \otimes \operatorname{R} \circ \gamma_3) \circ < \operatorname{L}, < \operatorname{I} \circ \operatorname{L}, \ \mathbb{R} >> \land \beta = \operatorname{L} \circ \gamma_3$ $\circ < \operatorname{I}, \ \mathbb{I} >$

Proof. As in Lemmas 14 and 15.

Let $\Sigma \subseteq \mathcal{M}$ $(\mathcal{M}[x])$. Σ is said to be Diophantine if $\exists a(x), \beta(x) \in \mathcal{M}[x]$ s.t.

$$\theta \in \Sigma \iff \exists \gamma \in \mathscr{K} (\mathscr{K} [x]) \ \alpha (< \gamma, \theta >) =$$

$$\beta(< \gamma, \theta >).$$

Obviously, every Diophantine subset of $\mathcal{K}(\mathcal{K}[x])$ is recursively enumerable. Here we solve the Markov-Löb problem ([7] pg. 1) for $\mathcal{K}(\mathcal{K}[x])$.

Theorem 2. Every recursively enumerable subset of $\mathcal{M}(\mathcal{M}[x])$ is Diophantine.

<u>Proof.</u> First observe that there is no ambiguity in the statement of the theorem since the word problem for $\mathcal{M}(\mathcal{M}[x])$ is decidable (infact, polynomial time). We give the proof for \mathcal{M} .

First note that if $\mathscr{G} \subseteq \mathbb{N}$ is RE then $\mathscr{G}' = \{R^n : n \in \mathscr{G}\}$ is Diophantine. For, by Lemmas 3 and 9, the sets and relations $\{R^n : n \in \mathbb{N}\}$ $\{(R^n, R^m, R^{n+m}) : n, m \in \mathbb{N}\}$, $\{(R^n, R^m, R^{n+m}) : n, m \in \mathbb{N}\}$ are Diophantine. Thus by Matiyasevich's solution to Hilbert's 10th problem ([5] pg [7]) every RE such \mathscr{G}' is Diophantine.

Now if Σ is RE then the set of Gödel numbers of members of Σ is an RE subset of \mathbb{N} , say \mathscr{S} . Thus $\exists \alpha(x), \beta(x) \in \mathscr{M}[x]$ s.t..

$$\gamma_2 \in \mathcal{I}' \iff \exists \gamma_1 \in \mathcal{M} \ \alpha(<\gamma_1 \;,\; \gamma_2 >) = \beta \; (<\gamma_1 \;,\; \gamma_2 >)$$

Hence

$$\theta \in \Sigma \iff \exists \ \gamma \in \mathscr{K} \ a(\gamma) = \beta(\gamma) \land$$
Num (R $\circ \gamma$, θ).

Lemmas 3–15 and Proposition 6 show that the relation Num is Diophantine. Thus Σ is Diophantine.

Corollary. Suppose $\Sigma \subseteq \overline{\Lambda} \ \delta_1 \ \delta_2^{\sigma}$ is $\beta \eta SP$ closed and recursively enumerable. Then Σ is projective.

<u>Proof.</u> Let M be as in Proposition 2. The set of $\beta\eta$ SP normal forms of terms MNx for $N \in \Sigma$ generates an RE subset of $\mathcal{M}[x]$, say Σ' , so by the theorem $\exists a(x), \beta(x)$ s.t. $\exists \gamma \in \mathcal{M}[x]$

$$a(<\gamma,\,\theta>) = \beta(<\gamma,\,\theta>) \iff \theta \in \Sigma'. \text{ Thus } N \in \Sigma \iff \exists P \in \overline{\Lambda \ \delta} \ \delta_1 \ \delta_2^{\left(0 \to 0\right) \to \left(0 \to 0\right)}$$

$$\lambda x \ a(< Px,\,MNx>) = \lambda x \ \beta(< Px,\,MNx>)$$

REFERENCES:

- [1] Barendregt, The Lambda Calculus, North Holland 1984.
- [2] Klop, Combinatory Reduction Systems, Math. Centrum Amsterdam 1980.
- [3] Koymans, Models of the lambda calculus, Dissertation Univ. Utrecht Math. 1984.
- [4] Lambek, From λ —calculus to Cartesian closed categories, Curry Festschrift, hindley & Seldin eds Academic Press 1980 pgs. 375—402.
- [5] Matiyasevich, Diophantine representation of recursively enumerable predicates, 2nd Scandinavian Logic Symposium, Fenstad ed. North Holland 1971 pgs. 171—178.
- [6] Pottinger, The Church-Rosser theorem for the typed λ calculus with extensional pairing, CMU Dept. of History & Philosophy Tech. Report 1979.
- [7] Siekmann, Universal unification, 7th CAD, Shostak ed. LNICS 170 Springer-Verlag 1984 pgs. 1-42.
- [8] Scott, Relating theories of the λ -claculus, Curry Festschrift, Hindley & Seldin eds. Academic Press 1980 pgs. 403-450.
- [9] Statman, On the existence of closed terms in the typed λ calculus I, Curry Festschrift, Hindley & Seldin eds. Academic Press 1980 pgs. 511-534.
- [10] Statman, Freyd's hierarchy of combinator monoids, 6th LICS IEEE 1991 pgs. 186-190.