Carnegie Mellon University Research Showcase @ CMU

Department of Mathematical Sciences

Mellon College of Science

1-1-1992

Multicolored trees in random graphs

Frieze Carnegie Mellon University

Brendan D. McKay

Follow this and additional works at: http://repository.cmu.edu/math

Recommended Citation

Frieze and McKay, Brendan D., "Multicolored trees in random graphs" (1992). *Department of Mathematical Sciences*. Paper 475. http://repository.cmu.edu/math/475

This Technical Report is brought to you for free and open access by the Mellon College of Science at Research Showcase @ CMU. It has been accepted for inclusion in Department of Mathematical Sciences by an authorized administrator of Research Showcase @ CMU. For more information, please contact research-showcase@andrew.cmu.edu.

MULTICOLORED TREES IN

RANDOM GRAPHS

by

Alan Frieze

Department of Mathematics Carnegie Mellon University Pittsburgh, PA U.S.A.

۰.

and

Brendan D. McKay

Department of Computer Science, Australian National Univerity Canberra, Australia

Research Report No. 92–140

January, 1992

MULTICOLOURED TREES IN RANDOM GRAPHS

Alan Frieze* Department of Mathematics, Carnegie Mellon University, Pittsburgh, U.S.A.

and

Brendan D. McKay Department of Computer Science, Australian National University Canberra, Australia

January 2, 1992

1 INTRODUCTION

Let G = (V, E) be a graph in which the edges are coloured. A set $S \subseteq E$ is said to be *multicoloured* if each edge of S is a different colour. A spanning tree of G is said to be multicoloured if its edge set is. In this paper we study

[•]Supported by NSF grant CCR-9024935

the existence of a multicoloured spanning tree (MST) in a randomly coloured random graph.

In fact, our main result will concern a randomly coloured graph process. Here e_1, e_2, \ldots, e_N is a random permutation of the edges of the complete graph K_n and so $N = \binom{n}{2}$. Each edge *e* independently chooses a random colour c(e) from a given set of colours W, $|W| \ge n-1$.

The graph process consists of the sequence of random graphs $G_m, m = 1, 2, \ldots, N$, where $G_m = ([n], E_m)$ and $E_m = \{e_1, e_2, \ldots, e_m\}$. We identify the following events:

 $\mathcal{C}_m = \{G_m \text{ is connected }\}.$

 $\mathcal{N}_m = \{ |c(E_m)| \ge n-1 \}, \text{ where } c(E_m) \text{ is the set of colours used by } E_m.$ $\mathcal{MT}_m = \{ G_m \text{ has a multicoloured spanning tree } \}.$

Let \mathcal{E}_m stand for one of the above three sequences of events and let

$$m_{\mathcal{E}} = \min\{m : \mathcal{E}_m \text{ occurs}\},\$$

provided such an m exists. Clearly, if $m_{\mathcal{MT}}$ is defined,

$$m_{\mathcal{MT}} \geq \max\{m_{\mathcal{C}}, m_{\mathcal{N}}\},\$$

and the main result of the paper is

Theorem 1 In almost every (a.e.) randomly coloured graph process

$$m_{\mathcal{MT}} = \max\{m_{\mathcal{C}}, m_{\mathcal{N}}\}.$$

To establish the existence of an MST we use a result of Edmonds [2] on the matroid intersection problem. In this scenario Mi, M < i are matroids over a common ground set E with rank functions ri,r2 respectively. Edmonds' general theorem on this problem is

$$\max(|/| : / \text{ is independent in both matroids}) = \min_{\mathbf{E}_1 \cap \mathbf{E}_2 = \mathbf{\bar{\bullet}}} (ri(Ei) + r_2(\pounds?2))$$
(1)

For us *Mi* is the cycle matroid of a graph $G = G_m$ and M2 is the partition matroid associated with the colours. Thus for a set of edges \pounds^* , $r \setminus (S) = n - K(S)$ where K(5) is the number of components of the graph Gs = ([w], S) and r2(S) is the number of distinct colours occurring in 5. If *i* G W then C, denotes the set of edges of colour *i* and for $/ \underline{C} W$, $Cj = \setminus J_{iel} C_i$. We will use Edmonds' theorem in the following form:

Theorem 2 Suppose |W| = n - 1. Then a necessary and sufficient condition for the existence of an MST is that

$$K(d) \leq n - IJ \qquad for all I \subseteq W.$$
 (2)

[To see this, w.l.o.g. restrict attention in (1) to E2 of the form Cj and then take = W Jin (2).]

2 Proof of Theorem 1

Observe first that if $u = u(n) \longrightarrow$ oo slowly, then in a.e. randomly coloured graph process

$$m_{\mathcal{C}} \ge m_0 = \lfloor \frac{1}{2}n(\ln n - \omega) \rfloor$$
 and $m_{\mathcal{N}} \le m_1 = \lceil n(\ln n + \omega) \rceil$.

We will start by justifying a concentration on the case |W| = n - 1. We will describe a coupled process in which there are never more than n - 1 colours used: from m_N onwards, the colours that have not yet been used are randomly changed to one of the n-1 colours that have appeared so far. The relevant properties of this coupled process are

- 1. For each $m \in [m_0, m_1]$ the edges of G_m are independently randomly coloured from a choice of n-1 colours.
- 2. If $m_{\mathcal{MT}} > \max\{m_{\mathcal{C}}, m_{\mathcal{N}}\}$ holds for the original process then it also holds for the coupled process.

Thus to prove our theorem we need only prove that

$$\Pr(m_{\mathcal{MT}} > \max\{m_{\mathcal{C}}, m_{\mathcal{N}}\}) = o(1).$$

where Pr refers to the coupled process.

Fix some m in the range $[m_0, m_1]$. We define the event

$$\mathcal{A}_k = \{ \exists I \subseteq W, |I| = k : \kappa(C_I) \ge n - |I| + 1 \}.$$

We know that if |W| = n-1, G_m is connected and each colour is used at least once and there is no MST then \mathcal{A}_k occurs for some $k \in [3, n-2]$ $(\mathcal{A}_1 \cup \mathcal{A}_2$ cannot occur if all n-1 colours are used and \mathcal{A}_{n-1} cannot occur if G_m is connected.) Take a minimal k, corresponding set I and let $S = C_I$.

Claim 1 G_S has no bridges.

Proof If there is a bridge, remove it and all edges of the same colour. Clearly \mathcal{A}_{k-1} occurs, contradicting the minimality of k.

With the notation of Claim 1 suppose then that Gs has *i* isolated vertices and n-k+x-i non-trivial components, $x \ge 1$. Since non-trivial components without bridges have at least three vertices,

$$i + 3(n - k + x - i) \leq n \tag{3}$$

or

$$i \implies n_{2}^{3} k + 2x \\ \ge n^{-\frac{3}{2}k} + \frac{3}{2}.$$

So now let *Bk* denote the event

$$\{3/ \subseteq W, |I| = k, T \subseteq [n] : t = |T| < 3(k - 1)/2,$$

all edges coloured with / are contained in T,
there are $u \ge \max\{fc,i\}$ /-coloured edges}.

Here *T* is the set of vertices in the non-trivial components of $Gc_7 \bullet$ Thus if |W| = n - 1,

$$Mm n A_k C |J Bi \qquad \text{for } k \ge 3.$$
^k
_{t=3}
^k
(4)

For $k \ge 9n/10$ we consider a slightly different event.

We first rephrase (2) as

$$K(C_W/J) \le |J| + 1 \qquad \text{for all } JCW. \tag{5}$$

So if |W| = n - 1 and there is no MST then there exist $\pounds \ge 1$ colours whose deletion produces $A \ge \pounds + 2$ components of sizes ni, ..., n.

Claim 2 Some subsequence of the n- 's sums to between $\pounds + 1$ and n/2.

Proof Assume $n < \underline{ri2} < \underline{\bullet} \cdot \bullet < ^A$ -

If $n \ge f + 1$, one of ni,..., n^-i and 7lA suffices.

Suppose then that n-, $\leq f$, $1 \leq i \leq A$.

Choose r such that

ni H——h
$$n_r \le n/2$$
, nH——h $n_{r+i} > n/2$

and then

ni H—h
$$n_r > n/2$$
 — n_r+i
 $\geq n/2 - \ell$
 $\geq \ell$.

and we can take $ni, ..., n_r$.

Note next that if J is minimal in (5) then each colour in J appears at least twice as an edge joining components of $G_{C_{W \setminus J}}$.

So if G_m is connected and there is no MST and Ak does not occur for $k \le$ 9n/10 then there is a set L of $1 \le \pounds < n/10$ colours and a set S of size $s, \pounds + 1 \le s \le n/2$ such that (i) all $t = r/(5) = \langle (S : \overline{S}) \rangle \ge 1$ edges are L-coloured, $((5^* : \overline{S})$ is the set of edges joining 5^* and $\overline{S} = V \setminus S$, (ii) the lexicographically first max $\{2^{--}<,0\}$ non- $(5' : \overline{S})$ edges joining up components (of the $W \setminus L$ coloured edges) are also L-coloured. Let $T > \pounds$ denote this event. Then

$$\mathcal{C}_m \cap \left(\bigcup_{k=9n/10}^{n-2} \mathcal{A}_k\right) \subseteq \bigcup_{i=l}^{n/10} PT_m(V_{\pounds}).$$
(6)

It follows from (4) and (6) that

 $\Pr(m_{\mathcal{MT}} > \max\{m_{\mathcal{N}}, m_{\mathcal{C}}\}) \leq$

$$o(1) + \sum_{m=m_0}^{m_1} \left[\sum_{k=3}^{9n/10} \Pr_m(\mathcal{B}_k) + \sum_{\ell=2}^{n/10} \Pr_m(\mathcal{D}_\ell) \right] + \Pr\left(\bigcup_{m=m_0}^{m_1} (\mathcal{C}_m \cap \mathcal{A}_{n-2}) \right).$$
(7)

Here \Pr_m denotes probability w.r.t. G_m and the o(1) term is the probability that G_{m_0} is connected or that $m_N > m_1$. (Our calculations force us to separate out \mathcal{A}_{n-2} .)

We must now estimate the individual probabilities in (7). It is easier to work with the independent model G_p , p = m/N, where each edge occurs independently with probability p and is then randomly coloured. For any event \mathcal{E} we have (see Bollobás [1] Chapter II) the simple bound

$$\Pr_{m}(\mathcal{E}) \leq 3\sqrt{n\ln n} \Pr_{p}(\mathcal{E}).$$
(8)

where \Pr_p denotes probability w.r.t. the model G_p .

Now, where $p = \alpha \ln n/n$, $1 - o(1) \le \alpha \le 2 + o(1)$,

$$\Pr_{p}(\mathcal{B}_{k}) \leq \sum_{t=1}^{3(k-1)/2} \sum_{u=\max\{t,k\}}^{\binom{t}{2}} \binom{n}{t} \binom{n-1}{k} \binom{\binom{t}{2}}{u} \left(1 - \frac{kp}{n-1}\right)^{\binom{n}{2}-u} \left(\frac{kp}{n-1}\right)^{u} \\ \leq \sum_{t=1}^{3(k-1)/2} \sum_{u=\max\{t,k\}}^{\binom{t}{2}} \frac{n^{t}e^{t}}{t^{t}} \frac{n^{k}e^{k}}{k^{k}} \left(\frac{t^{2}e}{2u}\right)^{u} n^{-k\alpha(\frac{1}{2}-o(1))} \left(\frac{\alpha k \ln n}{n^{2}}\right)^{u}.$$
(9)

Case 1: $3 \le k \le k_0 = n/(3 \ln n)$.

$$\Pr_{p}(\mathcal{B}_{k}) \leq \sum_{t=1}^{3(k-1)/2} \sum_{u=\max\{t,k\}}^{\binom{t}{2}} \left(\frac{e^{3}n^{1-\alpha(\frac{1}{2}-o(1))}}{k}\right)^{k} \left(\frac{t}{n}\right)^{2u-t} \left(\frac{\alpha ek \ln n}{2u}\right)^{u}$$
$$= \sum_{t=1}^{3(k-1)/2} \sum_{u=\max\{t,k\}}^{\binom{t}{2}} \left(\frac{e^{3}n^{1-\alpha(\frac{1}{2}-o(1))}}{k}\right)^{k} \left(\frac{t}{n}\right)^{u-t} \left(\frac{\alpha ek t \ln n}{2un}\right)^{u}$$

$$\leq \sum_{t=1}^{3(k-1)/2} \sum_{u=\max\{t,k\}}^{\binom{t}{2}} \left(\frac{e^3 n^{1-\alpha(\frac{1}{2}-o(1))} \alpha e k \ln n}{2kn} \right)^k \left(\frac{t}{n} \right)^{u-t} \left(\frac{\alpha e k \ln n}{2n} \right)^{u-k}$$
$$= O\left(\left(\frac{\ln n}{n^{\frac{1}{2}-o(1)}} \right)^k \right).$$

It follows from this and (8) that

$$\sum_{m=m_0}^{m_1} \sum_{k=4}^{k_0} \Pr_m(\mathcal{B}_k) = O((n \ln n)(\sqrt{n \ln n})((\ln n)^4/n^{2-o(1)}))$$

= $o(1).$ (10)

For k = 3 we compute $Pr_m(\mathcal{B}_3)$ directly, but since now u = t = k = 3 is forced,

$$\Pr_{m}(\mathcal{B}_{3}) \leq {\binom{n}{3}}^{2} \left(1 - \frac{3}{n-1}\right)^{m-3} \left(\frac{3}{n-1}\right)^{3} \frac{\binom{N-3}{m-3}}{\binom{N}{m}} \\ = O(e^{3\omega} (\ln n)^{3} n^{-3/2})$$

and so

$$\sum_{m=m_0}^{m_1} \Pr_m(\mathcal{B}_3) = o(1).$$
(11)

Case 2: $k_0 < k \le n/2$.

We now write (9) as

$$\Pr_{p}(\mathcal{B}_{k}) \leq \sum_{t=1}^{3(k-1)/2} \sum_{u=\max\{t,k\}}^{\binom{t}{2}} \left(\frac{e^{3}n^{1-\alpha(\frac{1}{2}-o(1))}}{k}\right)^{k} \left(\frac{t}{n}\right)^{u-t} \left(\frac{\alpha ekt \ln n}{2un}\right)^{u}$$
$$\leq \sum_{t=1}^{3(k-1)/2} \sum_{u=\max\{t,k\}}^{\binom{t}{2}} \left(\frac{e^{3}n^{1-\alpha(\frac{1}{2}-o(1))}}{k}\right)^{k} \left(\frac{t}{n}\right)^{u-t} n^{\frac{\alpha tk}{2n}}$$

(after maximising the last term over *u*)

$$= \sum_{\substack{i=1\\t=l}\\t=l}^{3(k-1)/2} \sum_{u=\max\{t,k\}}^{\binom{i}{2}} \left(\frac{e^3 n^{1-\frac{\alpha}{2}(1-\frac{i}{n}-o(1))}}{k}\right)^k \left(\frac{t}{n}\right)^{u-t}$$
(12)

$$\leq \sum_{t=1}^{3(k-1)/2} \sum_{u=\max\{t,k\}}^{\binom{t}{2}} \left(\frac{e^3 n^{1-\alpha(\frac{1}{8}-o(1))}}{k}\right)^k$$
(13)

since $t \le 3(\text{fc} - 1)/2 \le 3n/4$.

(13) and (8) clearly imply

$$\sum_{m=m_0}^{mi} \sum_{k=k_0}^{n/2} \Pr_m(\mathcal{B}_k) = o(1).$$
(14)

Q

Case 3: $n/2 < A \le 9n/10$

Claim 3 Choose any constant A > 0. Then, in a.e. process, simultaneously for each m G [mo,mi], the sets of $s \le A$ vertices of G_m which span at least s edges together contain at most $(\ln n)^{A+l}$ vertices.

Proof We need only prove this for G_{mi} and since the property is monotone decreasing we need only prove it for G_{Pl} , p = m j N ([1], Chapter II.) But

$$E_{Pl} \text{ (number of vertices)} \leq \bigwedge_{k=3}^{A} \begin{pmatrix} U \\ k \end{pmatrix} \begin{pmatrix} k \\ k \end{pmatrix} \begin{pmatrix} k \\ k \end{pmatrix} P_{i}^{k}$$
$$= 0(e^{2A}(lnn)^{A}).$$

Now use the Markov inequality.

It follows that we may rewrite (3) as

$$i + 3(\ln n)^{A+1} + (A+1)(n - k + x - i) \le n$$

and so

$$i \geq n - \frac{A+1}{j}k - O((\ln n)^{A+1})$$
$$\geq n - \frac{A}{A-1}k.$$

By making A sufficiently large we see that if $k \le 9n/10$ then $t \le 19n/20$ in (12) and consequently

$$\begin{array}{rcl}
& \operatorname{mi} & 9n/10 \\
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$$

Case 4: A; $\geq 9n/10$

$$\Pr_{p}(\mathcal{D}_{\ell}) \leq \frac{n/2}{\sum} (n \setminus (n-1))^{s(n-s)} (s(n-s)) (e_{P} \bigvee (n \setminus n-1))^{s(n-s)} (s(n-s)) (e_{P} \bigvee (n \setminus n-1))^{max\{2\ell-t,0\}}$$

Let u(s, t, t) denote the summand in the above and let $p = a \ln n/n$ and note that $a \in [1 - UJ/\ln n, 2 + u > /\ln n]$.

Case 4.1: $i \leq 2$ £

It will generally be convenient to split *s* into two ranges:

Case 4.1.1:
$$s \leq n^{1/10}$$

$$u(s,\ell,t) = \binom{n}{s} \binom{n-1}{\ell} \binom{s(n-s)}{t} p^{t}(1-p)^{s(n-s)-t} \left(\frac{\ell}{n-1}\right)^{2\ell}$$

$$\ll \binom{ne}{T}^{s} \left(\frac{(n-1)e}{\ell}\right)^{\ell} \left(\frac{s(n-s)e^{1+p}\alpha \ln n}{tn}\right)^{t} n^{-\alpha s(n-s)/n} \left(\frac{\ell}{n-1}\right)^{2\ell}$$

$$\leq \left(\frac{n^{1-\alpha+\alpha s/n}e}{s}\right)^{s} \left(\frac{\ell e}{n-1}\right)^{k} \left(\frac{e^{2}s(n-s)\ln n}{Tn}\right)^{t}$$

$$\leq \left(\frac{n^{1-\alpha+\alpha s/n}e}{s}\right)^{s} \left(\frac{e^{4}s^{2}(n-s)^{2}(\ln n)^{2}}{n^{3\ell}}\right)^{\ell}.$$
(16)

Now

$$\sum_{N'}^{n} \frac{l - a + as/n}{\Delta a_{XX}} \leq (1) e^{\omega}$$
(17)

where $a > 1 - u > / \ln n$ and u > - > oo slowly.

So if $5 \leq 3e''$ then (16) implies that

$$u(s,\ell,t) \leq n^{-(1-o(1))\ell},$$

and if s > 3e''

$$U(SJA), \leq \left(e^{l} L_{\frac{s}{n(1-o(1))}}^{+5} (1-n)^{2} (\ln n)^{2} \right)^{\ell}$$
$$= O\left(\left(\left(\frac{s}{n^{1-o(1)}} \right)^{\ell} \right).$$

Case 4.1.2: $5 > n^{1/10}$.

Claim 4 /n a.e. process, every G_m , m E $[m_0, mj \text{ i5 5wc/i} that TJ(S) \ge -y |S|$ In n /or a// $n^{1/10} \le |5| \le n/2$; where 7 > 0 is some absolute constant.

Proof (outline) For $|S^*| \ge n^{2/3}$ one can use the Chernoff bounds on the tails of the binomial rj(S). If $|S| \le n^{2/3}$ we use the fact that with high probability (i) G_{mo} has $n^{e>}$ vertices of degree ≤ 6 Inn where $e^1 = \wedge(e) \longrightarrow 0$ with 6, and (ii) in G_{mi} no set S of size $\le n/(1nn)^2$ contains 3151 edges.

So if $s \ge n^{1/10}$ then we can take $t \ge 7 s \ln n > 2 \pounds$ for some constant 7 > 0 and this case is vacuous.

Case $4.2 : t > 2 \pounds$.

$$u(s,\ell,t) \leq \left(\frac{ne}{s}\right)^{s} \left(\frac{(n-1)e}{\ell}\right)^{\ell} \left(\frac{s(n-s)e^{1+p}\alpha\ell\ln n}{tn(n-1)}\right)^{t} n^{-\alpha s(n-s)/n}$$

$$= \left(\frac{n^{1-\alpha+\alpha s/\prime\prime}e}{\sqrt{\ast}}\right)' \frac{f(n-l)e}{\sqrt{1-\varepsilon}}' \frac{fs(n-s)e'+annn}{\sqrt{1-\varepsilon}}$$
(18)

Case 4.2.1: $t \leq 2n$ and so $((n - 1)e/t)^{l} \leq (2ne/\ll)^{1/2}$ -

$$u(s,\ell,t) \le \left(\frac{n^{1-\alpha+\alpha s/n} \mathrm{e}}{s}\right) \left(\frac{20^* \mathrm{\pounds lnn}}{t^{3/2} n^{1/2}}\right).$$
(19)

Case 4.2.1.1: $s < n^{1/10}$. Now (17) gives

$$\left(\frac{n^{1-\alpha+\alpha s/n}e}{s}\right)^s \leq \left(\frac{(1+o(1))e^{\omega+1}}{s}\right)^s \\ \leq e^{(1+o(1))e^{\omega}} \\ = e^{\hat{\omega}}, \text{ say,}$$

and so (19) implies

$$u(s,\pounds,t) \leq \left(\begin{array}{c} -\mathbf{r} & \mathbf{r} \\ -\mathbf{r} & \mathbf{r} \\ \hline \mathbf{r} & \mathbf{r} \end{array} \right)^{t} \bullet$$
(20)

Case 4.2.1.2: $s \ge n^{1/10}$.

Using Claim 4 and (19),

$$u(s, \ell, t) \leq n^{-s/11} \left(\frac{1}{n^{\frac{1}{2}-o(1)}\sqrt{s}}\right)^t.$$

Case 4.2.2: $t \ge 2n$ and so $(ne/\pounds)^e \le e^n \le e^{1/2}$.

From (18),

$$u(sj,t) < \underbrace{(\frac{(1+o(1))e^{\omega+1}}{V}^{s}}_{1-10} \underbrace{(\frac{20s\ell \ln n}{tn})^{t}}_{1-10}.$$

Case 4.2.2.1: $s < n^{1/10}$.

Arguing as in (20),

$$u(s,\ell,t) \leq \left(\frac{s}{n^{1-o(1)}}\right)^t.$$

Case 4.2.2.2: $s \ge n^{1/10}$.

From Claim 4

$$u(s,\ell,t) \le \left(\frac{(1+o(1))e^{\omega+1}}{s}\right)^s \left(\frac{A\ell}{n}\right)^t.$$

for some constant A > 0. Now this clearly implies

$$u(s,\ell,t) = O(2^{-n})$$
(21)

for $\ell \leq n/(3A)$. For $\ell > n/(3A)$ we have $s \geq \ell$ and

$$u(s,\ell,t) \le n^{-s/2} A^n$$

and so (21) holds here also.

Summarising,

$$\Pr(\mathcal{D}_{\ell}) = O\left(\sum_{t=1}^{2\ell} \sum_{s=\ell+1}^{n^{1/10}} \left(\frac{s}{n^{1-o(1)}}\right)^{\ell} + \sum_{t=2\ell+1}^{2n} \sum_{s=\ell+1}^{n^{1/10}} \left(\frac{s}{n^{\frac{1}{2}-o(1)}}\right)^{t} + \sum_{t=2\ell+1}^{2n} \sum_{s=n^{1/10}}^{n/2} \left(\frac{s}{n^{\frac{1}{2}-o(1)}\sqrt{s}}\right)^{t} + \sum_{s=1}^{n^{1/10}} \sum_{t=2n+1}^{s(n-s)} \left(\frac{s}{n^{\frac{1}{2}-o(1)}}\right)^{t} + \sum_{s=n^{1/10}}^{n/2} \sum_{t=2n+1}^{s(n-s)} 2^{-n}\right)$$
$$= O(\ell n^{-(.9-o(1))\ell}).$$

where the double summations correspond to the five cases enumerated above.

Thus, we see that

$$\sum_{m=m_0}^{m_1} \sum_{\ell=2}^{n/10} \Pr_m(\mathcal{D}_\ell) = O((n \ln n)(\sqrt{n \ln n})n^{-1.7})$$

= $o(1).$ (22)

We are thus left with $\Pr\left(\bigcup_{m=m_0}^{m_1}(\mathcal{C}_m \cap \mathcal{A}_{n-2})\right)$.

We consider G_{m_0} . We know that a.e. G_{m_0} consists of a giant connected component C plus $O(e^{\omega})$ isolated vertices T. If $\bigcup_{m=m_0}^{m_1} (\mathcal{C}_m \cap \mathcal{A}_{n-2})$ occurs at some time during the process then either

(i) there exist $u, v \in T$ such that the first edges of the process that are incident with each of u and v are the same colour,

OR

(ii) there exists a colour c and a set $S, 2 \leq |S| \leq n/2$ such that in G_{m_0} the $t \geq 2$ $(S : \overline{S})$ edges are all of colour c.

(Suppose that deleting the edges of colour c from G_m produces at least three components. If colour k has not occurred by time m_0 then two of these components must be vertices from T, contradicting (i). If G_{m_0} has edges of colour c then deleting these edges must beak C into at least three pieces.)

Clearly

$$\Pr((i)) = o(1) + O(e^{2\omega}/n) = o(1).$$

Furthermore

$$\begin{aligned} \Pr_{p}((ii)) &\leq \sum_{s=2}^{n/2} \binom{n}{s} n \sum_{t=2}^{s(n-s)} \binom{s(n-s)}{t} \left(\frac{p}{n}\right)^{t} (1-p)^{s(n-s)-t} \\ &\leq 2 \sum_{s=2}^{n/2} \binom{n}{s} n \sum_{t=2}^{10\ln n} \frac{(s(n-s))^{t}}{t!} \left(\frac{\alpha \ln n}{n^{2}}\right)^{t} n^{-\alpha s} \\ &\leq n \sum_{s=2}^{n/2} \left(\frac{n^{1-\alpha}}{s}\right)^{s} \sum_{t=2}^{10\ln n} \left(\frac{s\alpha \ln n}{n}\right)^{t} \\ &= O(n^{-(1-o(1)}). \end{aligned}$$

14

The upper bound is good enough to apply (8) and so $\Pr_{m_0}((ii)) = o(1)$. Thus

$$\Pr\left(\bigcup_{m=m_0}^{m_1} (\mathcal{C}_m \cap \mathcal{A}_{n-2})\right) = o(1).$$
(23)

Our theorem now follows from (7),(10),(11),(14),(15),(22) and (23).

References

- [1] B.Bollobás, Random graphs, Academic press, 1985.
- [2] J.Edmonds, Submodular functions, matroids and certain polyhedra, in Combinatorial Structures and their Applications, R.Guy et al, eds., Gordon and Breach, 1970, pp69-87.

Folder Number	Date	Time	Pages
HLPH TENNY 13	2/4/04		3
HLER BURSTINIZ	i		13
1 1 13			14
14			30
15			
[6			.11
17			4%
5410 8473			36
"↓ " ↓ ″ч			40
× 11 / 2			52
· · · · · · · · · · · · · · · · · · ·			311
<u> </u>			24
54108478	215104		30
· · · · · //q			38
- A			