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1 INTRODUCTION

Let G = (V, E) be a graph in which the edges are coloured. A set S C E is

said to be multicoloured if each edge of S is a different colour. A spanning

tree of G is said to be multicoloured if its edge set is. In this paper we study
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the existence of a multicoloured spanning tree (MST) in a randomly coloured

random graph.

In fact, our main result will concern a randomly coloured graph process. Here

ei, e 2 , . . . , ê r is a random permutation of the edges of the complete graph Kn

and so N = fcV Each edge e independently chooses a random colour c(e)

from a given set of colours W, \W\ > n — 1.

The graph process consists of the sequence of random graphs Gm,ra =

1,2, . . . ,N, where Gm = ([n],£m) and Em = {ei ,e2 , . . . , e m } . We identify

the following events:

Cm = {Gm is connected }.

Mn = {|c(jBm)| > n — 1}, where c(jEm) is the set of colours used by Em.

MTm = {Gm has a multicoloured spanning tree }.

Let £m stand for one of the above three sequences of events and let

rri£ = min{m : Em occurs},

provided such an m exists. Clearly, if rriMT is defined,

mMr > max{mc,m^},

and the main result of the paper is

Theorem 1 In almost every (a. e,) randomly coloured graph process

mMr = max{rac,

D



To establish the existence of an MST we use a result of Edmonds [2] on

the matroid intersection problem. In this scenario Mi, M<i are matroids over

a common ground set E with rank functions ri,r2 respectively. Edmonds'

general theorem on this problem is

max(|/| : / is independent in both matroids) = min (ri(Ei) + r2(£?2))-

(1)

For us Mi is the cycle matroid of a graph G = Gm and M2 is the partition

matroid associated with the colours. Thus for a set of edges £*, r\(S) =

n — K(S) where K(5 ) is the number of components of the graph Gs = ([w], S)

and r2(S) is the number of distinct colours occurring in 5. If i G W then C,

denotes the set of edges of colour i and for / C W, Cj = \JieI C{. We will

use Edmonds' theorem in the following form:

Theorem 2 Suppose \W\ = n — 1. Then a necessary and sufficient condition

for the existence of an MST is that

K(d) < n - I J| for all I C W. (2)

[To see this, w.l.o.g. restrict attention in (1) to E2 of the form Cj and then

take / = W\ J i n (2).]

2 Proof of Theorem 1

Observe first that if u = u(n) —> oo slowly, then in a.e. randomly coloured

graph process



We will start by justifying a concentration on the case \W\ = n — 1. We

will describe a coupled process in which there are never more than n — 1

colours used: from mjsf onwards, the colours that have not yet been used are

randomly changed to one of the n — 1 colours that have appeared so far. The

relevant properties of this coupled process are

1. For each m G [mo, mi] the edges of Gm are independently randomly

coloured from a choice of n — 1 colours.

2. If rriMT > maximum//'} holds for the original process then it also

holds for the coupled process.

Thus to prove our theorem we need only prove that

Pv(mMr > max{mc ,m^}) = o(l).

where Pr refers to the coupled process.

Fix some m in the range [m^^mx]. We define the event

Ak = {3 / C W, | / | = k : K(d) > n - | J| + 1}.

We know that if \W\ = n — 1, Gm is connected and each colour is used at least

once and there is no MST then Ak occurs for some k G [3, n — 2] (A\ U Ai

cannot occur if all n — 1 colours are used and An-\ cannot occur if Gm is

connected.) Take a minimal A;, corresponding set / and let S = Cj.

Claim 1 Gs has no bridges.

Proof If there is a bridge, remove it and all edges of the same colour.

Clearly Ak-i occurs, contradicting the minimality of k. D
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With the notation of Claim 1 suppose then that Gs has i isolated vertices

and n — k+x — i non-trivial components, x > 1. Since non-trivial components

without bridges have at least three vertices,

i + 3(n - k + x - i) < n (3)

or

3 3
i > n--k+-x

3, 3
> n--k+-.

So now let Bk denote the event

{3/ C W, \I\ = k,T C [n] : t = \T\ < 3(k - l)/2,
all edges coloured with / are contained in T,
there are u > max{fc,i} /-coloured edges}.

Here T is the set of vertices in the non-trivial components of Gc7 • Thus if

\W\ = n - l ,
k

Mm n Ak C | J Bi for k > 3. (4)
t=3

For k > 9n/10 we consider a slightly different event.

We first rephrase (2) as

K(CW/J) < \J\ + 1 for all JCW. (5)

So if \W\ = n — 1 and there is no MST then there exist £ > 1 colours whose

deletion produces A > £ + 2 components of sizes n i , . . . , n\.

Claim 2 Some subsequence of the n,- 's sums to between £ + 1 and n/2.



Proof Assume n\ < ri2 < • • • < ^A-

If n\ > £ + 1, one of ni,..., n^-i and 71A suffices.

Suppose then that n,- < £, 1 < i < A.

Choose r such that

ni H h nr < n/2, nH h n r + i > n/2

and then

ni H h nr > n/2 — nr+i

and we can take ni, ...,n r. •

Note next that if J is minimal in (5) then each colour in J appears at least

twice as an edge joining components of

So if Gm is connected and there is no MST and Ak does not occur for k <

9n/10 then there is a set L of 1 < £ < n/10 colours and a set S of size

s, £ + 1 < s < n/2 such that (i) all t = r/(5) = \(S : S)\ > 1 edges are

L-coloured, ((5* : S) is the set of edges joining 5* and S = V \ S), (ii) the

lexicographically first max{2^—<,0} non-(5' : S) edges joining up components

(of the W\L coloured edges) are also L-coloured. Let T>£ denote this event.

Then
n/10

C (J PTm(V£). (6)
/10 / i=l

It follows from (4) and (6) that



Pr(rajv/fr > niax{mjv,mc}) <

mi |~9n/10 n/10
/-I \ , \ - ^

O[ 1 ) + 7
Jb=3 £=2

Pr . (7)

Here Prm denotes probability w.r.t. Gm and the o(l) term is the probability

that Gmo is connected or that m^ > m\. (Our calculations force us to

separate out An-2-)

We must now estimate the individual probabilities in (7). It is easier to

work with the independent model Gp, p = ra/iV, where each edge occurs

independently with probability p and is then randomly coloured. For any

event 8 we have (see Bollobas [1] Chapter II) the simple bound

Prm(£)<3\/nlnnPrp(£).

where Prp denotes probability w.r.t. the model Gp.

Now, where p = a In n/n, 1 — o(l) < a < 2 + o(l),

(8)

3(fc-l)/2 (J)
(9)

Case 1: 3 < k < kQ = n/(31nn).

3(fc-l)/2
PrP(Bib) <

3(fc-i)/2 G)

\ 2un



3(*-i)/2 0)

2 k n

-t

2 n

It follows from this and (8) that

P r m(^) = O((n Inn)(^^
m i

=TOO ib=4

(10)

For k = 3 we compute Prm(#3) directly, but since now

forced,

and so
m i

Prm(B8) = (11)

Case 2:

We now

rTp{fc

k0 <

write

<

k<

(9)

3(JI

3(<

n/2.

as

\ >
/ V

(*) ( 1

n\ / i
* 1 e3nl a 2

it=max{<7ib} \

2un

8



(after maximising the last term over u)

4 i

t=l u=

since t < 3(fc - l ) /2 < 3n/4.

(13) and (8) clearly imply

mi n/2

Case 3: n/2 < A: < 9n/10

Claim 3 Choose any constant A > 0. Then, in a.e. process, simultaneously

for each m G [mo,mi], the sets of s < A vertices of Gm which span at least

s edges together contain at most (In n)A+l vertices.

Proof We need only prove this for Gmi and since the property is mono-

tone decreasing we need only prove it for GPl, p\ = m\jN ([1], Chapter II.)

But

EPl (number of vertices) < ^ ( U ) f ^ ) Pik

= 0(e2A(lnn)A).

Now use the Markov inequality. Q

It follows that we may rewrite (3) as

i + 3(lnn)A+1 + (A + l)(n - k + x - i) < n

9



and so

J\

By making A sufficiently large we see that if k < 9n/10 then t < 19n/20 in

(12) and consequently

mi 9n/10

£ £ ^m(Bk) = o(i). (15)
m=m0 fc=n/2

Case 4: A; > 9n/10

eP V
)

Let u(s, t, t) denote the summand in the above and let p = a In n/n and note

that a G [1 — UJ/Inn,2 + u>/lnn].

Case 4.1: i < 2£

It will generally be convenient to split s into two ranges:

Case 4.1.1: s < n1/10

< ( T tn ) \n — 1

k (e2s{n — s)lnn\

Tn )

10



Now
l-a+as/n <- (\ \

IV ^» 1 X |^

where a > 1 — u>/ In n and u> —> oo slowly.

So if 5 < 3e" then (16) implies that

and if s > 3e"

U(SJA) < (el_*(ri

nH

Case 4.1.2: 5 > n1/10.

Claim 4 /n a.e. process, every Gm, m E [m0, mj i5 5wc/i that TJ(S) > -y\S\ In n

/or a// n1/10 < | 5 | < n /2 ; where 7 > 0 is some absolute constant.

Proof (outline) For |-S*| > n2/3 one can use the Chernoff bounds on the

tails of the binomial rj(S). If \S\ < n2/3 we use the fact that with high

probability (i) Gmo has ne> vertices of degree < 6Inn where e1 = ^(e) —» 0

with 6, and (ii) in Gmi no set S of size < n/( lnn)2 contains 3151 edges. •

So if s > n1/10 then we can take t > 7sInn > 2£ for some constant 7 > 0

and this case is vacuous.

Case 4.2 : t > 2£.

\ tn(n - 1)

11



"e\' f(n-l)e\' fs(n-s)e'+'annn\'

) [) { ) (18)
V * J \ * J \ tn(n-l)

Case 4.2.1: t < 2n and so ((n - \)e/t)1 < (2ne/«)'/2-

/neV /20*£lnnV

Case 4.2.1.1: s < n1/10. Now (17) gives

Case 4.2.2: t > 2n and so (ne/£)e < en < e1'2.

From (18),

u(sj,t)<( ) i— i
V s J \ tn J

Case 4.2.2.1: s < n1/10.

12

(19)

= e , say,

and so (19) implies

( s \
u(s,£,t)< -r-^J • (20)

Case 4.2.1.2: s > n1/10.

Using Claim 4 and (19),



Arguing as in (20),

Case 4.2.2.2: 5 > n1/10.

From Claim 4

for some constant A > 0. Now this clearly implies

u(M,t) = O(2-) (21)

for £ < n/(3A). For £ > n/(3A) we have s > £ and

and so (21) holds here also.

Summarising,

(^)+ E E

2n

2-^ 1 i /1X _ I •
s=l t=2n+l

n/2 *(n-3

+ E E 2-"
5 = n i / io <=2

where the double summations correspond to the five cases enumerated above.

Thus, we see that
mi n/10

£ E
—mQ £—2

= o(l). (22)

13



We are thus left with Pr ([J™Lmo(Cm D An-2)).

We consider Gmo. We know that a.e. Gmo consists of a giant connected

component C plus O(eu) isolated vertices T. If UmLm o(^ ^ A1-2) occurs at

some time during the process then either

(i) there exist u,v € T such that the first edges of the process that are

incident with each of u and v are the same colour,

OR

(ii) there exists a colour c and a set 5, 2 < |*S*| < n/2 such that in Gmo the

t > 2 (S : S) edges are all of colour c.

(Suppose that deleting the edges of colour c from Gm produces at least three

components. If colour k has not occurred by time TUQ then two of these

components must be vertices from T, contradicting (i). If Gmo has edges of

colour c then deleting these edges must beak C into at least three pieces.)

Clearly

Furthermore

n~as

14
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The upper bound is good enough to apply (8) and so Prmo((M')) = o(l). Thus

Pr U (CmnX-2) =o(l). (23)
\rn=mo /

Our theorem now follows from (7),(10),(ll),(14),(15),(22) and (23).
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