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ABSTRACT. When m is an odd number the variety generated by the dihe-
dral group of order 2ra is 2lm2l2. The free group on k generators in this
variety is a semi-direct product of Z^ by Z\ where r = 2k(k — 1) + 1. We
give a natural presentation of this group in terms of "eigenvectors" of the
action of Z\ on ZĴ , and characterize the free generators in terms of this
presentation.

1. INTRODUCTION

In [2], the order of the free fc-generated group in the variety generated by a dihedral
group D of order 2d + 1e (where e is odd) is determined to be 2 r + s e r ' where r' =
2r(r - 1) + 1 and:

d

t=2

(there is a typographical error in the definition of r' in [2].)

The proof of this result depends on a structure theorem for the variety generated
byD;

v a r D - I 2 1 * 2 1 2 whend<2
\ 2te2t2 V (2l2d-ia2 A Wd) when d > 2

Here the notation is as in [6].

In the case d > 2 the calculation of the order then depends on the results in [3]
which give a normal form description for elements of the free groups in the varieties
2lp*2lp (where p is a prime.)

In this paper we will restrict our attention to the first case, d < 2. As a matter of
personal preference we use m rather than e for the odd part, and so our goal is to
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describe the free groups of the variety:

where m is odd.

When giving a presentation or description of a free group, it has been traditional (as
in [3]) to do so by means of some sort of "normal form" description of the elements
in terms of the free generators. However, such a description may or may not lead
to a clear understanding of the free group as a whole, for example in terms which
permit one to understand the structure of the lattice of normal subgroups (and
hence presumably the structure of all ^-generated groups in the variety). We give a
description which is heavily weighted towards these kinds of questions. The reasons
for desiring such a description are described further in the final section.

The third section of this paper contains the structure theorem and its proof. How-
ever, in this bare form the result is somewhat post hoc. So we have included in the
second section some results and investigations which led us to the final description.

Throughout the paper Z denotes the additive group of the integers, and Zn the
additive group of the integers modulo n.

2. THE IDEAS

Fix an odd positive integer m > 1, and a positive integer k and for convenience let:

for the rest of this section. Let Fk denote the absolutely free group on k generators,
U the characteristic (verbal) subgroup of Fk generated by the squares, and V the
characteristic subgroup of U generated by the commutators and all elements of the
form um. Then the fc-generated free group of var Dm (which is 2lm2l2) is just:

Gk = Fk/V.

Let U' be the commutator subgroup of U. The action of Fk on U by conjugation
induces an action of Fk/U on U/U1. Since U/U' = Zn we can interpret this action
as multiplication by some matrices in Mr(Z). Furthermore Fk/U = Z*, so the
generators of Fk/U give rise to a sequence of matrices Ai,A2,... ,Ak G Mr(Z)
which satisfy:

A\ = A\ = - • • = A\ = 1 and AiAj = AjA{ for 1 < % < j < k.

We will show that the matrices Ai, A2,... , Ak can be simultaneously diagonalized
over the ring Z[l/2] of dyadic rationals (those rationals whose denominator in lowest
terms is a power of 2.) This is a consequence of the following more general result
which must be known, but which we have not been able to find in the literature:
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Proposition 1. Let R be a principal ideal ring, and suppose that A G MS(R) is
such that the distinct eigenvalues Ai, A2,... , An of A all lie in R. Suppose also that:

and
A,- — Xj is a unit of R for 1 < i < j' < n.

Then A is diagonalizable over R.

Proof. It suffices to show that R8 has a basis (as U-module) which consists of eigen-
vectors of A. This will be true provided that R* is the direct sum of the eigenspaces
VAl,VA2,...,VAnof A Here:

VXi = {v G Rs : Av = \{v}

By considering A as an element of M8(F) where F is the quotient field of R we see
that

Thus it remains to show that each v in R8 is a sum of elements of V\.. But the
system of equations:

vi + v2 + . . . + vn = v
Xivx + X2v2 + . . . + Xnvn = Av

A r V + A I T S + ••• + Xn~l*n = ^ n "^
or briefly:

Vr(A1,A2,... ,An)v = v,
(where V is a VanDerMonde matrix) has a solution with vi, v2j... , vn G R8 since:

is a unit in R so V 1 € MS(R). But then

Vi e vXi

since this is true when we solve the same system of equations in MS(F), or we can
establish this directly by using the first two equations to show that:

(jl(A - X,l)\ v = ± (j[(Xt - xA vt = (n(A, - A,) j „.

Hence:

•



4 M. ALBERT AND D. PATRICK

Note that the same result holds when R is any integral domain which has the
property that all finitely generated projective R modules are free. This includes all
commutative local rings (see [1] p. 413) and, by the Quillen-Suslin theorem ([4] p.
490, [7]) also all polynomial rings over fields.

How does the result apply to our problem? By standard results from linear algebra,
it is a corollary to the above that any finite set of commuting matrices satisfying
the conditions of the proposition are simultaneously diagonalizable over R. Since
each of the matrices in A\, A2,... , Ak (thought of as a matrix over Z[l/2]) satisfies:

and since 2 = 1 — (—1) is a unit of Z[l/2], A\, A2,... , Ak are simultaneously diag-
onalizable over Z[l/2].

The quotient map from U/U1 to U/V is just reduction modulo m. Since m is odd,
2 is a unit in Zm so the diagonalizing matrix and its inverse reduce naturally to
matrices in Mr(Zm) (since we only divide by powers of 2.) Hence, for each sequence
e = (ci, 62,... , €k) from {1, —1} there is a subgroup V€ of U/V where:

v G K ^=> A{V = 6{V for 1 < i < &,

and

Since Gk = Fk/V contains U/V we may think of the groups Ve as subgroups of
Gk- Moreover, the 2-Sylow subgroup of Gk is isomorphic to Fk/U, and has trivial
intersection with U, so Gk is isomorphic to the semidirect product of U/V by Fk/U.
So we henceforth identify Gk with this semidirect product.

Let 1 = (1 ,1 , . . . , 1). Now we ask: what are the dimensions of the subgroups V€?

Proposition 2. The dimension ojV\ is k, and if e ^ 1 then the dimension ofV€
isk- 1.

Proof. Recall that Gk = Fk/V, and consider the automorphism of Gk which fixes
the free generators #,• for i ^ j and sends Xj to XjXk for some k ^ j. This map
induces a permutation of the subgroups V€ of Gk as follows:

V€ H+ V€> where e\ = 6,- for i ^ j, e'j = €j€k.

In particular we can use such an automorphism to change e to any e' which differs
from 6 only in the sign of a single element, provided that both 6 and e' contain at
least one —1. But by a sequence of such transformations we can transform any e
containing a — 1 into any c' which also contains a —1. So dimK = dimK' for all
such e and e'. Let ddimFc for any e =^ 1.

The subgroup:
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of Gk is normal, and

But Gk/H is fc-generated, hence:

dim^i < k.

Finally note that:

2fc(Jk - 1) + 1 = dim Ax + ^ d i m V€ = dim Ax + (2*

When k > 1 the only solution in positive integers to this equation which has
dim A\ < k is given by:

i = fc, dimV^ = k — 1, (for € ^ 1).

When k = 1 we know that dimAi = 1 and dim>l_i = 0 so this case also works. •

This gives us a complete understanding of the structure of G&, and all that remains
is to find an explicit set of generators, which is the purpose of the next section.

3. JUST THE FACTS

Let m be an odd positive integer, and let fcbea positive integer. We now construct
the free fc-generated group in 2tm2l2«

If G = Z£ then we say that a sequence of elements fli,52? • • • i9j form a basis for
G if G is the direct sum of the cyclic subgroups generated by the elements #, for
1 < i < h
Let:

denote an arbitrary sequence of length k from {—1,1}. For each such e other than
1 = (1 ,1 , . . . ,1) let N€ be the position of the first occurrence of —1 in e, and let

For each e other than 1 define an abelian group Ve = Z^~x with basis vej for
1 < j < fc, 3 ^ N€. Define Ax = Zk

m with basis vhj for 1 < j < k. Then define:

Let U = Z\ have basis Uj for 1 < j < fc. Finally define G to be a semidirect product
of A with U given by the relations:
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Notice that for each x = vxux G G with ux G U and vx G A there exist unique
elements v+ and v~ in A such that:

uxv+ux = v+

uxv~ux = (vj)"1,

and that

Theorem 3. G is the k-generated free group in the variety 2tm2l2.

Proof We see that the order of G is:

By the results in paragraph 21 of [6] the order of G is the same as the order of the
fc-generated free group in 2lm2l2- Furthermore, from the construction it is clear that
G belongs to this variety. So to show that it is the /^-generated free group it suffices
to prove that G is ^-generated.

For 1 < i < k define xt- G G as follows:

Then:

ux. =

Notice that v€i occurs as a factor in v~. if and only if e,- = — 1 and €j = — 1 for some
j < i*

We claim that xi, x 2 , . . . , xk generate G. Let H denote the subgroup of G generated
by 2a , z 2 , . . . ,%k

To see that H = G we will first show that izt- G if for each i. First note that

ux = x™ G # .

For a:2 note that:

v-2u2 =x? £H.

Then:
= {v~2)-

lu2 G iT,

(since for the t/Cj2 in vj2 we must have ex = — 1.) Thus (v~J2 and hence vj2 are in
H so tz2 is also in H.
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We can complete this argument inductively. For if ux, tz2,... ,i*i_i € H then:

But each v€)t- which occurs in v~. satisfies €j = — 1 for some j < i. Then successive
conjugation by U\, n2 , . . . , nt_i allows the removal of all such factors as above. Hence
Ui 6 JJ.

It remains to show that for any j and e (with N€ ^ j ) , that ve>j G -H". To do this
note that since Uj and v+ are in U so is vJ.. So we need only show how to strip the
remaining factors (other than v€j) of one of these products away. But conjugation
by Ui allows us to strip away all the factors corresponding to sequences e' with
e'i ~fc €{. If we do this successively for all i we are left only with the factor vej which
we wanted.

•

4. DISCUSSION

The reader may well wonder why we desire such a detailed understanding of the
free groups in varZ)m. One reason is to make it possible to address the unification
problem in these varieties which is the problem of finding general "parametric"
solutions to systems of equations. For (a trivial) example, the equation x3 = 1 in
var Dg has most general solution x = y6 since in any free group in this variety all
the elements of order three are sixth powers. However, in some cases such general
solutions do not exist. For example in absolutely free groups the equation xy = yx
has an infinite family of most general solutions, x = ixn, y = um. In other varieties
(non-abelianp-groups or nilpotent groups) it can be shown that there exist equations
or systems of equations which have no most general solution. John Lawrence has
made extensive progress on the question of determining when systems of equations
must have most general solutions in finitely generated varieties of groups ([5]), to
the extent that one of the few open questions remaining concerns varieties generated
by non-abelian groups of non-square-free exponent, all of whose Sylow subgroups
are abelian. Of course when m is odd and not square free, then var Dm is just such
a variety. In a subsequent paper we hope to be able to illustrate how our detailed
understanding of the free groups in these varieties enables us to solve the unification
problem.

The arguments in section 2 also lead to presentations of free groups in other varieties
such as 2l72l3 and generally %lpkAq where p and q are primes and q\p — 1.

Extensive use was made of the symbolic algebra programs Maple and Mathematica
to assemble (via a constructive version of the Nielsen-Schreier theorem) examples
of fc-generated free groups in vax Dm for small k and m which were instrumental in
suggesting the form of the final structure theorem, and the results of section 2.
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