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INTRODUCTION:

Let 2 be a bounded open set in RN

N >3 with C? boundary 8Q. Given A >0, we

consider the following Neumann boundary value problem,

- a u=|u|p_2u—Au on
(1) -g%:O on 0}

where n is the outward pointing normal on 9 and p = 1'@7 is the best exponent in the

Sobolev embedding HI(Q) — LP(Q2). In this setting one easly checks that u =0 and

1

u=t P are solutions of (1). We shall refer to these as the trivial solutions.

In finding nontrivial solutions one has to deal with a lack of compactness. Using a variational
approach in the same spirit of [B—N], results in this direction have been obtained in [A-M],
[C—K] and [W]. There it is shown that, for a suitable constant A, = A_(£2) > 0, problem (1)
admits a nontrivial positive solution, provided A > A_.

Here we are concerned with changing sign solutions of (1). To this purpose, for given u # 0,

denote by (u,(u), v;(u)) the first eigenpair for the eigenvalue problem:

- a v+Av=p|u|p_2v on
%:0 on d

p€ER.

Since A > 0, the variational characterization of the eigenvalues gives that p,(u) >0 and
v,(u) cannot change sign in .

We have:

Theorem 1: For N2 5 and A > 0, there exists a nontrivial solution u of (1) satisfying:
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:[ 0P 2u vy (w) = 0,

in particular u changes sign in Q.
o

Previous result on changing sign solutions of (1) have been established in [C-K,1] for
domains with symmetries. See also [C—K] and [C].

Furthermore when X < 0, every solution of (1) must change sign. Existance in this
situation has been established in [C—K].

We also point out that for Dirichlet boundary conditions the analogous of Theorem 1
has been established in [T], provided N > 6. See also [C—S—S] and [Z).

We follow [T] and first prove Theorem 1 in the sub—critical case where we replace
p=1%—§-2 with q¢€ (2,%).

That is, for given 2 < q < 12W§2 we show that the problem:

-a u=|u|q—2u—Au on

admits a solution u =u q satisfying the orthogonality condition, J; |u|qf2uv1(u) =0 where

vy(u) is the first eigenfunction for the eigenvalue problem:

-a v+Av=p|u|q—2v on
(*)q %:0 on 99

This will be obtained applying the Ljusternik—Schnirelman theory to the even functional

Iq(u)=%l[ [Vu |2+/\u2—%£ |2, weH(DQ)



whose critical points correspond to solutions of (1) ¢
To conclude, we then show that for a sequence e _— 0 as n — + o, the given solution

u, of (l)p_ ¢ converges (strongly) to a solution of (1) and the orthogonality condition is
n n

preserved at the limit.
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1. Subcritical Case:

In this section we establish Theorem 1 in the subcritical case. To this purpose, let

qe€ (2 %) be given.

For ueLYQ), u#0 denote by (#(u), v(u)) the first eigenpair for the eigenvalue problem:

- A v+/\v=ulu|q—2v on
(*)q -g%=0 on 09

peR
Namely,

w2 + A w||2
o (5) = i {u Lnfuﬁ;q_znwgz weENQ) wi 0]

and v,(u) € Hl(ﬂ) satisfies:



Vv, (I + A fivy (w3
L |97 vi(u)

l‘l(u) =

The eigenfunction vl(u) is uniquely determined under the normalization:

,£|u|q_2v§(u)=1 and vy(0)>0 onf.

This allows to establish the following:
. 2N :
Lemma 1.1: For q€ (2, g=5~] the map:
LY Q) — B(Q)

u

Vl(u)

is continuous.
We omit the tedious details.

Remark 1.1: Continuity also holds with respect to the parameter q. That is if q, —4d then
in HY(Q). Here,

F—-Ovl

and v, q denote the first eigenfunction of (1) q and

"1,q, L

’q vl’Qn

(1) q respectively, normalized as above.
Set H= Hl(ﬂ) and denote by || || and (-,-) the corresponding norm and scalar
product.



We have already noticed that the solutions of (1) q correspond to the critical point of the

functional,

=1 2 2_1 q.
Iq(u)-—zr[WuI +Au qlL|u| .ueH.

To find the desired critical point of I q Weuse the Ljusternik—Schnirelman theory for even

functional.

To this purpose, let A ¢ H be a closed and symmetric set (i.e. u € A= —u € A), and denote
by i(A) € N the Krosnoselski’s genus of A (see [R]).
For k € N define,

F, = {A C H closed, symmetric: i(A Nh(S)) 2k Vhe &},
where & = {h :H—H even homeomorphism} and S= {u eH:|u|= 1}.

Set,

c, = inf supl
k" Aes A9

It is not difficult to check that — o < ¢ < Cq < Cg < ...
We have:

Theorem 1 : For qé€ [2, —N'E%I_] and X > 0, there exists a nontrivial solution u of (1) q

satisfying:

(1) o) =cy; (2) t[, (1% %0 vy (0) = 0;

where v,(u) is the first eigenfunction for the eigenvalue problem (*)q.



Remark 1.2: Using well known arguments (cf [R]) and the fact that Iq satisfies the P.S.
condition (see below) it follows that the ¢, are critical values for Iq for k=1,2,3,...
However for k > 3, we are unable to establish condition (2). This is due to the fact that lemma
1.1, which relies on the simplicity of the first eigenvalue, becomes difficult to obtain when

k> 2.

Proof: We follow [T]. This approach has been inspired by an argument of Coffman (cf [Co]) in
connection with the nodal properties of an eigenvalue problem of O.D.E.

Since q < —1@2—, it is a simple exercise to check that the functional I q satisfies the
Palais—Smale (P.S.) condition.

That is, every sequence {u } CH satisfying:
i) Iq(un)——oc, ceR
ii) ||I(’l(un)|| — 0 inH

admits a convergent subsequence.
We shall refer to these sequences as (P.S.) sequences.

Fact 1: For every A€.9'2 there exists u € A nAq:

r[) |u|q—2u vy(u) =0

where

Aq={ueH:u¢0 and <I"1(u),u>=0}



To see this, notice that the map:

defines an even homeomophism; (it is essential here that A > 0).

Hence for every A€ F 9 We have:
i(ANA)22 (1.1)
Furthermore, the map ¢¥: ANA ¢ R given by:

-2
Wu) = l a9 vy () w
is odd and continuous (see lemma 1.1). In virtue of (1.1) it must vanish somewhere.

Fact2: If ue Aq and J) |u|q—2v1(u) u=0, then I(u) 2 c,.

To establish this, denote by (uy(u), vo(u)) the second eigenpair for (*)q' Hence,

2 2

uz(u)=inf{ leilj;_" : 2 weH\{0} and J)lulq—2v1(u)w= o]



Therefore,

v J]2 + Al ||2
soto) ¢ L2l

Thus, if we let A = span {vl(u) , v2(u)} we derive that,

2
AeF, and [vw T-lf-qigwﬂz <1 VweAandw#0.
u

In turn,

sxp Iq 2 ¢, (1.2)

Moreover the structure of 1 q guarantees that the suprimum in (1.2) is obtained at some point

wy € A, which in particular satisfies,
< I(’l (wp)y wy >=0.
This yields:

—2
>u‘7“’ouz+u1 011_ nv‘“on2+,\n ouz 1L “ g

-2 2 - =
lo]97% g iy~ 11w II Ilullq

That is,

I ()= N HUII N I v Ilq = I(wp) 2 ¢y
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Since 1 q satisfies the (P.S.) condition, we will conclude the proof by using a suitable form of
the deformation lemma as obtained in [B—N,1]. For k € N fixed, there exist a deformation

y = y(t,u), t € [0,]] u € H, and a constant 0 < § < i— satisfying:

(I) y(t, -) is an homeomophism and I q(y(t, u)) < Iq(u) Vt;
1

(1) if Iq(u) <cy+ 6 and Iq(y(l, u)) >cy— b = I I(’l(y(t, w)ll<g Vtelo,1];
(see [B—N, 1 Corollary 4].
In addition, the oddness of I (’1 will allow to take y(t, u) to be odd in u.
Set h(u) =y(1,u),s0 heX.
By definition of Cos there exists A € Fo
k

Iq(u)$c2+6k Vue.lk.

Let
A = h(Z\k), hence A, € F, and

Iq(u) eyt Jk, ueE Ak.
As derived above, we can find y € Ak such that,

-2
u € Aq and i Iuqu u, v(g) =0

moreover,

Iq(uk) 2 Cy. (1.3)
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Let v, € Ak with h(v,) = u,. In particular,

Iq(vk) $cy+ 6
and from (1.3) we can apply (II) to conclude:

I $G, el(y)Sop+

Thus, {uk} defines a (P.S.) sequence for I and we can extract a subsequence converging to

q
a function u with the desired properties.

This conclude the proof of Theorem 1°.

2. The Critical Case
In this section we carry out the limiting process.

For € > 0 small, let P,=P—¢ Set
Coe = Ipe (ue)

where u, is the solution obtained by Theorem 1.

P.—2
In particular, u_ is a critical point of Ip and .[ Iucl € u v, =0
€

(we have set v, = v,(u )).

To shorten notation, set I ™ Ipe and I=1 €=0

Associated to I and I are respectively the manifolds:

Ae={u#0:(lé (u),u)=0}
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and

A= {u #0:(I’(u),u) = 0}.

One easily checks that I ¢ and I are bounded below on A € and A respectively.

Furthermore, the minimization problem:

iﬁf =Cp ¢ and illt I=¢ (1.4)

€

obtain their infimum respectively at some point u €A, and u, €A This follows easily for
I since it satisfies the (P.S.) condition (see [L—N—T]), while it is more delicate for Iand it
has been established in [W] (see also [A—M] and [C—K]).

Using these facts, it follows:

Lemma 2.1:

Cle——¢ as€— 0 (1.5)

The proof can be obtained as in [T] with the obvious modifications.

To carry out our compactness argument we need a crucial estimate on the value Co ¢
This will be the content of next section.
(2.1) Estimates for S e

2N
Let S=S(N) be the best constant in the Sobolev embedding: Hj — N2

(see [Ta] for the precise value of S).
We have:
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Proposition 2.1: Let N> 5 and A > 0. There exist ¢ > 0 and ¢* > 0 such that

N/2
¢, <¢ +5 " _g (2.1)
2,¢€ 1, 2N )

for every €€ [0, €*].
Proof: Since the bondary of  is of class Cz, there exists a point x, € 0 ! where the scalar
curvature of Of1 is strictly positive. Without loss of generality we can take Xy = 0. Thus, in

local coordinates near X = 0 we can write 0 as:

N—1 2 3 . .
XN = '21 ¢, xj +0(|x|”) with ¢;>0i=1,.,N-1

1=

and

Q¢c {x = (xl,..., xN) Xy > O].

We follow Comte—Knaap [C—~K] and choose 0 < R, <R, such that for sufficiently small p >

0 we have:
B, NB cOQnB cB, NB
Ry 7p p-TRy " Tp

where ﬁR is the ball of radius R and center (0,...,0, R) and Bp = {x erN: x| < p}.

R, Fig. 1

© * (X0 X,,)




Set
N-2

N2
U =N =2) 8~ 550, xeR.

6+ |x1% 2

the extremal functions for the Sobolev inequality.
They satisfy,
~a U=V in BN,

Let u; be the solution of (1) such that I(u;) = c; (see (1.4)).
Define

A5= span {ul,Uﬁ} €T,

Thus,

°2,es sup I 6> 0.

€ b
A
To estimate sup I, we recall the following:

Calculus Lemma

For 1 < q< + o, there exists a constant C > 0 (depending on q only) such that for

a, f€R we have:

| la+B1%—]a|9- 1819 < C(Ja]T1 8] + |a] 18177,

(cf. [B-L)).

14
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In virtue of the calculus lemma we have:

P,
I(su; +tU Q) ¢ 55 ||111|lp J—L ||u1|| + -2( NVU5H2 +2 "U5"2)

P -1
t] € P, P
—% ||U5||p€+stiul U

p-1 p1
C[llsull |tU4l ¢ +r[|su1| ¢ |tU6|]

Using well known estimates on the function Uy (see[B—N]) and the fact that u, € L®(Q), for

€ > 0 small, it is not difficult to derive the following:

p -1 N-2
(i) st | u,¢ Ug <k (s2+t2)aT

1 6 1

N-2

. P -2 —2 Pe. 7T
(ii) st J) lu,| 104l (Isuyl €+t U6| ) <k (ISI +t] )6
for a suitable constant kl > 0.
Notice in fact that,

N-2 N-2

IUgl; =0(5 %) and nUbnp =006 7).

Substituting in the above expression we obtain:
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2 Pe P 2
t 2 2
I(su, +tU,) ¢ & g IB - Jill,— gl *+ 55 (V013 + 2 100)

€

N o, N2
-J—l ||U6|| +k1(s +2)8 Taky(lsl S+ 1] 96 %

k2>0.

P (=7
Since ||U5||p6 > A T _agf2te ( 2) for suitable A, a > 0, we can find positive
€

constants M and B (independent of € and é) such that,

I(su; +1Ug5) <0

for 24+ t2>M 6

-8 ¢
On the other hand, for s2 + t2 <M we have:

p

2 € P, 42 2
1 (su + £0) < Sy MuglB ~ 150 oy 1+ 5 70 5 + 210 )

5" +kg8 T 1f

pf
15
pf
with k3>0 and 81>0.
In other words,
pf
p —z
e+ 0gs -5 L ] ‘T
1'p
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P, 2 pe N-2
YU U ———7— “ U " —% —Z—-—ﬂ €
€ 1Y 5II I'Us 1l
€

For N2 5, our choice of U s allows a sharp estimate of the following type:

—c &2 4o (83 (2.2)

1905 4 2 W0 s
hug 12 “ /N

for suitable ¢ > 0.
The proof of (2.2) can be found in [A-M], [C—K] and [W].
From (2.2) we derive:

N-2
N/2 1 9, 1€

1 P,S —8,¢ 2
I(suy +tUg) < § lhuylB + Sy 6782 —e 8 P akgE T

+o(e)+o(zsrﬂ-"'e
with 8,,¢; > 0.
Since N > 5, we can fix €, >0 such that
Eig—ﬂ € >%.

Consequently, choosing 60 > 0 sufficiently small we have:

5 8,e ) 3-8 ¢ 3
—C16 +k 6 +0(6 )S—TJO:‘=—2U
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forall 6€0, §)) and €€ [0, ¢p).
In conclusion;
1 oN/2 8,6 sN/?
sxplcsclc-kms +[[1—60 2]7N +c1-c1,€+0(e)]—2a
6 3
0

Since the term in the square bracket tends to zero as ¢ — 0, we derive (2.1) by taking ¢ > 0

sufficiently small.

(2.2) The Existence of the Solution:

Theorem 1 will be established as soon as we obtain the following result for the given solution
u,of ( l)p—e'

Proposition 2.2:

There exists a sequence ¢, —— 0 and u € Hl(ﬂ) such that,

n

u, — u strongly in HI(Q),
n

i |u|p—2u vy(u) =0.

In particular u satisfies (1).
Proof:

Since we have seen that Cy 18 bounded uniformly in € and u ¢ satisfies (1)p , it is not
’ €

difficult to check that,

(Ve <X, (e>0small, K>0)

where,

ot = max {ue , o} e BY(Q) \ {0}
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and

u, = max {— u,, 0} € HI(Q) \ {0}.

— 0 wecanfind ut,u e HI(Q) such that,

u:f —qgt weakly in Hl(ﬂ).
n

Thus, for a sequence €

i £ _ % = i = = = =
To shorten notation, set ur=u €’ Cin= ci,en i=12p = p‘n ) In Ien and Ay

A .
n
We claim that u™t #0 and u #0.
To see this, notice that ui" €A thus:
+
I ()2 1. (2.3)

On the other hand, for n large we have:

I (un) +1 (u;') =1 (un) =Cyp < cl,n+ N

That is,
N/2
I (uﬁ) < —gN-S -0 (2.4)

for n large.

Moreover, a well known inequality of Cherrier (see [Ch]) gives that, V 7> 0 then exists a
constant M r> 0 such that,

2 2
Gam = lelp s 1T uly+M lul (2.5)
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Vue H(Q).

We derive,
2 2 P 2 + 2,Pn/2
9w UG+ 0w 5 = 0 1 < (1T I+ A o ) /

K1 > 0, and therefore:
I uf Ilp 2k, >0 forlarge n. (2.6)

Arguing by contradiction, assume for example that vt =0

This implies,
gN/2

1 +42 1 +

sl Vup 5 —5; | u "p < —2'N' o +0(1) (2.7)
and

9 p
19y g =l I = o(1) (28)

Consequently,

1 + 1 oN/2
[2 Pn] I || <o SN2 o4 0(1)

Now fix 7, > 0 ir (2.5) such that
gN/2
[_27N'2$ - 'ro] N2,5 " ¢ (2.9)
From (2.8) we obtain,

2 (b -y + P02,y P + 2
—_—— n n_
121 " ppp luy IIpn lug 521wy llpm--ll"un 5 +o(1) 2
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S 2 2
|7 = o] I 15 Mo 1w 15 + o)

(19| = Lebesgue measure of 2).
But || u;'l' "p is bounded below away from zero, (see (2.6)). So

p,—2
+'n S
oy | ZW“TO'*'O(I)-

That is,

Loyt 2Lyt + 1(S N/2
Vu - u +012 -7 + o(1
AR R I u = FIuE 12 4 o) Nkmm 0] (1)

which is impossible in virtue of (2.9).
Similarly one sees that u™ # 0.

Set u= u+

—u #0. Clearly u —u weakly in HI(Q) and u is a (changing sign) solution
for (1). We claim that (a subsequence of) u  converges strongly to u in Hl(ﬂ). This can be
seen easly by setting u, =u + w_ with w —0 weaklyin Hl(ﬂ).

Since I(u) 2 ¢;, we obtain:

N/2
cLpton —o2L (Wt w) =1 + 3 Vw, I3- o 1w, || ® + o)

ye, +gllVwy 12— puw u "+ o1);

that is,
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%n Vw, Ilg—pl—nll W, ||]I:zss—1;1{;3—a+o(1) (2.10)
Furthermore,
2 Pn
0= (15 (o)., = [0 0] + 17wy 13— g 12 + o)
or,

2 P
NV wll5—1lwy llpn = 0(1) (2.11)
n

As above, one sees that conditions (2.10) and (2.11) can hold simultaneously only if

lim
n = +m||an||2=0.

Moreover (for a subsequence of un) we have:

p,—1 1
0= l[ lo | ® u vl(un)--vlL lulPu vy (w)

This concludes the proof.
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