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- A u = |u|P~ u — Au on Q
= ° o

INTRODUCTION:
Let Q be a bounded open set in RN, N > 3 with C2 boundary dto. Given A > 0, we

consider the following Neumann boundary value problem,

(1)

2Nwhere n is the outward pointing normal on ft] and p = J ^ J is the best exponent in the

Sobolev embedding H1(fi) —> Lp(ft). In this setting one easly checks that u = 0 and

1

u = — Ap~ are solutions of (1). We shall refer to these as the trivial solutions.

In finding nontrivial solutions one has to deal with a lack of compactness. Using a variational

approach in the same spirit of [B—N], results in this direction have been obtained in [A—M],

[C-K] and [W]. There it is shown that, for a suitable constant Â  = A^(fi) > 0, problem (1)

admits a nontrivial positive solution, provided A > A .̂

Here we are concerned with changing sign solutions of (1). To this purpose, for given u ^ 0,

denote by (/^(u), v1(u)) the first eigenpair for the eigenvalue problem:

(- A v + Av = n \u\V~ \ on fl

= 0 on d f2

Since X > 0, the variational characterisation of the eigenvalues gives that iiAv) > 0 and

v^u) cannot change sign in Q.

We have:

Theorem 1: For N > 5 and A > 0, there exists a nontrivial solution u of (1) satisfying:
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in particular u changes sign in ft.

o

Previous result on changing sign solutions of (1) have been established in [C—K,l] for

domains with symmetries. See also [C—K] and [C].

Furthermore when A < 0, every solution of (1) must change sign. Existance in this

situation has been established in [C—K].

We also point out that for Dirichlet boundary conditions the analogous of Theorem 1

has been established in [T], provided N > 6. See also [C-S-S] and [Zj.

We follow [T] and first prove Theorem 1 in the sub-critical case where we replace

- A u = |u | q u - A u on ft

| £ = o on

2N
That is, for given 2 < q < ^ ^ we show that the problem:

(1),

admits a solution u = u satisfying the orthogonality condition, | u | q . uv^u) = 0 where

Vj(u) is the first eigenfunction for the eigenvalue problem:

n—9

t v + A v = | i | u | q v on ft
£ = 0 on 5ft

This will be obtained applying the Ljusternik—Schnirelman theory to the even functional



whose critical points correspond to solutions of (1) .

To conclude, we then show that for a sequence en —» 0 as n —> + <», the given solution

u of (1) converges (strongly) to a solution of (1) and the orthogonality condition is
en p~ 6nn

preserved at the limit.
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1. Subcritical Case:

In this section we establish Theorem 1 in the subcritical case. To this purpose, let

n w 5 2N

For u € Lq(fi), u t 0 denote by (/^(u), v.(u)) the first eigenpair for the eigenvalue problem:

<•>,
- A v + A v = /x | u | q v on fl

| j = 0 on

Namely,

Ia + > HI*
j

and Vjfu) € H1(fi) satisfies:



+ A Hv1(u)iil

The eigenfunction v t(u) is uniquely determined under the normalization:

>q"2v?(u) = l and v,(u) > 0 on fi.f | u |

This allows to establish the following:

2NLemma 1.1: For q e (2, g_^ ] the map:

u

is continuous.

D

We omit the tedious details.

Remark 1.1: Continuity also holds with respect to the parameter q. That is if qn —> q then

Vj •—• Vj in H1(D). Here, Vj and Vj denote the first eigenfunction of (1) and

(1) respectively, normalized as above.

Set H = H1(f2) and denote by || || and (•,•) the corresponding norm and scalar

product.



We have already noticed that the solutions of (1) correspond to the critical point of the

functional,

U*)=4f |VuI2 + Au2-i f lul^ueH.

To find the desired critical point of I we use the Ljusternik-Schnirelman theory for even

functional.

To this purpose, let A c H be a closed and symmetric set (i.e. u e A =* — u G A), and denote

by i(A) € W the Krosnoselski's genus of A (see [R]).

For keW define,

<?k = { A c H closed, symmetric: i(A fl h(S)) > k V h € <#},

where <# = \h : H —> H even homeomorphism} and S = | u € H : ||u|| = l | .

Set,

cv = inf sup I
q

It is not difficult to check that — o < c« < c2 < c3 < ...

We have:

Theorem 1 : For q 6 2, ^_^ and A > 0, there exists a nontrivial solution u of (l)c

satisfying:

= C2; (2) f

where Vj(u) is the first eigenfunction for the eigenvalue problem (*) .



Remark 1.2: Using well known arguments (cf [R]) and the fact that I satisfies the P.S.

condition (see below) it follows that the c/s are critical values for I for k = 1, 2, 3,....

However for k > 3, we are unable to establish condition (2). This is due to the fact that lemma

1.1, which relies on the simplicity of the first eigenvalue, becomes difficult to obtain when

k>2.

Proof: We follow [T]. This approach has been inspired by an argument of Coffman (cf [Co]) in

connection with the nodal properties of an eigenvalue problem of O.D.E.
2NSince q < ^_^ > ** *s a simple exercise to check that the functional I satisfies the

Palais—Smale (P.S.) condition.

That is, every sequence {u } C H satisfying:

admits a convergent subsequence.

We shall refer to these sequences as (P.S.) sequences.

Fact 1: For every A e 5 9 there exists u 6 A n A :

|u| ( l-2uv1(u) =

where

A = |u € H : u i 0 and < r(u), u > = oj



To see this, notice that the map:

u

defines an even homeomophism; (it is essential here that A > 0).

Hence for every A € c?9 we have:

i(A n Aq) > 2 (1.1)

Furthermore, the map ^ A ( 1 A • IR given by:

(u) = j | u |

is odd and continuous (see lemma 1.1). In virtue of (1.1) it must vanish somewhere.

Fact 2: If u e A and f | u | q 2 v : (u) u = 0, then I(u) > c2>

To establish this, denote by (/u(u), y^i**)) *^e second eigenpair for (*) . Hence,

u) = inf • T'P,t4»12 , - € H\{0} w = 0



Therefore,

Thus, if we let A = 6pan j v ^ u ) , v 2 (u) | we derive that,

A€.y2 and »Vwl)2 +^8W» 2 <1 VweAandw*

In turn,

sup I > c 2 (1.2)
A q l

Moreover the structure of I guarantees that the suprimum in (1.2) is obtained at some point

UQ € A, which in particular satisfies,

This yields:

|2 + X II ^0 | |2 . II V ^0 | |2 + A H ̂ 0 ||2
* 2 g ' f2 2

That is,
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Since I satisfies the (P.S.) condition, we will conclude the proof by using a suitable form of

the deformation lemma as obtained in [B-N,l]. For k € W fixed, there exist a deformation

y = y(t,u), t 6 [0,1] u 6 H, and a constant 0 < ^ < £ satisfying:

CO y(t> * ) i s aa homeomophism and Iq(y(t, u)) < I (u) Vt;

(n) if I (u) < c2 + ^ and I (y(l, u)) > c2 - ^ => || I'(y(t, u)) \\<\ Vt € [0,1];

(see [B-N, 1 Corollary 4].

In addition, the oddness of I' will allow to take y(t, u) to be odd in u.

Set h(u) = y(l, u), so h € M.

By definition of co, there exists A e &n:2 k l

Let

I (u) 1 ^ + ^ V u e A .

A, = h(A ), hence A, e
ML

As derived above, we can find u, € A, such that,

uk 6 Aq and f | u k | q 2 u k v ^ ) = 0;

moreover,

Iq(uk) > 4 . (1.3)
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Let v^ e A with h(v,) = u,. In particular,

V Yk> <- C2

and from (1.3) we can apply (II) to conclude:

II ̂ \) H E . C2 * Vuk) <- C 2 + E-

Thus, | u k | defines a (P.S.) sequence for I and we can extract a subsequence converging to

a function u with the desired properties.

This conclude the proof of Theorem V.

2. The Critical Case

In this section we carry out the limiting process.

For € > 0 small, let p = p — e. Set

where u£ is the solution obtained by Theorem V.

| u e |

(we have set v ( = ^1(ue)).

To shorten notation, set 1̂  = I and I = I6 _ Q.

Associated to I and I are respectively the manifolds:

p — 2

€ e

^e= u*0:(i;(u),u) = 0
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and

A = u#O:( l ' (u ) ,u) =

One easily checks that I£ and I are bounded below on A£ and A respectively.

Furthermore, the minimization problem:

inf = c« and in I = c, (1.4)
Ac

 1>e A

obtain their infimum respectively at some point u.. 6 A and u. 6 A. This follows easily for

I£ since it satisfies the (P.S.) condition (see [L-N-T]), while it is more delicate for I and it

has been established in [W] (see also [A—M] and [C—K]).

Using these facts, it follows:

Lemma 2.1:

Cj e » Cj as e 1 0 (1.5)

D

The proof can be obtained as in [T] with the obvious modifications.

To carry out our compactness argument we need a crucial estimate on the value Cj £.

This will be the content of next section.

(2.1) Estimates for Cg £.

2N
Let S = S(N) be the best constant in the Sobolev embedding: H J —

(see [Ta] for the precise value of S).

We have:
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Proposition 2.1: Let N > 5 and A > 0. There exist a > 0 and c* > 0 such that

s N / 2
(2.1)

for every e € [ 0, e*].

Proof: Since the bondaxy of ft is of class C , there exists a point XQ € d ft where the scalar

curvature of 5ft is strictly positive. Without loss of generality we can take XQ = 0. Thus, in

local coordinates near xA = 0 we can write dCl as:

N - l

and

N = E c.x? + 0( |x | 3 ) with c. > 0 i = l , . . . , N - l
JN i = 1 I I I

ftC x = ( x l r . , x N ) : x N > 0

We follow Comte-Knaap [C—K] and choose 0 < R, < Rg such that for sufficiently small p >

0 we have:

B p flB c f tnB c B p nB oRj P P R2 P

where B R is the ball of radius R and center (0,..., 0, R) and B = jx € R : |x | < p\.

Fig. 1
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Set

N-2

IT M - (N(N - 2) 6\

the extremal functions for the Sobolev inequality.

They satisfy,

in RN.

Let u. be the solution of (1) such that I(uj) = Cj (see (1.4)).

Define

Thus,

c2 < sup I , 6> 0.

To estimate supl^ we recall the following:

Calculus Lemma

For 1 < q < + OD, there exists a constant C > 0 (depending on q only) such that for

a, /? € R we have:

(cf. [B-L]).
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In virtue of the calculus lemma we have:

B2 n | B , p c pc +2 9 9
II-ii IIP I S I Ik . II c , X / J lnTj \\4 i \ •••"»" *»^^

c-

_ 1 H pc r P c - ^
pc pc ^

-ft * ft J

Using well known estimates on the function U^ (see[B-N]) and the fact that Uj 6 LCD(n), for

e > 0 small, it is not difficult to derive the following:

N-2

0)

(ii) |st | f |u x | \VS\ ( | s u / r 2 + It XJ^|Pc~2)! < ̂  ( | s | P c -h
N-2

for a suitable constant k. > 0.

Notice in fact that,
N-2

and .Pe"1 N-2

Substituting in the above expression we obtain:
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pe

« " p.

t2)

k2>°-

>
Vt t{^¥) i /o . c rN-2x

Since ||U |̂| £> A 6 * - a r ' + ^~T"J for suitable A , a > 0, we can find positive

constants M and 6 (independent of e and S) such that,

I£(su1 + tUj) < 0

2 2 ~ 8 £

for s2 + r > M 6 .
- 8 c2 2On the other hand, for s + t < M 6 we have:

I£(su1

-ill 'e p
N-2

with k3 > 0 and Bj > 0.

In other words,

P !i
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2 2 pe 2

+ h e - — -*—* * n ^ r « + k Q 4 v s, t 6

For N > 5, our choice of U r allows a sharp estimate of the following type:

II u x II2
" £ "p

for suitable c > 0.

The proof of (2.2) can be found in [A-M], [C-K] and [W].

From (2.2) we derive:

SN /2 o ,1

+ tU^ < \ lluj

+ 0(6) + 0 {? 2 ) .

with B2 , cx > 0.

Since N > 5, we can fix e > 0 such that

Consequently, choosing 6Q > 0 sufficiently small we have:

" B i € , n U ? ~ B 2 c
w

 c i
+ 0 ( * )<
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for all 6 € [0 , 6Q] and e e [0, cQ].

In conclusion;

•;p <- \< + m s N / 2 + [ f1 - V*'e] i T + c i" CM +

Since the term in the square bracket tends to zero as c —• 0, we derive (2.1) by taking e> 0

sufficiently small.

(2.2) The Existence of the Solution:

Theorem 1 will be established as soon as we obtain the following result for the given solution

Proposition 2.2:

There exists a sequence en 1 0 and u € H (fi) such that,

u » u strongly in H (ft),
n

f |u|P"2uv1(u) = 0.

In particular u satisfies (1).

Proof:

Since we have seen that cu is bounded uniformly in e and u satisfies (1) , it is not
^ > * c P ^

difficult to check that,

j| V u^ ||2 < K , (e > 0 small, K > 0)

wheie,

+ = max {uc , o} € E\Q) \ {0}
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and

Thus, for a sequence e —> 0 we can find u , u € H (ft) such that,

— u± weakly in H1(n).

To shorten notation, set u ^ = xr^ , c^ = Cj i = 1, 2, Pn = Pe > J
n = ^ s^d A

n

n n

We claim that u + i 0 and u # 0.

To see this, notice that u ^ € A ; thus:

On the other hand, for n large we have:

.n < c l , n +

That is,
, QN/2

for n large.

Moreover, a well known inequality of Cherrier (see [Ch]) gives that, V r > 0 then exists a

constant M > 0 such that,

T ) H u l l p * II V 11 «1 -h M ^ I| ti ||| (2.5)



We derive,

P.
ll^nl!2 + All^ll2 = llunllp^KldlVun

> 0, and therefore:

n »p •-->•' ' f o r l a r g e

Arguing by contradiction, assume for example that u = 0.

This implies,

and

Consequently,

Now fix rQ > 0 in (2.5) such that

From (2.8) we obtain,

20

2 (P - Pn) p _ 2 p

I°I ~ P n P II " I Up" II < «p > II < llp
n = H ^ u+ H| + o(l) >
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(I n I = Lebesgue measure of ft).

B u t II u n Up i s t>o u n d e d below away from zero, (see (2.6)). So

That is,

which is impossible in virtue of (2.9).

Similarly one sees that if" i 0.

Set u = u + - xT i 0. Clearly un —* u weakly in H (ft) and u is a (changing sign) solution

for (1). We claim that (a subsequence of) u converges strongly to u in H (fi). This can be

seen easly by setting un = u + w with w^ —̂  0 weakly in H (fi).

Since I(u) > c., we obtain:

2 I V w« " I " £ 'I "n «

•f>wn»pa + 0(1);
Fn Fn

that is,
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( 2 1 0 )

Furthermore,

*n

or,

| 2 - | | w ||Pn
n ^n

As above, one sees that conditions (2.10) and (2.11) can hold simultaneously only if

Moreover (for a subsequence of u ) we have:

°=f lun|P n \v lK)-4

This concludes the proof.
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