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towards responding 0 to every AND gate because the probability of that answer being correct
would be .98.

Human Learning Results

The subjects responded correctly on a high proportion of trials (92%) during the final 300
trials of practice. The mean percentages of correct responses over 50-trial blocks were 89, 90,
94, 95, 94, and 93% for blocks 1 through 6 respectively. Hence, the subjects started this final
part of the experiment with high accuracy and became somewhat more accurate with the addi-
tional practice. An analysis of variance that included the variables for input condition and 50-
trial blocks indicated that there were significant differences in accuracy among the blocks,
F(5,75)=4.60, p<.001. The main effect for input condition was not significant, F(1,15)<1,
nor did input condition interact with blocks, /7(5,75)<1. The mean accuracies were 92% for
the 2-input condition and 93% for the 6-input condition.

An analysis of the subjects' response times also failed to show differences between the 2-
and 6-input conditions. The subjects responded faster, on average, to the 6-input gates (2.18
seconds) than to the 2-input gates (2.31 seconds), but this difference was not significant,
F(1,15)<1. As one might expect, there was a significant speed-up over blocks,
/r(5,75)=14.52, /?<.001; the means for the eight 50-trial blocks, beginning with block 1, were
2.77, 2.34, 2.19, 2.10, 2.02, and 1.90 seconds. The variables input condition and 50-trial
block did not significantly interact, F(5,75)=1.15,p>.34.

In summary, the initial 216 trials of training brought the subjects to a high level of
accuracy. The final test blocks showed that the subjects could maintain, and even improve,
this accuracy when they were tested on the different gates at random. There was no indication
that the 6-input gates were more difficult to learn than the 2-input gates.

Connectionist Learning Without Task Division

We also examined connectionist learning of the digital logic task using the backpropagation
learning procedure. A software package developed by McClelland and Rumelhart (1988) was
used to model the task. To find out how changing the number of inputs would affect learning,
we modelled learning of 2-, 4- and 6-input gates.

The networks trained with backpropagation were feed-forward networks having either 6, 8
or 10 units in the input layer. Each network had 20 hidden units, and a single output unit. The
input layer consisted of 3 units to encode gate type, 1 unit to encode negation, and 2, 4 or 6
units to encode the inputs (0's or l's) to the gates. Figure 1 illustrates the network's
configuration for learning the gates with 6 inputs. Different codes were used for the AND
(100), OR (010), and XOR (001) gates, and the negation unit was set to 1 to represent the
negated gates (NAND, NOR, and XNOR) and otherwise set to 0. The initial weights for the
network were set to random values that varied uniformly between -0.5 and 0.5. The momen-
tum parameter was set to 0.9. We tried a number of different learning rate parameters, and the
simulations we report below used the parameters that yielded the fastest learning. These
learning rate parameters were .1, .07, and .02 for the 2-, 4-, and 6-input networks respec-
tively. The learning rates had to be reduced as the number of input units were increased to
yield reasonably stable learning times.

Following the usual procedure for backpropagation, the networks were repeatedly pre-
sented with the complete set of patterns to be learned in cycles or "epochs." The networks were
presented with patterns corresponding to all possible feature combinations for the gates and
their inputs. Particular patterns in the 4- and 6-input simulations were repeatedly presented to
the network within epochs to achieve the same proportion of 1 and 0 responses that subjects
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Figure 1. The configuration of the network that learned the 6-input gates
without task division.
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Figure 2. Trials to criterion for humans, backpropagation alone, and
backpropagation with stages. The bars represent standard deviations.

had encountered in the experiment described above. The weights were adjusted after each pat-
tern so that the network learned over epochs to respond to the patterns with the appropriate 0's
and Ts.

Each network's accuracy was tested at 10-epoch intervals during learning by presenting the
set of training patterns to the network while learning was turned off. A network's response
was assumed to be a 1 if the activation of the output exceeded .5, and 0 if its activation was
less than .5 (possible activation values varied between 0 and 1). Ten simulations were run for
the different network configurations, each starting with different random weights.

Figure 2 shows the number of trials (number of epochs times number of patterns per
epoch) needed for each network to learn to the criterion of 100% accuracy. This criterion was
used because the network's behavior was deterministic; if the network was less than perfect it
would always err on the same patterns. These systematic errors, which are uncharacteristic of
our subjects who performed above 90% accuracy, were taken to mean that the network had not
vet learned the task.
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Figure 3. The configuration for the network that used task division to learn the
6-input gates.

As the complexity of the task increased, there was a substantial growth in the number of
trials necessary to train the networks. Note that this growth contrasts dramatically with the lack
of any complexity effect in the human data. This growth apparently resulted from the expo-
nential increase in the number of patterns to be learned by the network; the number of patterns
to be learned doubled with each additional input. There were 24, 96, and 384 patterns to be
learned in the 2-, 4, and 6-input conditions respectively. Generalization of learning among the
patterns was insufficient to hold down the learning time.

Connectionist Learning with Task Division

Human learning may scale well in our task because of the subjects' abilities to divide the
task into component tasks. These component tasks can be separately focused on during both
instructions and performance of the task. The subjects' prior knowledge allows them to be in-
structed on the rules that apply to the component task and would, even in the absence of
explicit instructions, allow them to form hypotheses about which feature combinations might
be important. Such task division and use of prior knowledge are, of course, standard features
in many simulations of cognitive processes, e.g., Anderson's ACT* (1983). Furthermore, the
notion of information processing stages has played a fundamental role in cognitive psychology.
Much reseach has been designed to identify stages of processing and discover how they
interact (e.g., Stemberg, 1969).

To examine how task division might speed up learning in our task, we used backpropaga-
tion to learn the individual component tasks in a modular network. Figure 3 illustrates how the
units that coded the gate inputs, gate type, and negation were used as inputs to the modules.
The figure also shows how the outputs from one module became the inputs to another module.
The model had three modules, each containing a layer of input units, a layer of 10 hidden units,
and a layer of output units. The first module (input map) was trained to recode 2, 4, or 6 in-
puts of 0's and l's into codes representing either "all 0's", "all l's", or "mixed." The second
module (gate map) was trained to produce the correct responses (1 or 0) when given the re-
coded inputs and the codes for the gate types (AND, OR, XOR). The third module (negation)
was trained to negate the output of the second module when negation was called for.

To assess total times for the model to learn the task, learning simulations were run for each
module. Our results on learning times are based on 10 runs for each simulation. Each run was
initialized to use a different set of random weights uniformly distributed between -.5 and +.5.
For all modules, the momentum parameter was .9. The learning rate parameters for the input-
map module were .5, .1, and .05 for the 2-, 4-, and 6-input conditions respectively. The
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Figure 4, Trials to criterion as a function of subtasks and no. of inputs. The
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learning rate parameters were .1 for the gate-map module and .5 for the negation module.
These learning rate parameters were selected to enable rapid learning, but no major effort was
taken to find the best parameters.

Figure 4 shows the mean number of trials needed to learn the component tasks for the dif-
ferent numbers of gate inputs. Figure 4 shows that receding the input as l's, 0's, and mixed
requires substantially more trials as the number of inputs is increased. Assuming that learning
can occur for all three modules during each trial, learning time would depend principally on the
module that took the maximum number of trials to learn. This maximum value is plotted in
Figure 2. It is clear from the figure that learning in this case scales considerably better than-
learning with backpropagation alone. It should be pointed out, however, that Figure 4 sug-
gests that many more trials would be needed to learn gates with more than six inputs. If
presented with more inputs, the subjects would probably adopt additional coding processes to
cope with increasing complexity, as is thought to occur when subjects chunk visual stimuli into
familiar configurations (Bartram, 1978)7

Discussion

We have examined human and connectionist learning of a modestly complex problem. The
human subjects learned the task very quickly, reaching 90% accuracy by the second block of
distributed practice. There was no evidence of any problem of scaling in the human learning
data, with both the 2- and 6- input conditions reaching an asymptote of 93% in 358 trials.
Reaction times declined substantially over trials, with the 2- and 6- input functions showing
equivalent learning rates. In an extended study of human learning of digital gates (Carlson et
al. 1988a) subjects took about 500 trials per gate or 3000 total trials to bring their response
times below .8 seconds. When responding in .8 seconds, subjects have apparently shifted to a
strategy of direct associative retrieval of the output of each stage given its input (see Carlson et
al., 1988). To acquire this skill of automatic retrieval in the digital-logic task, subjects require
about 5 hours of practice distributed over several sessions.

In sharp contrast to human learning, connectionist learning without task decomposition re-
quired about 68,000 trials to learn the 6-input case. Assuming that humans take about 6
seconds per trial, about 110 hours would be needed to perform 68,000 trials. This is far more
than the 5 hours humans actually required. Even of greater concern than this long learning
time, is the poor scaling shown in learning. The network required about 6 times as many trials
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to learn the 6-input as the 2-input case. The dramatic growth in the number of training trials
suggests such a network could not learn an 8-input problem in the lifetime of a human.

Connectionist learning with task decomposition learned the 6-input case in about 3,200
trials and scaled fairly well, requiring 3 times as many trials as the 2-input case. The total
number of trials compares reasonably well with the human performance, at least if we assume
that the human connectionist processing is not well developed until humans can respond below
1 second. Connectionist learning with decomposition learned the 6-input case 21 times faster
than without decomposition.

The above results suggest that combining rule-based and connectionist learning may pro-
vide the best of both types of computation. Initial rule-based learning (as in ACT* and SOAR)
can search a problem space and decompose a task into subtasks in reasonable amounts of time.
Processing in this rule-based mode is slow, serial, and effortful as is a human novice during
the controlled-processing stage of skill acquisition (Shiffrin & Schneider 1977, Schneider &
Detweiler 1987). Practice executing the rules allows connectionist learning to map the inputs to
the outputs of each of the component tasks. The early rule-based processing decomposes a
task so that smaller-scale tasks can be learned with connectionist procedures. This decomposi-
tion must identify the basic stages and the number of output states for each stage. Once tasks
have been divided, connectionist learning need no longer perform gradient descent search in the
power set of all possible connections, but rather has a more limited problem of mapping a small
number of input states of each component task to a small number of output states for each
component task. This use of task decomposition to make connectionist learning scale reason-
ably is an approach also advocated by Minsky (1988) to deal with the combinatoric explosion
problem that occurs as task complexity increases.

Some readers might argue that our example provides an unfair test of connectionst learning
and that our conclusions apply to only a limited set of tasks. We will briefly discuss four criti-
cisms readers may have. First, the problem chosen was a particularly difficult one for connec-
tionist learning, since it included three levels of non-linearly separable problems (inputs, gates,*
negation). We grant this, but it is a real task that humans have no difficulty performing if they
are instructed. Learning combinatoric gates is still a toy problem and one that must be solved
by any model of human learning. Second, by instructing humans we gave away the answers.
We agree, but standard connectionist learning provides no mechanism for instruction. Since
human learning can improve by many orders of magnitude with instruction, it is important to
explore architectures that can benefit from instruction. Third, different parameters or new
learning algorithms may greatly speed learning in the present task, so that a connectionist pro-
cedure could learn the 6-input condition in a reasonable number of trials. Perhaps, but the
critical issue is whether new solutions will scale well. Task division and use of rules can al-
ways be used to reduce the scaling problem for any connectionist procedure, and it would be
surprising if human learning would not make use of this property when learning new tasks.
Fourth, the present study shows that dividing tasks brings about faster learning, but there is no
demonstration of how to implement the task decomposition in a parsimonious manner. We are
currently working on developing such an architecture.

We are developing a connectionist/control architecture (Schneider & Detweiler 1987,
Schneider & Mumme 1988, Schneider & Oliver, 1988) that can implement rule-based learning
and connectionist learning and that can benefit from instruction and task division. The archi-
tecture involves connectionist modules that transmit vector messages among modules. The
control architecture uses an attentional gating mechanism that can modulate the transmission
and reception of vectors among modules. Each module outputs information to the controller,
indicating the degree of module activity and priority of its message. Controlled processing of
the rules involves altering what messages are transmitted and compared in the network. For
example, in digital-gate learning, the rule would be of the form "if all the input module vectors
match the lexical vector module (which contains a 1); then transmit the "ALLls" code to the



Oliver and Schneider 9

output of the input-coding module". Through changes in attentional gating, the network can be
reconfigured to execute a process in as many stages as is required to perform the task.
Intermediate states for each stage are represented not as specific units, but as random vectors.

Learning during the input-coding stage illustrates how rule-based and connectionist learn-
ing interact in the connectionist/control architecture. The instructions to the model indicate that
the input code must be encoded in one of three critical states and all the inputs map to these
critical states. The network generates three random-state vectors and associates those to their
respective rules (e.g., All Is = A; ALL0s=B, MIXED=C). The random vectors are similar to
the gensym operator in LISP programs. During practice, the rule-based performance correctly
solves the problem by serially executing the rules. On each trial the input and output of each
stage are correctly set via the rule-based processing (Schneider & Mumme, 1988).
Connectionist learning alters the connection weights to directly map the input to the output
without the use of the rule. As opposed to doing a gradient descent search through the
connection space for all possible output codes, the network needs only to learn how to map the
input states to the instructed output states.

As the connectionist/control architecture learns a task, processing shifts from sequential,
rule-based to association-based processing. Each module associatively maps its input to the
output and this process cascades over a number of stages. This connectionist processing has
two important advantages over rule-based processing. First, it is faster, because information is
retrieved associatively. Second, it is not as brittle as rule-based processing because the mutual
constraint match property of connectionist mapping will map the input to its closest matching
output. This may provide better generalization when the rule knowledge is ambiguous. The
model follows the changes in human skilled performance as practice continues (Schneider &
Detweiler 1987; Schneider & Mumme, 1988).

Summary

We have provided an illustration of the scaling problem exhibited by backpropagation when
required to solve a modestly complex task. We have shown that humans, if they are given in-
struction on the digital-logic task, show no effect of scale when the number of inputs to be
learned was increased. The humans learned the most complex task 220 times faster (in terms
of trials) than the connectionist simulation. We also evaluated a model using a task decompo-
sition exhibited by the human subjects. Connectionist learning of the decomposed tasks scaled
reasonably in this model, learning 21 times faster than the model without task decomposition
for the 6-input case. We speculated that hybrid architectures provide a superior processing en-
vironment than either purely rule-based or connectionst processing environments. The hybrid
approach appears to scale well and to learn at rates comparable to humans.

Acknowledgments

We thank Mark Detweiler for his comments on a draft of this paper. This research was
supported by the Army Research Institute, under contract No. MDA903-86-C-0149 and
Personnel and Training Research Programs Psychological Sciences Division, Office of Naval
Research under Contract Nos. N-0014-86-K-0107 and N-00014-86-K-0678.

References

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University
Press.

Bartram, D. J. (1978). Post-iconic visual storage: Chunking in the reproduction of briefly dis-
played visual patterns. Cognitive Psychology, 10, 324-355.



Oliver and Schneider 10

Biederman, I., & Shiffrar, M. M. (1987). Sexing day-old chicks: A case study and expert
systems analysis of a difficult perceptual-learning task. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 13, 640-645.

Brooke, J. B., & Duncan, K. D. (1983). Effects of prolonged practice on performance in a
fault-location task. Ergonomics, 26,379-393.

Carlson, R. A., Sullivan, M. A., & Schneider, W. (1988a). Fluency of component judgments
in causal network problems. Unpublished manuscript.

Carlson, R. A., Sullivan, M. A., & Schneider, W. (1988b). Practice and working memory ef-
fects in building procedural skill for causal judgments. Manuscript submitted for publication.

Hinton, G. E. (1986). Learning distributed representations of concepts. In Proceedings of the
Eighth Annual Conference of the Cognitive Science Society (pp. 1-12). Hillsdale, NJ:
Erlbaum.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in Soar: The anatomy of a
general learning mechanism. Machine Learning, 1, 11-46.

McClelland, J. L., & Rumelhart, D. E. (1988). Explorations in Parallel Distributed Processing:
A handbook of models, programs, and exercises. Cambridge, MA: MIT Press.

Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning.
Psychological Review, 85, 207-238.

Minsky, M., & Papert, S. (1988). Perceptrons (Expanded Edition). Cambridge, MA: MIT
Press.

Minsky, M. (1988). Preface: Connectionist models and their prospects. In D. Waltz and J. A.
Feldman (Eds.), Connectionist models and their implications: Readings from Cognitive
Science (pp. vii-xvi). Norwood, NJ: Ablex.

Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning internal representations by
error propagation. In D. E. Rumelhart and J. L. McClelland (Eds.), Parallel Distributed
Processing (pp. 318-364). Cambridge, MA: MIT Press.

Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information pro-
cessing: II: Perceptual learning, automatic attending, and general theory. Psychological
Review, 84, 127-190.

Schneider, W., & Detweiler, M. (1987). A connectionist/control architecture for working
memory. In G. H. Bower (Ed.), The Psychology of Learning and Motivation (Vol 21, pp.
54-119). New York: Academic Press.

Schneider, W., & Mumme, D. (1986). Attention, automaticity and the capturing of knowledge:
A two-level architecture for cognition. Unpublished manuscript.

Schneider, W., & Oliver, W. L. (1988). An instructable connectionist/control architecture:
Using rule-based instructions to accomplish connectionist learning in a human-time scale.
Manuscript in preparation.

Sternberg, S. (1969). The discovery of processing stages: Extensions of Donder's method.
Acta Psychologica, 30, 276-315.

Volper, D. J., & Hampson, S. E. (1986). Connectionist models of boolean category repre-
sentation. Biological Cybernetics, 54, 393-406.



 


